A NEW APPROACH TO INTEGRAL
REPRESENTATION WITH WEIGHTS

MATS ANDERSSON

ABSTRACT. We describe a new approach to the Cauchy-Fantappie-
Leray formula, and provide a general method to generate weighted
integral formulas on complex manifolds.

1. INTRODUCTION

Let D be a bounded open subset of the complex plane C. The
Cauchy formula
1 f(z)dz
) =g [ 12

21t Jap 2 —a

, a€D, feOD)

which expresses f(a) as an superposition of simple rational functions in
terms of the boundary values of f, is one of the basic tools in function
theory. The kernel is holomorphic in a and works for all domains in
C. In several complex variables things are much more difficult. For
the local study the simple product formula obtained from (1.1) will
often do, but for global problems one often has to find appropriate
global representation formulas. Such a formula is provided for any
domain by the The Bochner-Martinelli kernel, but unfortunately it is
not holomorphic in a unless n = 1, and therefore not adequite for all
purposes. Much more flexibility is provided by the Cauchy-Fantappie-
Leray integral formula, see (2.9) below.

Many problems in function theory can be reformulated as questions
about solutions to the equation dv = f, where f is a (0,1)-form. In a
domain D in C it can always be solved in D by the Cauchy formula

1 f(z)Ndz
o) = 5 [ FERE

provided f is integrable in D. One can obtain weighted solution for-
mulas in the following way. Let

u(a) 1 dz
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2 MATS ANDERSSON

and let go(z,a) be a smooth function in D x D such that

(1.2) go(2,2) =1 and go(z,a) holomorphic in a.
Then
(1.3) 5/f/\gou = f,

if the integrand is integrable over D (locally uniformly in z). Con-
versely, if (1.3) holds for all f € D(D), then

/f/\(go—l)u

is holomorphic for all f, therefore (go—1)/(2 —a) must be holomorphic
in a which is equivalent to (1.2).

If we consider u as a current in D, then Ou = [a], where [a] denotes
the current of point evaluation at the a. Moreover, if gq satisfies (1.2),
then

d(gou) = [a] — g1,
where
2mi(z — a)gy = dz A Dgo.
If g¢ is smooth up to the boundary, then we have for functions f,

fla) = angou+/Df91—/Dangou, f € &(D).

In particular we get a weighted representation formula for holomorphic
functions with holomorphic kernel.

Solution formulas for 0 in strictly pseudoconvex domains D in C*
were first obtained by Henkin, [12], and can be constructed from the
Cauchy-Fantappie-Leray formula with a suitable choice of section. Sim-
ilar constructions yield formulas for analytic polyhedra and other do-
mains. Extensions to Stein manifolds were obtained in [15], [10], and
[8]. Formulas for subvarietes of domains in C* were also obtained in
[71.

The first constructions and applications of weighted solution formu-
las for 0 in several variables appeared in [13] and [17]. In [4] was intro-
duced a quite general method to generate weighted integral formulas
in domains in C", and it was further developed in [7]. An adaption of
this method to the ideas in [15] and [10] appeared in [1].

In this paper we describe a new way to obtain weighted formulas
which cover the known cases and also extend to complex manifolds.
The method is based on a new way to consider Cauchy-Fantappie-
Leray formulas that we describe in Section 2. This approach in turn
appeared as a by-product of our efforts to construct Taylor’s functional
calculus for commuting operators by Cauchy-Fantappie-Leray formulas
in a way analogous to the wellknown definition by Cauchy’s formula
for one single operator, [3].
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2. REPRESENTATION FORMULAS FOR HOLOMORPHIC FUNCTIONS

Let &, ,(U) denote the space of smooth (p,q) forms in the open set
U c C'. Fix a point a € C* and let 6, 4: £,,(U) — &,-1,4(U) be
interior multiplication (contraction) with the vector field

- 0
2 — —_—
e ;(zk a) s

Then 6, 4,008, = 0 and §0 = —93. Let L™(U) = BF_,Exkrm(U).
If w € L™(U) we say that u has degree m, degu = m, and we let uy
denote its component of bidegree (k,k + m). Thus, e.g., u € L%(U) is
u = ug+ Uy + ...+ u,, where u; has bidegree (j,7) and u € L7'(U)
is u = u; + ...+ up, where u; has bidegree (7,7 — 1). We have the
following readily verified properties,

(2.1) deg (f A g) = deg f + degyg,
(2.2) 8, a—0: L™U) — L™ U),

(23) (0= O)fAG) = (0 a—D)FAg+(~1)* 5 f A (3, o—D)g,
and

(2.4) (8,_a —0)* =0.

Ezxample 1. Let

1 0|z —al?
b(z) = omi |z — af?

in C* \ {a} and let u;, = b A (9b)*7', k =1,2,... ,n. Since 6,_,0b =
—00,_4b = —01 =0 it follows from (2.3) that

(25) 52,au1, 5zfauk—|—1 = 5U,k.
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If u=1u;+...+uy,, then u is an element in £L°(C* \ {a}) and (2.5) can
be written as

(2.6) (6,0 — B)u = 1.

Because of (2.4) we have a complex
(2.7) L HU) = Em(U)
Proposition 2.1. The complex (2.7) is exact if a ¢ Q.

Proof. If a ¢ U then, in view of Example 1, we can find u € £7*(U)
such that (0,_, —0)u = 1. If f € L™(U) and (0,—a — 0)f = 0 it follows
from (2.1) to (2.4) that uA f € L™ Y (U) and (§,_,—0)(uAf) = f. O

We can just as well consider currents instead of smooth forms; if we
let L™(U) = ®p_D}, 41m(U), then Proposition 2.1 is still true.

Let a be a fixed point in the domain Q C C* and let v € L7'(Q\{a})
be any solution to (6, —0)u = 1. Then, cf., (2. ) Ou, = 0. Moreover,
if v’ is another solution, then there is w € £72((2\ {a}) such that
(6yea — O)w = u — o, Wthh means that —0w, = u, — u/. Thus u,
defines a Dolbeault cohomology class of bidegree (n,n—1) in in Q\ {a}
that we denote w,_,.

