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ABSTRACT. We extend the definition of Q, spaces from the unit
disk to a strictly pseudoconvex domain D in C" and show that
several known properties are true even in the several variable case.
We also provide some proofs and examples that are new even when
restricted to the one dimensional case.

CONTENTS

1. Definition and main results 1
2. Integral representation in strictly pseudoconvex domains 4
3. Some basic properties of Q,, spaces 6
4. Boundary characterization of D, and Q, and the real spaces

Dy (0D) and QF(dD) 11
5. Inclusions between Q(0D)-spaces 15
6. Boundedness of the Szeg6 projection 17
7.  Multipliers on D, and @, 19
8. Spectral properties of multipliers on D, and Q, 20

References 23

1. DEFINITION AND MAIN RESULTS

Let A denote the unit disk in C. The space D,, —1 < p < o0,
consists of all holomorphic functions in A such that

Ja=1eriroraG < .

The space Q, introduced in [6], consists of all functions f such that
f o ¢ € D, uniformly for all ¢ € Aut(A). It is well known that D; is
just H? and that Q; is precisely BMOA. It was proved in [5] that if
p > 1 then Q, = B, the Bloch space and in 13| that Q, = C if p < 0.
If p =0 then Q, = Dy, the Dirichlet space. Hence the new interesting
cases are Q,, 0 < p < 1. These spaces are investigated further in, for
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example [6] and [7], and in [8] Q, is extended to R™. The aim of this
note is to suggest a generalization to several complex variables, and
to prove some basic facts. Throughout this paper D = {p < 0} is a
strictly pseudoconvex domain in C* with smooth boundary, and p is
a smooth strictly plurisubharmonic defining function. We let 6(2) be
the distance from z to 0D so that 6(z) ~ —p(z). When D is the unit
ball we choose p = |¢|> — 1. For simplicity, at several points we supply
proofs only for the ball and just outline how to obtain the general case.

It is well known that the J-operator behaves differently in the com-
plex tangential and normal directions near the boundary of a strictly
pseudoconvex domain. Therefore it is natural to measure forms with
respect to a metric that takes this difference into account, such as

Q = (—p)i0d log(1/—p).

In the ball Q is just —p({) times the Bergman metric. If f is a (¢, 0)-
form we have that

1
(1.1) fl6 =5 (=plf15+10p A [15),

where | |3 denotes the norm induced by the metric form 8 = (i/2)09p,
which is equivalent to the Euclidean metric since p is strictly plurisub-
harmonic, and B = —p + |0p|s ~ 1. In particular, on the boundary,
| & ~ [0p A f|5, which is the natural norm for the complex tangential
boundary values f|, of f.

For p > 0 we let D, be the space of holomorphic functions in D such
that

(1.2) 112, = /D U Of o+ £(0))2

is finite.

Our definition of @, will be in terms of Carleson measures defined
with respect to the Koranyi balls on D. Let d(p,q) be the Koranyi
pseudometric on 0D and B = B, = B,(p) = {¢ € 9D; d((,p) < r}
the corresponding balls. When D is the unit ball d(¢,2) = |1 — (z|.
For ¢,z € D we put d((,z) = 6({) +0(z) +d({’, 2") where ', 2’ are the
projections (defined in some reasonable way) of , z on dD. Note that
d is not a pseudometric on D since d(z,z) > 0 for z € D but it still
satisfies the triangle inequality d(¢, z) < C(d({,w)+d(w, z)). The tent
Q- (p) over B, (p) is Q,(p) = {2 € D; d(z,p) < r}. A positive measure
p in D is a p-Carleson measure, u € Cp, if

w@Qilg)) < C7Hnt

uniformly for all tents ), and we let ||||c, be the infimum of all possible
constants C. Thus C; is the space of usual Carleson measures.



