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1 Introduction

In the article our aim is to describe the singular part of a measure on the unit
sphere in C" in terms of behaviour of its harmonic and M-harmonic extension
near to the boundary. The description involves characterisation of the “level
of singularity” of the singular part of the measure. As an application by an
interaction of the description for harmonic and M-harmonic functions we obtain
a new proof of a weaker variant of the Aleksandrov theorem about singular part
of pluri-harmonic measure (see [1], Theorem 3.2.1). This new proof shows a
new reasons for the theorem to be true and as it doesn’t use any properties
of pluri-harmonic functions, except the one that they are both harmonic and
M-harmonic, the approach can give some possibilities for generalisations.

Though the results seems to be new in application to the complex sphere,
they are analogies (together with the main ideas of the proof) of the similar
results for a real hyperplane (see [6, 2, 3]). So the article should be considered
rather as a remark than as a new result.

The structure of the article is following. In the first section we make it clear
what we mean as “the level (dimension) of singularity” (our definitions differ
from the similar ones in [4]), and introduce the characteristic of a measure in
this scale. In the second and third sections we show the connection of this char-
acteristic and the speed of the growth of the M-harmonical and the harmonical
extensions of the measure near to the boundary. In the last section we apply the
results to prove that the dimension of singular part of a pluriharmonic measure
is at least 2n — 2 both in Euclidean and Koranyi sense (a weaker variant of the
Aleksandrov theorem). We also prove for pluriharmonic measures that their
distribution in “level of singularity” coinsides for both Koranyi and Euclidean
sense, which seems to be a new property (though intuitively equivalent to the
Aleksandrov theorem).



2 “The level of singularity”

First we define more exactly what we mean as “the level of singularity” of a
measure. As we compair singularity with a Hausdorff measure of some order on
the ball, the result depends of the choice of metric on the ball. There are two
possibilities: isotropic (Euclidean: dg(z,y) = |z —y|) or non-isotropic (Koranyi:
dg(z,y) = |1- < z,y > |%) All the results of this chapter is true for the both
of the metrics. We will denote a ball in Koranyi metric as () or Bk, and a ball
in Euclidian metric as B or Bg.

Definition 1 Let us say that a measure y on a metric space M has dimension
less than o if limsup;_,q JﬁuBgﬂ(ﬂ = o0 for p-a.e. x.

Let us say that a measure y1 on a metric space M has dimension less or equal
than « if limsup;_,, M(Bg”’w >0 for p-a.e. x.

Let us say that a measure p on the metric space has dimension larger than « if
lim sup;_,q M(Bg’w =0 for p-a.e. z.

Let us say that a measure y on the metric space has dimension larger or equal
than a if lim supg_,q M%w_ﬁll < 0o for p-a.e. x. In all cases By (z,0) is a
ball with respect to the metric.

We will say that a measure u is less singular than the Hausdorff measure of
dimension « if for any Borel set E of o-finite Hausdorff measure of order «,

ul(E) = 0.

We say that a Hausdorff measure of a set A is o-finite if A = UA; where
each A; in the countable union has finite Hausdorff measure. The restriction
of a measure p to a Borel set K (not necessary compact) we will denote as ux
(ux(E) = p(E N K)). We will say that a measure is supported on a Borel set
K if p = pk. If a statement and the proof is similar for both Euclidean and
Koranii metrics, we denote the metric as M. Let us note that 5-covering lemma
is true for both metrics. We will denote the Hausdorff measure of order a as
hg. By N we denote an index which does through natural numbers.

Lemma 1 If one has a finite regular Borel measure p on a metric space there
exist decomposition p = ps + jtq, where the measure p, has dimension larger
than o and ps is supported on some set of o-finite Hausdorff measure of order
a.

Proof (in short). Let us introduce D, (p)(z) = limsup;_,, @. The
set K on which D, (u)(z) > 0 is a Borel set of o-finite Hausdorff measure of
order a, as ho({Dq(u) > t}) < c@. Let ps = p|x- Then the rest is p,, and
D, (pe) = 0 outside of K, which means p,-a.e.

Lemma 2 If a measure y has dimension large than o then the measure y is
less singular than the Hausdorff measure of order c.