6;,16 d2—a—

Remark 1. Each representative for the class w,_, actually occurs as u,,
for some solution u to (2.6). In fact, if ¢ is any (n,n — 2)-form in
Q\ {a}, and v solves (2.6), then u = v — (§,_, — 0)¢ solves (2.6) as
well and u,, = v, + 0¢. 0

We claim that
(2‘8) f(a) = b f(z)wzfa: f € O(E):

if a € D. In fact, (2.8) does not depend on neither the choice of repre-
sentative of the class w, , nor the domain D containing a, according to
Stokes’ theorem, so we may assume that the form is u, = b A (9b)""1,
cf., Example 1, and D is a ball with radius r centered at a. Then we
get the integral

! F(z) NIz A (012" _ e
(27T’L)n /|;—a: |z — a|2n - r2n—1 /|;_a|:rf(z)do-(z)?

¢, = (n —1)!/2x", which is equal to f(a) by the mean value property.
Thus each representative for w, , gives rise to a representation formula.

Ezample 2. Tt is enough to define a representative locally in 2\ {a}.
Suppose that 2\ {a} = U; U U, and that we have solutions (6, , —
d)uw! = 1 in U;. Then we can find a solution in £72(U; N Uy) to

(6, ¢ — O)w = ul — u? by Proposition 2.1 (e.g., one can simply take
w=u?Au'). If {x,1— x} is a partition of unity subordinate the open
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cover {Uy, Uy}, then v = yu! + (1 — x)u? — Ox Aw is a welldefined form
in L71(Q\ {a}), and

(61ea —O)v=x4+(1=%) —0xA (u' —u?) +0x A (u' —u?) =1.

Thus v is a new solution to (2.6), obtained by patching together u' and
u?. O

Ezample 3 (The Cauchy-Fantappie-Leray formula). Let D be a bounded
domain in C" with smooth boundary, a € D, and suppose that s is a
solution to 0, ,s = 1 on dD. Then § = s/, 45 solves §,_,5§ = 1 in
a neighborhood of 4D, so u, = 5 A (05)" ! represents w,_,. However,
U, = sA(0s)" ! on D, so (2.8) implies the classical Cauchy-Fantappie-
Leray formula

(2.9) fla) = - fR)sn@s)"", feO(D).

Suppose that D admits a holomorphic support function, i.e., a func-
tion I'(z,a) € C*(dD x D) that is holomorphic in a¢ and nonvanishing,
and that we can solve 0, ,h(z,a) = I'(z,a) holomorphically in a € D.
If we take s = h/d_,h, then (2.9) is a representation formula where
the kernel is holomorphic in a. If D is convex and p is a convex defining
function we can take ['(z,a) = 27id,_,0p(z). In particular, if D is the
unit ball {z; |2|> —1 < 0}, then s(z) = (2mi)~'(|2|*> — z-a)~'9|z|?, and
we get the Szegd formula

f(z)do(2) =
f(a) cn/M:1 N f e o(D).
]

Example 4. One can ease the condition that u be smooth. Let x be a
smooth cutoff function which is identically 1 in a neighborhood of the
point a. From Stokes’ theorem and (2.8) we get that

(2.10) f(a) = — / B A F(2)ws—a

if f is holomorphic in a neighborhood of the support of x. One can just
as well define the cohomology class w,_, by a sequence u; of currents in
0\ {a} satisfying (2.5), and then (2.10) still holds, if w,_, is represented
by the current u,,.

For instance, one can take

1\* d _ dz _d
uk:<—> LI, e e SN M

2wt )z — ag k1 — Qg1 2 —ay
and obtain the representation formula

Fla) = —(2mi)~" / B tnsszn) A FC s, ) — 2

Zn Zn — Qp
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In the previous example it is easy to show that u has meaning as a
current in €2 and that

(2.11) (0,—q —O)u=1—[d]

in Q in the current sense, where [a] is the (n,n)-current of point evalu-
ation at a, (i.e., 0, qUgy1 = Ouy for k < n—1 and du,, = [a]). This can
also be obtained with a u that is smooth outside a, provided it fulfills
a certain growth condition:

Proposition 2.2. Suppose that v € L71(Q\ {a}) such that (6,4 —

u=11inQ\ {a} and
(2.12) lug| < |z — a| =@,
Then uy are locally integrable in Q and (2.11) holds in the current sense
in .

A form v € L71(Q\ a) satisfying (2.12) will be referred to as an
admissible form. For instance, u = Y7 b A (0b)F~!, cf., Example 1, is
admissible. If both u; and uy are admissible then they can be pieced

together to an admissible form v as in Example 2, provided one takes
w = ut Aul.

Proof. First let uy = b A (9b)¥ 1. Then for ¢ € D(R),

—/aqﬁAun:—lim 0¢ A u, = lim O Nu, =
=0 |z—al>e€ =0 |z—al=¢€
= lim ¢ e~ ?"*! / ddo(z) = ¢(a).
e—0 |z7a\:e

Thus du,, = [a]. If v’ is admissible and w = u A v/, then dw,, = u!, — u,,
and w, = Y up Au!_, = O(|z — a|~?"2) so by Stokes’ theorem,

/ (%/\u;:/ 5(;5/\11%—/ 0p A wy,
|z—a|>€ |z—a|>€ |z—a|=¢

and the last integral tends to zero as € — 0.

Ezample 5. Let £(z) be a smooth (1,0)-form in Q such that |£(z)]
Clz —a| and |6,_4£(2)| > C|z — al?, and let s = £/6,_,£. Then |s|

|z —a|™ and |0s| < |z —al72, and hence u = >_s A (0s)*! is an
admissible form.

O
<
S

O

In the following example we will describe how one can introduce

weight factors. In particular, we recover the representation formulas
from [4] and [7].