We define the space Q, as the subspace of H? such that
1£1Ig, = 16"~ o f e, + 1 £l

is finite. In Section 3 we prove that when D is the unit ball in C",
and in particular if D is the unit disk in C, this is equivalent to that
fod € D, uniformly for all ¢ € Aut(B), and hence our definition of Q,
is a natural generalization to several variables. As in one variable, see
e.g. [1], Proposition 2.1, @; = BMOA, and we shall see in Section 3
that Q, = B, the Bloch space, for p > 1. Therefore we will focus on
9y, 0<p<1

One can characterize Q) in terms of boundary values. It is not hard
to prove that f € BMOA if and only if

n IF(C) = f(z)?
spo(e) [ E <o,

see Theorem 1.2 in Chapter 6 of [9] for a proof in the classical case.
For functions in @, we have the following analogous result.

Theorem 1.1. Suppose that f € H* and 0 < p < 1. Then f € D, if
and only if

and f € Q, if and only if

1£(©) — f(»)]?
1.4 .
(1.4) suphﬁnl/&/& z§"+1p<oo

Since the condition (1.3) and (1.4) only depend on the boundary
values of f it is natural to define the real spaces D (dD) and Q5 (9D),
0 < p < 1, consisting of f € L*(dD) such that (1.3) or (1.4) holds.
If 0 < p1 < pp < 1itis easy to verify that Q (dD) C Qf, (dD) C
BMO(0D). In §3 we give examples that show that these inclusions are
proper. The examples also show that L°°(9D) is not contained in any
QX(0D). In the one dimensional case, such examples were constructed
using gap series, see [6]. Our examples consist of rapidly oscillating
functions defined directly on 0D.

It is well-known, see [10] and [1], that the Szeg6 projection S: L?(0D)
— H?*(D) maps L?(dD) into H?(D) and BMO(AD) into BMOA(D).
We have an analogous result for D, and Q,.

Theorem 1.2. Assume that 0 < p < 1. Then the Szegd projection
S is a bounded operator from Dy (0D) to Dy(D) and from QF(0D) to

(D).
In the last two sections we discuss the spaces M(Qp) of multipliers on

Q, spaces. Contrary to the spaces B and BMOA there is no complete
characterization of M(Q,), but the known results extend to the several
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variable case. Moreover, we extend a result due to Xiao, [21], about
corona decomposition of Q, functions.

The authors are grateful to J. Xiao for valuable discussions.

2. INTEGRAL REPRESENTATION IN STRICTLY PSEUDOCONVEX
DOMAINS

In the ball we have the wellknown holomorphic projections

(2.1) PG =o [ 2 90
for r > 0, and
(22) i@ = [ TOU0)

where §(¢) = 1 — |¢|? and v((,2) = 1 — (- z. In fact, (2.1) is the or-
thogonal projection onto the Bergman space with respect to the weight
6" 'dA(C) and (2.2) is the Szeg6 projection. In a general strictly pseu-
doconvex domain D there are similar formulas, see e.g. |2], where dA(()
is replaced by a((, 2)dA((), a((, z) and v((, z) are smooth on the closure
of D x D, v(¢, 2z) is holomorphic in z, a(¢,2) ~ 1, v(¢,{) = —p({),

(2.3) v(C, 2)| ~ [v(z, Q)| ~ d(C, 2)
and,
(2.4) 2Rev((, 2) > 6(2) +6(C) + €l¢ — 2.

In particular, logv and v* are well defined for a > 0.

Sometimes we also want v((, z) to be approximately antiholomorphic
in ¢. In fact we can choose v so that d;v(¢,z) = O(|¢ — z|?) if we only
require that v((, z) is holomorphic for z near the diagonal. In most
proofs we will assume that 0,v = Ocv =0 and a = 1 as in the ball, and
we leave it to the reader to verify that the same arguments work in the
general case, though with some extra neglible error terms.