Proof. Fix € > 0 and an arbitrary set K of finite Hausdorff measure of order
a. Let denote as En the Borel set of points z for which |u|(Ba(z,7)) < er®



for all 7 < . Then |u|(K \ (Uy En)) =0 as p-a.e. point belongs to some Ey
according to the definition. Consider K N En. This set is of finite Hausdorff
measure of order a and so can be covered by a collection of open balls, such
that 3° r§ < 2ha(KNEN) < 2ha(K) and 1, < 1w for all 7. If a ball from the
covering doesn’t include any points of K N Ex we will remove it (and the rest
will be still a covering). If it includes a point from K N Ey, we will replace it by
a ball of twice larger radius with centre in the point. The obtained collection
of the balls {Bys,,} is a covering. As the centres of the balls belong to Ex and
radii are less then ﬁ, we have the estimate

(K N Ex) < 3 |ul(Bars) < 3 e(2r)® < e2°F o (K).

As (KN EN) C (KN Epny1), and the right side of the estimate doesn’t depend
from N, [p|(KN(Uy En)) < 29T ho(K). So |u|(K) < 29T h,(K). And ase
is arbitrary small we have proved that |u|(K) = 0. Now it remains to notice that
a set of o-finite Hausdorff measure of order « is a union of countable collection
of sets of finite Hausdorff measure of order a. And as the measure |p| of each
of the set in the union is zero the measure || of the hole union is also zero.

Corollary 1 The decomposition in lemma 1 is unique.

Proof. Let us have two decompositions u = ps + g = pl, + p!,. Then
s — ph = p! — pe. The measure ps — p, is supported on some set K of o-
finite Hausdorff measure of order «, so ||us — ph|| = |us — p4|(K). At the same
time the same measure u!, — p, is less singular than the Hausdorff measure of
order a (as difference of two measures with this property), so |us — ps|(K) =
|peh, — o |(K) = 0. Thus ps = pl, pe = p), and the decomposition is unique.

Lemma 3 If a measure is less singular then the Hausdorff measure of order o
then the measure has dimension large then a.

Proof. Let Ky = {z : Do(pt) > +}. It is a Borel set and hq(Kn) < ¢N||pl| <
00. So |u|(Kn) =0. {z: D, # 0} = UK, so its measure is also 0.

Lemma 4 If a finite measure is supported by a set of o-finite Hausdorff measure
of order o then it has dimension less or equal to a.

Proof. Let K is the Borel set of o-finite measure which supports u. We will
suppose first that the set K is of finite Hausdorff measure of order a. Now we
will consider the set Exy = {z : Do (p)(z) < +}. This set is union of sets En
where Ey is the set of points for which |u|(By (x,7)) < 4r* as soon asr < 1.
Now, as ho(En,;NK) < 00, as it was done before one can cover the set En;NK
with balls of radius less than % and centre in some point of the set in such a

way that Erf;‘ < Cqho(EnyNK) < Coho(K). So,

1 1
#l(Bxa) < 3 l(Bars) < 32 578 < -Caha(K).



As the estimate doesn’t depend from ! and En; C En 41, onehas that |u|(Enx) <
Canxha(K). Now Eny1 C En, {z: Do(p)(z) = 0} = NEy, and the right part
of the estimate for |u|(En) tends to zero, thus |u|({z : Do(u)(z) = 0}) =0
i.e. the measure p has dimension less or equal to a. If the set K has o-finite
Hausdorff measure of order «, the we can consider yu;, a restriction of p to the
sets component K; of finite Hausdorff measure of order a. Dy (11;) < Dqo(p), s0

the set B = {Da(u) = 0} C U{Da(ky) = 0} and |ul(E) < 3 |1j/(B) = 0.

Summarising all the lemmas we have proved the following.

Proposition 1 FEach finite reqular Borel measure p on o metric space can be
in a unique way decomposed in a sum of two finite reqular Borel measures p =
Is + e, such that the measure ps is supported on a set of o-finite Hausdorff
measure of order o and so has dimension at least a, and the measure p, has
dimension large than a, and so is less singular then the Hausdorff measure of
order o.

Now we a in a position to introduce the function which characterise singu-
larity of a given measure.