Ezample 6 (Weighted representation formulas). Let a be a fixed point
in D C C*. Suppose that we have a smooth form g € £°(D) such that

(0, — 0)g = 0 and go(a) = 1. Moreover, assume that (5, , — 0)u =
1 —Ja] in D. Then

(02—a —0)(gAu)=gA(1-[a]) = gn — gola] = gn — [q]
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since go(a) = 1. If

K:(g/\u)nzzuk/\gnfk: and P:gna
k=1

we get that 0K = [a] — P in the current sense. If u and g are smooth
up to the boundary (u except for the point a), then for any function f
that is smooth up to the boundary, we have the Koppelman formula

(2.13) f(a) = fK+/ fP—/ Of NK, f € E(D).
oD D D
If f is holomorphic, then (2.13) is reduced to

(2.14) fla)=[ fA K+/ /P, f e o).
oD D

A simple choice of g is as follows. Let ¢ be a smooth (1,0)-form in
D and assume that G(\) is holomorphic on the image of z — 4, ,q(2)
and G(0) = 1. Then we can take

n

(215) 9= 3 (~1)GO(5.—0) (90 .

k=0
In fact, since 6, ,0¢ = —06,_,q it follows that (0,4 — d)g = 0. One
can also have several weights. Given (d, ,— 0)-closed forms ¢',... , g™
in £°(D) one obtain a new one as g = g Ag>A ... A g™. O

Remark 2. Note that (2.15) is the formal Taylor expansion of G (6,-.q—
dq) at the point d, ,q. For instance, if G(A) = (1 + A)", then by the
binomial theorem

9= ; e Z(j I)IE)(k A+ 0.-aq)" " (—0g)".

One can also take G(\y, ..., \;,) depending on several variables, with
G(0) =0, and get

g = G(dz—aqla <. a(sz—aqm) =
= Z G (6t ... 00ead™) (=D (D)™ AL A (g™ /0.

al<n

O

Remark 3. In view of Example 2 it is easy to see that in formula (2.14)
one can let K = (u A g),, where u is any solution to (§, ,—0)u =1 in
a neighborhood of 0D. O

Ezample 7. Assume that g € £°(D) is smooth and (8,_, — 9)g = 0. If
v € L' solves (§, , — 0)v = g in a neighborhood of D, then

(2.16) go(a) Z/Dgn-l-/aDvn.
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In fact, the boundary integral in (2.16) is independent of the choice of
solution v by Proposition 2.1 and Stokes’ theorem. Therefore we can
take v = u A g, where (6, , — d)u = 1 — [a] on D, and hence (2.16)
follows as in Example 6. In particular, if g has compact support in D,
then one can take v = 0. 0J

Ezample 8 (Weighted formulas in strictly pseudoconvex domains). If D =
{p < 0} is strictly pseudoconvex and p is a strictly plurisubharmonic
defining function, then one can find a function I'(z, a), see [11], which

is smooth in a neighborhood of the closure of D x D, holomorphic in a,
and such that moreover 2Re'(z,a) > p(z) — p(a) + 6|z — a|? for some

d > 0. Let v(z,a) =T (z,a) — p(¢), then

2Rewv(z,a) > —p(z) — p(a) + 6|z — al?.

Moreover, there is a solution A to §,_,h = I' on the closure of D x D
that depends holomorphically on a. If we take ¢ = —h/p and G(\) =
(A+1)"", r > 0, in Example 6, then the boundary integral in (2.13)
will vanish, and we get the weighted formula

f(a) = /D P(za)f(z), feo(D),

where
P=gu= () () 00 =, A0

and o = p(0h)" — n(Oh)"~1 A Op A h is smooth and holomorphic in a.
When r N\, 0 we get back the Cauchy-Fantappie-Leray formula with

’

s="h/d, 4h. O
Ezample 9 (Weighted Cauchy-Weyl formulas). Let D be an analytic
polyhedron, i.e., assume that we have functions ¢4, ... ,%,,, that are

holomorphic in a neighborhood €2 of D such that D = {z € Q; |[¢;(2)] <
1, j=1,...,m}. By Hefer’s theorem we can find (1, 0)-forms h;, holo-
morphic in z as well as a, such that 6, ,h; = 1,;(2) — ;(a) for z and
a in a neighborhood of Q. Taking

gi(2) = %hj(z, a), thus 5qj =

and G;(A;) = (14 X;) " we get that
g = (M) =P

9% A hy
(1= [5(2)[*)*

1— f;(2)f(a)

i o; h;
0= b@w @y "

is a (0, o — 0)-closed form in £°(Q), and g' A...Ag™ will vanish on 9D
if r; > 1. For f € O(D) we therefore get the weighted Weyl formula

(2.17) fla) = /aD P(z,a)f(z), ae€ D,
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where

P=(g"AN...Ag™)n

ZH( L ) /\W(a—w D b

I1=n j¢I $i(2)0i(a) ) ey be(2)be(a))rith

By analytic continuation in r; (2.17) must hold for ; > 0. If 9¢; A

AN, #0on Dy ={z € D; [¢,(2)| = -+ = |¢r,(2)| = 1} for
each multiindex I of length n, then we can let r; ~\, 0 and recover the
classical Cauchy-Weyl formula

< awAhe
a)—cz f /\W ()

I|=n el

O

For some interesting applications of weighted representation formulas
for holomorphic functions, see the survey article [6], and for a historical
background and applications of the Cauchy-Fantappie-Leray formula,
see [14].