We recall the standard estimates

2) e O~ i
and
(26) /aD ac, i)nﬂ‘”“) ~ 6(27

if r,v > 0. We also have the following estimate.
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Lemma 2.1. Assume that « > 0, 6 >0, r > -1, a—r < n+1,
B—r<n+1,anda+G—r>n+1. Then

6(¢)"dA(C) 1
27) /D d(C, 2)*d(¢, w)? S d(z, w)ethr=n=t
If instead B —r > n+ 1 we have

5(C)7dN(Q) |
(28) /Dd(c,zwd(c,w)ﬂ S U, w)ad(w)prT

Proof. Any point ¢ near the boundary can be identified by a pair (y, x)
where y is the distance to the boundary and z is its projection onto
0D. Therefore (2.7) means that

/ / y"dydz < 1
2€dD (y + d(z,2))*(y + d(z, w))? ~ d(z,w)etFr-n-1
To prove it we first notice that

o T 1

/ y'dy ~ , r>-—1, ~v—r>1
o W+a)y a7t
Let d = d(z,w). Recall that d(z,w) < C(d(z,z2) + d(z,w)). If
d(z, z) < cd for some appropriately small ¢ > 0, it follows that
d(z,w) > cdd > d"d(x, 2).

Thus the integral over the set where d(z,z) < c¢d can be estimated by

I = R M e~
d(z,2)<cd d?= y=0 (y + d(:L', Z))a+€ ~ dPe d(z,2)<cd d(ma Z)a+€_r_1,

if € > 0 is chosen so that n > a+e¢—r —1> 0. Now
(2.9) Hz; d(z,2) < s}| < |{s; d(z,2") < s}| ~ s",

and hence the last integral is bounded by C/d®"<~"=!=" 1In the same
way the set where d(z,w) < cd is handled. We now consider the set
where d(xz,w) > d(z,z) > cd. Over this set the integral is estimated

by
/ / Yy dydx < / dx
d(z,2)>cd y + d :L‘ z )a—i—ﬂ ~ d(z,2)>cd d(x, Z)a—}-ﬁ—r—l .

By (2.9) it follows that the last integral is bounded by 1/de+#—7-1-n
The set where d(x,z) > d(z,w) > cd is of course handled in the same
way and the proof of (2.7) is complete.

To prove (2.8) we just need to modify the estimate of the part where
d(z,w) < cd. We have

/ 6"(¢) / 5"(¢)
d(zw)<cd d(C: ) (C: ) d(w’ Z)a d(zw)<cd d(C )ﬂ

/ 0"(¢) 1
s d(w, 2)* Jp d((, w)? S d(z,w)ed(w)s—r—n-1"
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where the last inequality follows by (2.5). O

Since v(¢, () = —p(C) it follows that dp(z) A 0,v(¢,2) = O(|¢ — z|)
and by (1.1) we get

(2.10) 00l ~ Vo +O(¢ — 2)) S V]l.

We also have the following useful formula

— n 3 n—1
(2.11) 6D¢do—/D¢ﬂ +cn/D<saaq/;/\Q :

where do = d°p A 37! which is equivalent to the surface measure on
0D. In fact, Stokes’ formula and integration by parts gives that

/apwdcp/\ﬂn_l:/Dwﬂ"-i-/de/\dcp/\ﬁ"—l

- /D o + /D pddy A G

The last integral is equal to
/ ddp Adp ANdp A B2,
D

and since Sdd“4p A Q" = §ddp A B! + (n— 1)dd“y Ad°p A B, the
equality (2.11) follows.

When D is the unit ball and f € £'(0D), then

_ [ ()" f(Q)
SCEYR (G, 2P

is the Q-harmonic extension (the Poisson-Szegé integral) of f, i.e.,
F = f on 0D and dd°F A Q" ! = 0. In particular, F' = P,f if f is
(the boundary values of) a holomorphic function. In a general strictly
pseudoconvex case there is no explicit formula for the {2-harmonic ex-
tension; however, by a similar formula as above, see [4], one get an
extension which is almost harmonic in the sense that

_F anl < |f(€)|
|aa /\ |ﬂ ~ /(;D |'U|n+1/2

which is enough for the purposes of this paper.