Definition 2 For a finite regular Borel measure we will consider a “scaling
in dimension function” d, a : R = Ry, which is defined in a point o as the
variation ||us||, where ps is the measure from the proposition 1 (for negative
values of o one also can formally define the function, though it equals zero).

3 Estimate for the M-harmonic extension.

One call a function u in the unit ball M-harmonic if it is a solution of the
equation Ay = 0, for the Laplace-Beltrami operator A.

Definition 3 We will denote P[u] the M-harmonic extension of the measure
w from the sphere inside the ball and Py o[u](§) = limsup,_,; (1 — r?)*|P(rf)|.

Remark. The similar limit one can consider not for radial approach, but for
approach, for example, in an admissible region.

Lemma 5 |u|({Py -5 [)() > 0}) < d  (a).

Proof. Let us for a fixed measure p introduce a function M*(§) = sup{ Wg&}.
o<r

The integral representation gives us,

Pllre) = [ S au).

s 1= <w,r§ > 20

It is clear, as the Poisson-Szegd kernel is positive, that if we can prove the
estimate for |u| then it is true for the measure p itself. So we will suppose the
measure to be positive.



Decompose the sphere S in the union of following sets. Sy = {w € S :
di(w,€) < (1=7%)2}, S = fw € §: 2871 (1 —1?)2 <dg(w,€) < 28(1-1?)2},
for all positive integers k < 1(—log,(1 — r?)) and the rest points Seo. We will

estimate the integral over each of these sets via M g 2y} (€).
-Tr
(1-r3)m / (1—r2)n
d = d <
J s T = [ T < s <

(1- Tz)" (1-— T2)n
/50 (1 =7)+rRe(l1— < w, & >))2n dp(w) < /SO mdﬂ(w) <

22n|p‘|(Q(§7 (1 — ’I‘2)%) < C(n)(l _ TQ)%—nMa (E) <

(]. — T'Q)n (1_7‘2)%
Cm(L—r)E "M% L (©).
Ifr> 1,
(1 - 72)” . (1 _ T.Z)n
Jo T T = |, T < e <
(]_ _ 7.2)71
[ TR < e T <o) <

22n/ %du(w) < C(n)24nk|u|(Q((§1, 2’6&); r2)4) )
5, 1= <w, 2
C(n)2—4nk2ka(1—r2)%—nM;(lirg)% € = C(n)Z(a—4n)k(1_r2)%_nMgir2)% o

And for the rest, if r > %, is valid the estimate

(1 — 7.2)” . (]_ _ 7.2)n
fo s = [ T <) <

(1 _ 7‘2)"
| TR e <o) <

2n (1 — r2)"
) /Sm o g e () < Ol

Summing all the estimates we obtain,
(1= r?)"" 2 P[)(ré) < Cln)(M7_ 3@+ )" % ||ull).

As soon as we take the limsup,_,; from both parts of the inequality, we ob-
tain that Py ,— 2 [u](§) < C(n)Da(1)(§), where the derivate corresponds to the
Koranii metric. So, {Py,n—2[p](€) >0} C {Dqa(p)(€) > 0}

By the construction in the lemma 1, us = p|k, where the set K is the set of
all points on which Dq(p) # 0, s0, |pu|({Pyn—g [1](€) > 0}) < [ul({Da(p)(€) >
0}) = |l {Da(1)(€) > 0}) = sl = dxc (0.



4 Estimates for the harmonic extension.

Definition 4 We will denote P[u] the harmonic extension of the measure p
from the sphere inside the ball and Py [p](€) = limsup,_,;(1 —r2)¥|P(r¢)|.

Remark. Again the similar limit one can consider not for radial approach, but
for approach, for example, in an nontangential region.
A lemma similar to the lemma 5 is true for the harmonic extension.

Lemma 6 [u|({Ps.2n-1-alil(€) > 0}) < d5(a).

. . B(£,8 .
Proof. Let us introduce a function M&(p)(§) = il;g ‘“‘(6#. Again as
T
the kernel is positive it is enough to prove the estimate for the positive measures.