3. LOCALLY DEFINED CAUCHY-FANTAPPIE-LERAY FORMULAS

It is possible to piece together locally defined CFL formulas to global
formulas, see, e.g., Section 3 in [15], or [2]. We shall do this by a
generalization of the simple observation in Example 2. Assume that a
is a fixed point in Q@ C C*, let & = {U;} be an open cover of Q2 \ {a},
and let €¢; be a formal basis. We consider the exterior algebra over the
vector space generated by all covectors and €;. A section f that can be

written as
!
f= Z fr A\ er,

|T|=k+1
where €; = €, A. . .A¢g, and fr are ordinary forms in Uy = Uy, N...NUy,,
will be referred to as a k-cochain of forms. Let C* denote the space of all
k-cochains; thus C ! is just the space of global forms. The coboundary
operator p: C* — C**! is defined as

pu:ZGj/\u.
J

Let ¢; be a partition of unity subordinate to the cover &. We can define
a mapping ®: C**! — C*¥ as interior multiplication with ) ¢;e}, if €
is the dual basis of ¢;. By standard multilinear algebra we have that
pop=0,P0oP =0, and

(3.1) p® +Pp=1.
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The operators 0 and §,_, extend to C* in the obvious way and

(3.2) (01— — 0)p=—p(6,—q — O).
Moreover, for the mapping 0®, defined as interior multiplication by
>_;0¢; A€j, we have the relations

(3.3)  (0®)p=p(02) and (6,-a — 9)(0) = (9)(d:—a = O).

In fact, u = p®u+®pu and so Ou = —p(0P)u+ p®du+ (0P) pu+ P pdu,
and in view of (3.1) we get the first equality in (3.3). The second one
is obvious.

Now suppose that we have solutions u; to (6, — d)u; = 1 in Uj,
and define the 0-cochain w; = — 3, u; A¢; so that (6,—, —0)wy = —pl

and ®w; = ) @,u;. Since (§ — 0) anticommmutes with p, we can
recursively find wy, in C*~! such that

(34) (5zfa - g)wl = —pl, (5zfa - g)wk+1 = —pwg, k2=>1.

Proposition 3.1. If w are defined in this way, then

(3.5) v = i@(@@)k_lwk

is a global element in L7 (Q\ {a}) and (0,—o — 0)v = 1.
Proof. Using the relations (3.2) and (3.3) we get

(6-0)) @(0R) twp ==Y _ ®(0D) (0 —)wp— Y _(08)Fwy =

o

=®pl+ Y POV pwy — > (00)Fwy, =1,
2

1

since

<I>(8<I>)k_1pwk,1 = @p(é@)k_lwk,l = (6®)k_l’wk,1.
0

Notice that v = u; where ¢; = 1, so v is obtained by piecing together
the locally defined forms u;. This will be even more clear if we specify
the choices of w;, as in the next example.

Ezxample 10. If w = — ) u; A€, is given, we can take
wy = uF [kl = (WA uA...Au)/k.
In fact, since u has even total degree,
(6 = O)wps1 = (6 — O)u/(k + 1)! =
= ((6 — 9)u) AuF/k! = —pl AuF /Kl = —pu* Jk! = — pw.
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By this choice of wy, a simple computation reveals that

(3.6) v = i du A (0Pu)*!,

P
where ®u = Y. ¢ju; and du = Y, 0p; A u;. Thus we can write

(3.7) v=3 Y £65,005A...ANObs Nus A... Nuy,.

k=1 |J|=k

One can specify even further.

Ezample 11 (CFL formulas with locally defined sections). Suppose we
have sections s; in U; such that 6,_,5; = 1. Then we can choose
u; =Y, 8; A (0s;)" 1 and wy = uF/k! as in the previous example. In
the final representation formula for holomorphic functions (as long as
we do not want to introduce weights as well) only the component v" of
v, cf., (3.5), of bidegree (n,n — 1) comes into play, and from (3.7) we
get that

(3.8) V=3 465,065 A AOs ANH(sy,, ... ,55,),

k=1 |J|=k
where
H(sy,...,sp) =s1A ... AsgA Y (051)™ A A (Ds)™.
|a|=n—k
This is precisely the formula obtained in [2]. O

Ezample 12. Suppose that each s; in the previous example is holomor-
phic in U;. Then, using the same notation, u; = s;, and from (3.6) we
get that

v = Zs A (0s)F L,
k=1

where s = du =) ; ¢;8;. Thus we get precisely the CFL formula with
the form s = ) ¢;s;, obtained by simply patching together the local
(holomorphic) forms s;. The (n,n — 1)-component of v can be written
as

(39) UI:Z:|:¢J18_¢J2/\.../\5¢Jn/\SJ1/\.../\8Jn.
|J|=n
0

Ezxample 13. Let E be a lineally convex compact set in C". This means
that through each point outside E there is a complex hyperplane that
does not intersect E. Let us furthermore assume that 0 € E. We want
to obtain a representation for f € O(F) as a superposition of functions
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like II7(1 — o - z)~!, where «; belongs to the dual complement; this
means that the hyperplane 1 — «a; - 2 = 0 does not intersect E.

Locally in ¢ € C*\ E we can find a form a(¢) such that 6._,a(¢) # 0
for all @ € E, and after normalization we may assume that d.(¢) = 1,
so that 0, ,a(¢) =1 — () - a. Now

s(¢,a) = a(¢)/d¢—ac(C)
is defined locally in ¢ for all @ € E and 6,_,5((,a) = 1. Hence (3.8)
yields a kernel K((,a) such that

(3.10) fla)=[ K((a)f(C), a€k,

oD

if D > E and f € O(D). Moreover, K((, z) is a locally finite sum of
terms like
7(©)

H]"-:1(1 — () - a)
so (3.10) indeed provides the desired decomposition of f.