3. SOME BASIC PROPERTIES OF O, SPACES

We begin with a simple but useful reformulation of the p-Carleson
condition.



Lemma 3.1. For each fized o > 0 we have that

o dp(¢)
G.) lille, ~sup5°(2) | S

for all measures in D.
Corollary 3.2. Assume that f € H?* and a > 0. Then
FHQIOf |G

~ sup §% o \B)9 e

flla, ~sups°(e) [ S

Proof of Lemma 3.1. Take a fixed z € D and let A denote the right
hand side of (3.1). Since 6(z) < d((, z) we have

u@ % [ (o)

(C’ Z)n—l—a—l—p—l

+ [ £l -

<o [ G < asey

For the opposite estimate note that

d 1
() | et S 5@ S Il

and
du(C) / /00 ds
oz a/ < 0(2)° du(C
;. b\Q d(G, z)mretr &) d>0(z) #e) g sptnta
” ds * ds
:(5za/ (/ duC) supéza/ ~lule, -
(2) o U, ©) ) srnra S llulle,d(2) ) 1 lelle

This completes the proof. O

Ezample 1. Let f,(¢) = logv(w, () for w € D. Then ||fy|o, < Cp,

where C,, only depends on p. In fact, |0fy|a < 1/4/d(w,() in view of
(2.10) and and thus by (2.7),

o 5P—1(<‘)|8fw|?2 o 51)_1
() /@ i, Qrrarr 1~ ) / 3¢, 2y 1w, ) ~

and so the claim follows from Lemma 3.1. O

Lemma 3.1 implies the following characterization of Q,(B).

Proposition 3.3. Suppose that D = B is the unit ball in C*. Then
f € Q, if and only if f o ¢ € D, uniformly for all ¢ € Aut(B).

Proof. Let w = i001log(1/(1 — |z|?)) be the Bergman metric. If ¢ €
Aut(B) then ¢*w = w. To see this, we use that, see e.g. [16],

ey - (= 1CP)( o)
(3.2 L= 18(0P = =Pt
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for some a € B. Since
P HOf[BdN ~ SP|Of|RQ" ~ POf NOF A ~ 6" TP LOf AOFAW™ T,

we obtain
113, ~ / (1 — PP iaf A DF AW
B

The requirement that ¢* f be in D, uniformly for all ¢ € Aut(B) there-
fore means that

_ 2\p—1 2
sup(l _ ‘a|2)p—|—n—1/ (1 |C| ) |8f|Q < 00,
B

wcB |1 —a- §|2p—|—2n—2

which by Lemma 3.1 is equivalent to that f € Q,,. O

Lemma 3.4. Let v >0,0< a <1 and

_ 1 ()T
0= 55, g )
Then if p € Cp, u € Cp, as well.

Proof. Let 0 < 3 < 1. By Fubini’s theorem and (2.8) we have

u(2) du(¢)
) [ et 50 [ Gt < e,

and hence, by Lemma 3.1, u € C,,.

We note that for holomorphic functions f

63 [ ook~ [eorg~ [ #oonork
D D D

and

(3.4) /D Of% < / e

Formula (3.3) follows by an integration by parts,

/(—p)”laflé ~ / (=p)Pidf AOf Niddp A 72 =
D

D
p [ (-oP 0o n0f nidpNOF NG =p [ (~pPtopnofl.
D D

Formula (3.4) is a consequence of [}, 8|0f|3 < [, |f|? that follows from
Green’s identity as [0f[3 = A|f|*.

By (3.3), when defining the D, spaces it is enough to have a condition
on either the complex normal or the complex tangential components of
df. A similar result holds for Q,. Let L = £|Vp|2>"(0p/0¢;)(0/9¢;)
be the "complex normal” derivative of f (so that Lp = 1).
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Proposition 3.5. If p > 0 and f € H? the following conditions are
equivalent

(1) feQ,

(i) PILfI? €C,

(iid) #10f[2 € C,

(iv) P Hop NOfI5 €Cp .