The integral representation gives

Pee = [ =0

——du(w).
s lw—rg*n H(w)
Again we will decompose the sphere. Sp = {w € S : |w — ¢ < 2(1 —r)},
Sp={weS :2MH(1-r) < |lw—-¢ <2821 —7r)} for k < —22=Llog, (1 —7)

2n

and the rest is So,. We will estimate the integral over each of these sets via
Me L (§).
4(1—7)2n
1—1r2 1—1r2 2
—d < —, < ——|pu|(Se) <
/SO |T'€—L&J|2n /‘L(w) = /SO |§—T§|2" N(w) = (1 _r)zn_1|/‘t|( 0) =~
O =)™ Mg, (€ < C)(a—n)* o VM2 (@),

172 1— g2
[, e < [ g <

1—r? —2kn —2n
2 [ E ) < 22— ) () <

Cm2= 2k (1)@= Dagz, ) (€) < Cm2e Wk (—r)e-Cn-tipgz

6.
And for the rest

1—172 1—172
/sw e —wpn ) < /S,, (6w — (@ =y i) <

2n 1 _72 2n 1 _TQ
2 /S T dp(w) <2 /Sm ((7du(w) < C(n)|p|(Ss) < C(n)]|pell-

L JE—uP P

Summing all the estimates,

(1 =) 17 P](ré) < Cl)(MY, o WO + (1 - )],



As soon as we take the limsup,_,; from both parts of the inequality, we ob-
tain that Py s [p](§) < C(n)Dq(p)(€), where the derivate corresponds to the
Euclidean metric. So, {Py g (€)[u] > 0} C {Da(p)(§) > 0}.

By the construction in the lemma 1, u; = p|x, where the set K is the set of
all points on which Da (1) # 0, 50, |ul({Ps.n—g [1)(€) > 0}) < [ul({Da(u)(€) >
0}) = 115 ({Da(w)(€) > 0}) = llttsll = dy.5(@):

The proof of the following theorem for a signed measures is based on the
Besicovitch covering theorem. As the sphere with the Eucleadian metric on it is
a submanifold of R™, the balls on the sphere correspond to the balls in R™, and
so the Besicovitch covering theorem is valid in this case. The similar result for
M-harmonic extension can be produced by the same proof in case the measure
is positive. In case when the measure is absolutely continuous with respect to
some Hausdorff measure of order « on a set of finite Hausdorff measure of order
a (or countable sum of such measures) the similar result is also valid (see [7]).
In the general case for the Koranyi metric Besicovitch theorem is not valid (see
[5]), and so the similar result is doubtfull.

Lemma 7 |ul({Ps.20-1-a[ul(€) > 0}) > d,5(a).

We are going to prove that for some small enough ¢ > 0 the estimate
Py on—1-a[p](€) > cD*(p)(€), is valid |u|-a.e. (the derivative D* is in sense
of the Euclidean metric). To prove this let us consider the decomposition of u
in a sum of the positive and negative parts p4 and p_. We are going to prove
that the inequality Py on—1—o[t](§) > ¢D*(u)(€) is valid py-a.e.

We will use the following lemma. Though it is a weaker variant of one of
Besicovitch theorems, we will prove it for the sake of completeness.

Lemma 8 Let py and ps are two positive mutually singular measures. Then
for any fized constants C,c > 0, for pi-a.e. point € the inequality cui (B(€,r))—
Cuz(B(&,r)) > S(ui(B(&,r) + pa(B(&,r))) is valid for all balls with centre in
the point & and small enough radius r.

Let us consider the set K of all points for which the statement is not true.
For each point with centre in this set one can choose a ball B with the centre
in this point and arbitrary small radius such that C'us(B) > p1(B), where C'
depends only from ¢ and C. As both measures are finite regular Borel measures
for any € > 0, one can choose two compact subsets K; and K> of the disjoint
supports of p; and pg such that (u1 + p2)(S\ (K1 U K3)) < e.

Consider p' = pa|s\k,- By the choice of the set Ko, ||u'|| < e. For each
point of K N K; we can choose a ball B such that C'us(B) > pi(B) with the
centre in the point and such a small radius that the ball doesn’t intersect Ks.
By the Besicovitch theorem, there exists such a covering of K N K7 by these
balls {B,}, that each point is covered not more then by C(n) balls.