The decomposition is particularily simple to derive if we first notice
that «;(¢) can be chosen to be holomorphic in ¢ if the open cover is
fine enough. In fact, if 6o_,a® # 0 for all a € E, then by continuity
we can take a(¢) = a®/dq0a in a neighborhood of (°. The resulting
form s(C,a) is then holomorphic in ¢, and hence we can obtain K ((, 2)
from (3.9). O

4. INTEGRAL REPRESENTATION OF HIGHER ORDER FORMS

We shall now allow more general singular sets than just a point.
We start with a quite general setup and let V' be the zero set of a
holomorphic section 1 to a holomorphic vector bundle E over a complex
manifold X. We let E* denote the dual bundle and consider the exterior
algebra over E@ E* @T*. Suppose that F has rank r and let ey, ... ,e,
be a local holomorphic frame for E, and let e be the dual frame for
E*. We let EI’,“,’;(U ) be the space of smooth sections which locally can
be written f = Zm:k,m:e fr.g A€ N ey, where fr; are (p,q)-forms
in the open subset U of X. Each smooth A € £(U,Hom (E) can be
identified by a section A € 501!’&(U) by requiring that A€ is equal to
the contraction of A by the section & to E. In particular, the identity
mapping £ — E corresponds to the section

I= Z e; N €j,
J
and we have the formula
det(A) " = A".
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The 9-operator extends to a mapping 0: EX5(U) — Eﬁﬁ +1(U) in the
usual way. If §, denotes contraction with the section 2min, we get a

complex
(4.1) — ELEU) T ELHU) — -

Let L™(U) = @LOE&’,&%(U). Analogues of (2.1) to (2.4) clearly hold
even in this setting.

Example 1. Let £ be the dual section of n in E* with respect to some
hermitean metric on E. Then s = £/6,& is defined outside V' and
Sp(s A f) = fif §,f =0. Thus (4.1) is exact if U does not intersect V.
Moreover, if u =] s A (Js)", then u € L71(X\ V) and (6, —9)u = 1.
If fe £™((X\V) and (6,—0)f = 0, therefore (5, —9)(uAf) = f. O

As before we thus have a complex
(4.2) o (9 e T (7
which is exact if U C X \ V. For u € L™ we let uj denote the
component in E(Iif+m. Ifue £ '(X\V)and (6, — d)u = 1, then u,
defines a A" E*-valued Dolbeault cohomology class of bidegree (0,7 —1)
in the same way as before.

For the rest of this section we assume that F is trivial and that e; is
a global holomorphic frame. Let n = ) nje; and dn = > dn; Ae;. If
Uy € 557’(? , then there is a unique (p, ¢)-form 4, such that
(4.3) U A" = (=1)"u, A (dn)".
Lemma 4.1. Ifu, = p Aef A...ANek, where ¢ is a (0,q)-form, then
Up = ANdm A ... Adn,.

Thus 4, is obtained from u, just by replacing each occurence of e}
by dn;.
Proof. We have that
ur A(dn)"=pANef A ANe ATl dm A Loodn Aer AL A ey,

where ¢, is 1 or —1, only depending on r. However, this is equal to

(—1)"dANdm A...ANdnp, Arleel Ao ANes Ner AL N,
= (=1)Y¢ANdp A...dp AT
0
We can define a cohomology class w, in X \ V' of bidegree (r,r — 1)

precisely as before by taking a solution u € £L71(X\V) to (6,—9)u =1
and let w, be defined by #,. In fact, if v is another solution, then
we have w € L£L72(X \ V) such that (6, — d)w = u — v, and hence
Ow, = v, — u,. This implies, cf., (4.3), that 0w, = ©, — 4,, since
Odn = 0. As before, we can have currents instead of smooth forms.
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Example 15. Let E be a trivial rank n bundle, X = Q C C", and let
n = >.(z; — a;)e;. Then the class w, coincides with the previously
defined class w,_, in Section 2. O

Lemma 4.2. Assume that (dn)" #0 on V. Let u € L7Y(X \' V) such
that (6, — 0)u =1 and

(4.4) |ug| = O(In|~®*1).
Then
(4.5) ot = [V]

in the current sense in X.
Here [V] denotes the current of integration over the submanifold [V].

Proof. The condition means that dny A ... Adn. # 0 on V, so V is
a regular submanifold and locally 7y,...,n, is part of a holomorphic
coordinate system. Note that the statement is local. First let s =
> i/Inl? and w = Y s A (9s)F'. Then @, = 5 A (95)"", where
§ = > 7;dn;/In|?, according to Lemma 4.2. One can then proceed
exactly as in the proof of Proposition 2.2. O

We say that a solution to (6, —0)u = 1in X \ V is admissible if (4.4)
holds. Notice that v in Example 14 is admissible. If u is admissible,
then by the lemma

(4.6) (=)' [VIAT =0, A" = d(uy A (dn)") = Ou, A (dn)",
and hence
(4.7) ou, A (dn)" = (=1)"[V] A I

Remark 4 (Complete intersections). Suppose that V' is a complete in-
tersection, i.e., the codimension of the variety V is r. If u is as in
Example 14, then we still have that 94, = [V] if [V] denotes the cur-
rent of integration over V taking into account the multiplicities of the
irreducible components of V. One can also define u analogously to Ex-
ample 4. For proofs of these facts and a general discussion of residue
currents, we refer to [16]. Several formulas below have counterparts
for general complete intersections, but in this paper we restrict to the
simplest case when V' is a regular manifold. 0J

Ezample 16 (Weighted integral formulas in C*). Let  be a domain in
C™ and let (¢, z) be the standard coordinates. Let E be a trivial rank n
bundle over Q2 x Q with global frame ey, ... ,e, and n = _.(¢; — 2)e;,
so that V' is the diagonal [A] in 2 x Q. Assume that u is admissible
so that (4.5) holds. Let g € £%(Q x Q) be a smooth form such that
(6, —9)g =0 and go =1 on A. Then by (4.7),

6y = 0)(uAgA(dn)™)=gA (([dn)" — (=1)[A]AI)
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o ——

soif K = (uAg), and P = g, we get

(4.8) 0K = [A] - P.