Proof. Since (i) means that (iii) and (iv) holds, it is enough to show
that (ii),(iii) and (iv) are equivalent. Clearly (iii) implies (ii) so it
remains to prove that (iv) implies (iii) and that (ii) implies both (iii)
and (iv).

By Lemma 3.1, to prove that (iv) implies (iii), it is enough to show
that A < B, where

5P (¢)|0f2
A=5(2)° /D %w(o

PR s SLLU i

d(g" Z)n—f—a—l—p—l

for some a > 0. Since [0f|3 ~ Of AOf ANDIp A 3%, Stokes’ theorem
implies that

and

5P\af/\W/\a@/\ép\ﬁd/\

A< B+6(2)° / e ©) .

D
Since 95 = dp + O(C — z) and 6 < d we get
» —
AS B—i—(S(z)a/ o (C)|5f/\8f{\ap|ﬁd)\
b diCame

By the Cauchy-Schwarz’ inequality (and again using that § < d) we
get that A < B+ VAVB and hence A < B as desired.

To prove the other directions we want to express f in terms of Lf.
The starting point is (2.1) and the following identity (in the ball),

(3.5) r /D 5 Lpd\ = (r +n) /D SThdN + /D 5" Lapd) |

(©)-

that is obtained by an integration by parts (starting with the last in-
tegral). An application of (3.5) to (2.1), holding in mind that v is
anti-holomorphic in (, then gives

50 F(0)
f(2) ~ /D L) + K1),

ki) = [ B i)

where
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It is enough to estimate K f because the first term can be handled in
the same way by repeated use of (3.5). Since |0,v]a < /d((,z) we

have that
SWATSIANS
0.1l s [ T

Hence, if 0 < ¢ < p < 1 and r = 1, (for the case p > 1 choose r > p)
we obtain

5(2) Y OK £ (=)
vt [ [ SQOILFQ) ’
so6r™ ( f, e aesn )

Yt TR SR (95 12105
SIC) J, T e T i e <O

1 5(C)1—e+-p+d
~ 5(2)171)4_6 A d(C’ Z)n+1+(176)5(C)p|Lf(C)|2d)‘(C) € Cp s
by Lemma 3.4. Thus (ii) implies (iii) and (iv). =

Lemma 3.6. If f € Q,, p > 0, then
1
V()

Proof. From the proof of Proposition 3.5 we have (with r = p) that

&°|L 2 & 5P|0f|2 11
‘af|522§ (/ | J1C|2d/\> 5/ 32/ 1|2f‘ﬂ1 S =7
p dntpt / p dntpt / p dnt /2+p— \/5\/5
since 6?|Lf|? € C,. The second statement follows in a similar way using
the first one. O

0f(2)la S and [f(2)] < log(1/4(2)).

The Bloch space B consist of all holomorphic functions in D such
that |0f|q < C6~'/2. Lemma 3.6 thus means that Q, C B for all p > 0.
Just as in one variable we have

Proposition 3.7. Q, =B forp > 1.
Proof. Let p> 1. If [Lf| < C§~!, then

o [ OPILfI? a P2
6(2) /Wﬁ(z) /Wﬁl,

according to (2.5) since p—1 > 0, and hence, by Lemma 3.1, 6?|Lf|? €
Cp. It now follows from Proposition 3.5 that f € Q,,. O
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4. BOUNDARY CHARACTERIZATION OF D, AND Q, AND THE REAL
SPACES Dy (dD) AND QX(9D)

The main objective of this section is to prove Theorem 1.1. In the ball
one can use Aut(B), see [11] or [13] where this is done in the unit disk.
However we give a proof that works in general strictly pseudoconvex do-
mains. In one direction it is just an adaption of an argument in [12] and
[20] to the several variable case and the non-isotropic structure, which
however, for the reader’s convenience, we include (Proposition 4.1).
The proof of the other direction (Proposition 4.2) is new. The basic
ingredient is the estimate (4.7) and earlier this was proved by power
series expansions, whereas our proof is based on integral representation
and the Carleson-H6rmander inequality for Carleson measures.