(KN Ky) < (UBy) <D u(By) <D C'ua(By) =Y C'p/(By) <

C'C(n)p'(UB,) < C"Cn)|Iu'l| < C"C(n)e.



As, by the choice of K1, u1(K\ K1) < ¢, we have 1 (K) < (C'C(n)+1)e. And,
as far as we can choose arbitrary small e, we have proved that p; (K) = 0.
To prove the lemma 7, first we will decompose the sphere as before.

PUOY = [ o = [ Y [ s

_,r2 —T2
/ T ) > / T (@) — dp () +
Seo S

w —r&|?n w —r€|?n
0

1—r2
> /1 g s )~ dn (@)~ COll

Now let us find that by the choice of decomposition there exist two positive
constants ¢(n) and C(n), such that

2 2

) <ol

c(n )2_’“"(1 r)t=2n <1nf{|w TP"

} < Cn)27 " (1—r)' =2,

So, as for some constant 0 < ¢’(n) < fracl2 is true that 1 > £ +¢'(n) Y5 2%,
k
we can estimate

Plu)(rg) > (1 =)' " (c(n)p+(So) — C(n)u—(So))+
D (em27F (1 =)' PPy (Sk) = C(m)27* (L = 1) M dp(Sk)) — C(n)||ull >

k
(1 == (0 (50) - Ot (S0)+

Y (en)e ()27 " 1y (UmrSm) = C(n)27*" 1 (Sk))) = C(n) |ull-

k

According to the lemma 8 for py-a.e. £ for small values (1 — r)ﬁ all the
differences c(n)c'(n)27 %" uy (Upm<kSm) — C(n)2 %" u_(Sk) > c|u|(Sk) > 0, so
for these r, close enough to 1,

Plu)(ré) > (1 = r)'7*"c|p|(So) = C(n)||ull-
So, the function Py 4[p](€) = lim sup(1—r2)*P[u](r€) satisfies Py on—1-q[p](€) >
limsup(1 — r?)*n=D=((1 — ) =2c|ul(B(€, 2(1 — 1)) = C(n)l|ul)) = cDap(§).

r—1

For the set K = {Dqou > 0} \ {Py (2n—1)—a[pt] > 0} we have proved that
4+ (K) = 0. Similarly one proves that u_(K) = 0. Together it give us that
|u|(K) = 0 and by the construction of lemma 1 |u|({Py,(2n—1)—alp] > 0}) >
|p|({Dap > 0}) =d, g(a). The lemma 7 is proved.



5 Application

Let us suppose that a measure is the boundary value of some pluriharmonic in
the ball function. Then this function is both harmonic and M-harmonic. So
Py o[u] = P4 o[p] in any point of the sphere. Which according to the lemmas
gives us that d, g((2n — 1) — o) < dy xk(2n — 2a). Now we will compare the
distributional functions according to their definitions. As any Koranyi ball can
be covered by an Euclidean one of the same radius, one find that a set of zero
(or o-finite) measure with respect to Hausdorff measure of order « in Koranyi
metric is the set of zero (or o-finite) measure with respect to the Hausdorff
measure in Euclidean metric of the same order a. So, if measure is less singular
than Hausdorff measure of order a with respect to Euclidean metric it is less
singular than Hausdorff measure of order a with respect to Koranii metric and
dy k(o) < dye(a). Combining the two obtained inequalities one finds that
dyxk((2n —1) —a) < d, xk(2n — 2a). As the functions d, x growth, for (2n —
1) —a > 2n — 2a (for @ > 1), this can be true only if d, x((2n — 1) —a) =
dyx(2n —2a). So for f < 2n — 2, d,, k(B) = 0, and thus d, () = 0 for all
B < 2n — 2. This shows us that a pluriharmonic measure on the sphere can’t
have dimension less than 2n — 2.

As any Koranyi ball of radius r can be covered by ([+]+1)*"~2 balls of radius
r2, for any measure is valid the inequality d, x (2n — 2a) < d, g(2n — 1 — a).
This gives the equality d,, x(2n —2a) = d, g(2n — 1 — a) for any pluriharmonic
measure.
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