As usual (4.8) gives rise to a Koppelman formula for smooth forms f,
(49) f(z) =, / FAKpgr +
D

+/‘fAmﬂ+/f%ﬂ—/éfA&w f € &,,D),
oD D D

where K, , and P,, denote the components of K and P which have
bidegree (p, ¢) in dz. Suppose that f is a (p, ¢)-form, P, , = 0, and that
K, , vanishes for ¢ € 0D. Then (4.9) becomes a homotopy formula for
the d-complex, i.e., we get operators K: &1 — Ep. and P: E, 9 —
APQO, such that

oK +Ko=1-"P.
Concretely this can be achieved in the following way. Let g be a section
to E* and let G()) be holomorphic on the image of ((, z) — J,¢. Then,
cf., Example 16,

9=">Y (~1)*G®(5._09)(Dg)" /!

k=0

is a smooth form in £°(Q x Q) and (8, — d)g = 0. The resulting Kop-
pelman formula is pecisely the one obtained in [4]. If ¢ is holomorphic
in 2, then P,, = 0 for ¢ > 1. If moreover, u = Y 7 s A (0s)¥~! and
s(¢, z) is holomorpic in z when ¢ € 9D, then the boundary integral
will vanish as well. This can be obtained if D admits a holomorphic
support function. Another way to get rid of the boundary integral is to
replace g by g A g' where g* € £L9(Q2x Q) is (6, — 0) closed and vanishes
on 0D. For the case when D is strictly pseudoconvex, see, e.g., [4], or
Section 6 below. O

5. INTEGRAL REPRESENTATION ON MANIFOLDS

When V is the zero set of some section 7 to a nontrivial bundle
E, then in general a formula like (4.5) cannot hold, because [V] is
a representative of the Chern class ¢.(F) of top degree, which may
be nontrivial. Let D be a holomorphic connection on the bundle E.
Then D = D'+ 9, where D' maps E-valued (p, q)-forms into E-valued
(p+1, q)-forms. Moreover, D?> = D = ©, the curvature tensor, which
is a Hom (E)-valued (1,1)-form. Hence it defines a section © € 51111
The connection D has a natural extension to a mapping on 51’,“,’5 and
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it is well-known that D(E) = 0. Since 7 is holomorphic, we have that
0Dn = On, and since 4,0 = 27iOn we have

(5 =)Dy - 5-6) =0,
and hence | |
(5.1) (8, — 8)(u A (Dn - i@)r) — (Dy - %é)r

if u is a solution to (6, —d)u = 1in L71(X \ V) as before. Let us define
K such that (—1)"K AI" is equal to the component of the form on the
left hand side of (5.1) that contains the factor I7; i.e.,

. . k
52 Crkal =3 (1 uenracrr (56)
k=0
Since ) , .
7 ~ ? ir Tr

¢ (D) being the Chern form of top degree associated to the connection
D, it follows from (5.1) that

(5.3) 0K = —¢,(D)
outside V.

Theorem 5.1. Assume that (Dn)" # 0 onV and let u be an admissible
solution to (6, — 0)u = 1. If K is defined by (5.2), then

OK = [V] —c.(D)
in the current sense in X.

Proof. If n = > nje; locally, then Dn = dn + O(|n|), where dn =
> dn; A ej. Hence

Ou, A (D))" = Ou, A (dn)" + (Ou,) AO(n]) = (=1)[V] AT,
according to (4.6). Combined with (5.3) the theorem follows. O
Ezample 17. Assume that s = £/6,{ is a section to E* over X \V as in
Example 14. Then u = sA(9s)* ! is admissible. The resulting formula

in Theorem 5.1 is a special case of Theorem 2.4 in [8]. The general case
of that theorem is covered by Example 20 below. O

It is easy to introduce weight factors even in the manifold case. Let
g € L°(X) be smooth and assume that go = 1 on V. Moreover, let
u € L7H(X \ V) be a solution to (4, —d)u=11in X \ V. Then

_ 1 =~ 1 x
4 Xl Dp—5-6)) =g A (Dn—-0).
(5-4) (0 =) {urgA(Dn—=5-0)") =gA(Dn--6)
If we assume that u is admissible and identify the components contain-
ing the factor I", we get
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Theorem 5.2. Suppose that u € L71(X\V) is an admissible solution
to (0, —0)u=1. Let K and P be defined by

Al =30 (S wan )a( | ) oneacGe) ™

k=1 {+1

and

Tr k _1\r—k L 2\
(—1)'PAI" = ng/\( ) Dn)* A (—1) (27r®) :
Then 0K = [V] — P in the current sense in X.

It is quite easy to find homotopies between various formulas obtained
so far. Let us consider a couple of examples.

Example 18. 1f we have two different holomorphic connections D and
D, then there is an element h € & o(X, Hom (E)) ~ 511,’5 (X) such that
D — Dy = 2mih, and thus

_ 7 ~ 1 =
(571 - 8)h = (Dn - %6) - (D177 - %61)'

If g € L°(X), (6, — 0)g = 0, and

a(D, D) = (h/\ Z n— —@ — (Dyn — %él)”i).
it follows that
(6, — 8)(g A (D, Dy)) =g A (D — ié)r —gA (D — %ély.
If G is the form in the left hand side, then
(6, — ) (uAB) = ungA(Dy— %@)T—uAgA(Dm— %@lyw
in X\V. O

Ezample 19. Suppose that we have two admissible sections v and '
and let K and K’ be the corresponding kernels from Theorem 5.2.
Then w = u A v’ solves (6, — 0)w =u —u'in X \ V, and thus

(5= ) (wngn (D 5-6)) = (u=u) g A (D1 = 5-6Y,

from which we get an explicit form H in X \ V such that 0H = K —
K'. O

Remark 5. Recall that the Chern form for D is by definition det(I +
(i/2m)©). A similar formula as above shows the wellknown fact that the
Chern forms for two different holomorphic connections are 9-cohomologous.
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In fact, by a similar argument as in Example 18, and with the same h,
we have

r—1
5(h A (T + (i/2m)0) A (I + (i/27r)(:))’"‘1—j) =
1
~ 7 ~\T - 7~ r
(I+ §®) - (I+ —@1) .
For bidegree reasons one can replace 0 by d. O

We conclude with an example in which we forget about the complex
structure and consider a a complex vector bundle over an arbitrary
differentiable manifold. We then recover Theorem 2.4 from |[8].

Ezample 20. Let E be complex vector bundle over a differentiable man-
ifold X and let D be any connection on E. Then D has a canonical
extension to a mapping 55”“ — Eﬁfl (the lower index p denoting the
covector degree) such that D(¢ A ) = dp A+ (—1)%8%¢p A Dip if ¢ is
a scalar-valued form and 9 € 55”“. Moreover, as before © = D? defines

an element © in £,"', and the Chern class ¢, (D) of top degree is defined
by

~ 7 ~\T
1) e (D)AT = (= ) .
(~1ye(D) AT = (56
Let n be a section to E such that (Dn)” # 0 on V = {n = 0} and
let s = £/6,¢, where & is the dual section of £ with respect to some

hermitean metric on E. Moreover, let u = Y7 s A (Ds)*~! and define
K by

P 27
We claim that
(5.5) dK = [V] — ¢ (D).
To see this, first claim that
(5.6) 6,Ds = —6,Dn and 2miD(Ds) = 6,0,

if 0, denotes interior multiplication with 2m¢s. In fact, since dé,s =
d1 = 0 we have that 6,Ds = —d;Dn. Then note that D*n-s = —n- D?s
50 0,6,0 = —2mid, D(Ds), from which the second equality in (5.6)
follows. Therefore,

(0, —D)u=1+ zT:(k —1)s A (Ds)¥2 A (6,Ds — D(Ds)) =

=1—aAds(Dn— ié)
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Hence,
1 ~ 1 ~
] _ — 0= (Dn— — r
(1) (= D)wA (Dy— -0)) = (D - -6)
since d;a¢ = 0 and hence

1 ~ 1 ~ 1 1 ~
s(Dn—— Dn——0)") = aA——6,(Dn———0)""" = 0.
anb, (D=5 @) AA(Dr~-6)") = a——,(Dn—-_6)
The equality (5.5) follows from (5.7) outside V. The singularity is
handled as before, see also [8]. O

6. WEIGHTED KOPPELMAN FORMULAS ON STEIN MANIFOLDS

Let €2 be a n-dimensional Stein manifold and let E be the pullback
of the complex tangent bundle over €2 to ¢ x 2, under the projection
Te: 2 xQ = Q, (¢,2) = ¢. It was shown in [15] that E has a
holomorphic section 7 such that

{n=0}=AUF,

where A is the diagonal in 2 x 2 and F' is a closed set disjoint from
A. In local coordinates near A,

“ 0
n=>» ({- Zj)a—g-|4 +0(I¢ = 2%).
1 J

By Cartan’s theorem B there is a holomorphic function ¢ in 2 x €2 such
that ¢ =1 on A and ¢ = ) o;n; locally, outside A, where n =) n;e;
for some holomorphic frame e;. As usual we can solve (6, — d)u = 1
in L71(QxQ\ (AUF)), and we say that u is admissible if for some
integer m, ¢™u is C* outside A and (4.4) holds.

Ezxample 21. Let & be the dual section in E* with respect to some
metric on E, and let s = £/§,&. Since 6,& ~ |n|* and |¢| S |n|* it
follows that u = "7 s A (0s)F~! is admissible. O

Let g € L%(Q x Q) be smooth, and of the form g = ¢™g', where
g € L%Q x Q) and (6, — 9)g' = 0. Furthermore, let u be admissible
and let K and P be defined as in Theorem 5.2. Then 0K = [A] — P in
the current sense in €2 x €2, since the factor ¢ in ¢ kills the possible
singularities on F'.

As before, let K, , and P, , denote the components of bidegree (p, q)
in dz. For a bounded domain D CC 2 with smooth boundary we
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therefore have the Koppelman formula
00) F(6)=0. [ [AKpqr+
D
+/ fAK,, +/ Py — / Of NK,y, f€Epq(D).
oD D D

Let g be a section to E*, and let G()\) be a function that is holomorphic
on the image of d,,¢. Then

g—¢mZG 819)(9q)* /k!.

is in £°(Q x Q) and (8, — d)g = 0. If ¢ is holomorphic in z, keeping in
mind that © only depends on (, it follows that P,,=0if g > 0. If we
can in some way get rid of the boundary integral as well, then we get
homotopy formulas for @ and a representation formula for holomorphic
(p, ¢)-forms with holomorphic kernel.

Remark 6. In [15], as well as in [10], the bundle E is chosen to depend
on z instead of ¢. Then © is a (1,1)-form in dz and hence (assuming

= ¢™) Py, vanishes for all ¢ > 0. Thus one obtains homotopy
formulas for @ for (0,q)-forms if in addition the boundary integrals
vanish. Notice that in this case all terms that involve © in the definition
of K vanishes, so it is not necessary to compute the full formula. It
was first computed (without weights) in [8], and so homotopy formulas
for (p, ¢)-forms were obtained. In [10] is used another way to cover the
(p, q)-case, see Example 22 below. O

It is now possible to extend a lot of constructions with weighted
integral formulas from domains in C* to domains in 2. We will re-
strict to the case when D is a strictly pseudoconvex domain in €2 with
smooth boundary. This is actually a less interesting case beacuse many
problems can be localized, and hence handled by formulas in C*. How-
ever, our main objective is to point out a general idea of how one can
proceed. We will make use of the following simple observation, which
follows from Cartan’s theorem B.

Lemma 6.1. If o((, z) is a holomorphic function in Q x Q which van-
ishes on A, then there is a holomorphic section h to E* such that

dph = ¢p.

By Fornaess’ embedding theorem, [11], there is a proper embedding
1: Q — CM and a strictly convex function o(w) such that ¥*o(z2) is a
defining function for D in 2. Define

6 =3 99 (0 (5(2) — $5(0))

ow;
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on € x €. Since o is strictly convex it follows that

2ReT(C, 2) > p(C) = p(2) + 8|9 (¢) = ¥(2)°,  (¢,2) € D x D.
If v(¢,2) =T(¢, 2) — p(¢), then v((, 2) is holomorphic in z and

(6.2)
2Rev (¢, 2) > —p(C) — p(2) + 6[¥(C) —w(2)?, (¢, ¢) = —p(C),

so |v| defines the usual kind of local Koranyi pseudometric at 0D. From
Lemma 6.1 it follows that we have holomorphic sections h; to E* such

that d,h; = ¢((, 2)(¢;(¢) — ¥;(2)). Therefore

is a section to £* which is holomorphic in z and satisfies d,h = ¢I', and
hence 6,h—¢p(¢) = ¢v((, z). Let 0(¢, z) = v(z, (). In the same way we
can find A such that (5n71— ¢p(z) = ¢v. Let £ be the dual section of 7 in
E* (with respect to some metric on F) and let s’ = |n|2h—@p(z)€. Then
6,8 = ¢|n|?v, so taking s = s'/5,s" and u = Y s A (9s)*! we get an
admissible solution to (6, —0)u = 1 outside AUF. If G(A) = (1+A) "
and ¢ = —h/¢p(C) we have that (1+6,¢)~" = —p(¢)/v((, 2). Therefore,

g=¢" i G*)(6,9) A (0q)* k!
k=0

is smooth and (4, — d)g = 0, and if M is large enough we can form
the the corresponding kernels K and P and obtain weighted solution
formulas for 0 in D, since ¢ is holomorphic in z and the weight kills the
boundary integral in (6.1). Moreover we get a weighted representation
formula for holomorphic (p, 0)-forms with holomorphic kernel.

Ezample 22 (Solution formulas in vector bundles). Let F' be a holomor-
phic vector bundle over 2. It is shown in [10] that there is a holomor-
phic section ¥((, 2) to the bundle Hom (77 F, w7 F') such that ¥((, () =
Id; for ¢ € Q. If K and P are defined as before, then we have that

OVK = Idp[A] + VP,

which implies a Koppelman formula for F-valued (p, ¢)-forms in Q. As
before, we obtain homotopy formulas for 0 in domains where we can
get rid of the boundary integrals. In particular, one can obtain the
case with (p,q)-forms from the case with (0, ¢)-forms by taking F' as
the bundle of (p,0) forms. O
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7. FURTHER REMARKS ON WEIGHT FACTORS

As before let 17 be a holomorphic section to the bundle E over the
complex manifold X. Recall that we have a complex

(7.1) 2 em(x) S e x) 2

and let Z° denote the kernel in £°(X). Clearly Z° is an algebra, and
we have an injective algebra homomorphism O(X) — 2% 1If g =
go+ ...+ g € Z° then dgy = 6,9: and hence g is holomorphic on
V = {n = 0}. Thus we have an algebra homomorphism

(7.2) B: 2°(X) = O(V).

Moreover, if ¢ is in the image of (6, — 8): L71(X) — L£°(X), then
go = 6,u1 and hence Bg = 0. It follows that B induces a map

(7.3) B: H(L(X)) = O(V)
if HO(L(X)) = 2°(X)/Im (£L71(X) — L(X)).

Theorem 7.1. Suppose that X is a Stein manifold and (Dn)" # 0 on
V. Then the mapping (7.3) is an algebra isomorphism.

Proof. We have a complex

74 0+— O(X) & O(X, E*) & O(X, A2E*) &,
(7.4)

and it follows from Cartan’s theorem B that

O(X) N
m (O, B > ox)) = OV,

where the isomorphism is induced by the restriction map r: O(X) —
O(V). Now consider the double complex

L¥(X) = £°(X)

(7.5)

with the mappings 6, and 0. The corresponding total complex with
mapping &, — 0 is just the complex (7.1). By a standard result in
homological algebra it follows that the cohomology group at m of the
latter complex is canonically isomorphic to the cohomology at —m of
(7.4). In particular we have

0 N O(X)
(7.6) LX) = 1o, B = 0(X0)

where the isomorphism is induced by the natural mapping O(X) —
H°(L(X)). Therefore the theorem follows from (7.5) and (7.6). O

Corollary 7.2. If g € 2°(X) and g|V = 0, then g = (6, — 0)v for
some v € L1(X).
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Now let us return to our discussion about weight factors. Let X and
7 be as in Theorem 7.1 and let g and h be two weight factors, i.e.,
g,h,€ 2% and goly = holy = 1. Tt follows from Corollary 7.2 that
g—h= (8, — 90)v for some v € L7(X). Thus

3 Loy _L~r_ _LNT
(0 = O A (D= 5-O)" = g A (D= 5-O)" —=h A (Dn = 5_-O),

cf., Examples 18 and 19. In some concrete situations one can find
explicit solutions v.

Ezample 23. Suppose that

r

g=>_ GW(5,q)(~0q)*/k! and h=)Y H®(5,q)(-q)*/k!,

0

where both G and H are holomorphic on the image of 6,¢ and G(0) =
H(0) = 0. Let A(\) be defined by AA(\) = G(\) — H()), so that

(AA)B = xAk) 1 pAG-D),
It is then readily verified that (6, — 9)v = g — h if

v="> AW(5,9)q A (—g)* k..

O

Ezxample 2. Let us apply the previous example to derive an expression
for the difference of two holomorphic projections with different weights
in a strictly pseudoconvex domain D (which we suppose is contained
in C" for simplicity, the case with a Stein manifold is analogous, cf.,
Section 6). Let ¢ = —h/p as in Example 8 To simplify the computation
we take advantage of Remark 2. Since

T+ =1+ X" = A1+ A)
we have that
(14+0,-a—0q) ™' = (146,-4—09) " = (02-a—9) (gA (1+0.-a—8q)").
If P, is as in Example 8 it follows that P, — P,_; = OR,, where

R - ( g ) GA (L4 Goag) "™ (G
_ -r (_p)—1—|—r 31, \n—1
= ( h_1 ) e h A (—0Oh)" .
Since the kernels vanish on the boundary we get the formula

/D Pz 0)f() - [ P(na)f(e) = /D Ri(za)AOf, fe&(D),

D
which expresses the difference of two holomorphic projections with dif-
ferent weights as an integral of 0f. In the ball case this formula was
obtained in |6] for integer values of r. O
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