Proposition 4.1. Suppose that 0 < p < 1 and that f is the boundary
values of a function F in C°°(D). Then

1O - f2))? 1
(4.1) /aD /BD e \”“ & _c/ 5711dF 2

and

)2
42 s [ [ R LSO <l artl,

Remark 1. Thus f € QF if for some extension F, 6* '[dF[g € C,.
The same conclusion is true even for p = 1 if F' is the -harmonic
extension of f. However, it is not true for an arbitrary extension. A
counterexample is given by F(z) = loglog(1/6(z)). Then |[dF|3 is a
Carleson measure but the boundary values are even not in H?2. O

Proof of Proposition 4.1. 1t is enough to prove the last estimate. Recall
that By(p) = {z; d(p, z) < h}. Since d is a pseudometric we have

—f(2)P
S / e at)
( )|2

L0 </ ) )

where doy is the surface measure on {(;d((, z) = t} induced by do(().
Since the problem is local, we can choose local coordinates z = (y, )
such that y = §(z). To each x we have a unique orthogonal decomposi-
tion a(z) = ag(x) + a'(z) of each a € S*"~2 such that a'(z) is complex
tangential. After possibly modifying the definition of d slightly, we may
assume that

{&; d(x,&) =t} = {x + tas(z) + \/Ea'(x); a € S*?},
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Therefore the right hand side of (4.3) is bounded by
(4.4)

/d(m)< o ( /t :O ( /| » |[f(z +ta(z)) — f (x)IQdU(a)) t“dt) dA(z)

where ta(r) = tay(z) + v/ta'(x). Now,

(
(4.5) (x-l—ta( ) = f(z) = f(z + ta(z)) — F(t,z + ta(z))
B

t,x) — f(z) + F(t,x + ta(z)) — F(t,x)

0y F (u, z + ta(z) du+/ 0y F (u, z)du
0

+ / io (aQ(x) L0, F(t,z + sa) + ;Wa'(x) O F(tx + sa(x)) ds

If we plug the right hand side of (4.5) into the right hand side of (4.4)
we get three terms [, I, and I3. By an application of Minkowski’s
inequality in I3 it can be estimated by

h t
/ / / (/ lag - 0. F(t, x + sag + v/s5a') > +
la|]=1 Jt=0 s=0 d(z,p)<Ch

2
1 1/2
4—S|a' <0 F(t, x4 sag + \/Ea')|2d)\(x)) ds) tP2dt.

Since the mapping = — x + saq(x) + /sa'(z) is invertible (for small
s), and d is a pseudometric, we can replace the expression x + saq(z) +
V/sd'(x) in the inner integral by x if we just blow up the constant C
appropriately. Therefore we just get

h
/ / (tlas(e) - Do F(t, 2)P + |d () - B F (8, 2) ) " ded(z)
z,p)<Ch
which is bounded by t**"~! by assumption. By a similar argument the

two remaining terms [; and I, are both estimated by
2

(4.6) /t :0 ( /0 t g(u)du> P2 dt,

where
1/2
g(u) = ( [ e w)|2dx<x>) .
d(z,p)<Ch

Since p — 2 # —1, by Hardy’s inequality (4.6) is bounded by

h
/ g(u)*uPdu < RPTT
u=0

Thus the proposition is proved. O
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Proposition 4.2. Suppose that f € L?(0D), 0 < p < 1. Then f has
an extension F' to D such that

2
(47) /&”WH%SC/(/‘f Ol
D ap Jap )rp

and

2
. plF < _—()|
48 I FRIE < Caw g [ ST

If f is the boundary values of a holomorphic function one can let F’
be just the holomorphic extension. Thus the proposition implies the
other direction of Theorem 1.1. For an arbitrary f we let ' be the
(2-harmonic extension in the ball case and the approximate harmonic
extension mentioned in Section 2 in the general case. Summing up we
have

Corollary 4.3. Let f € L*(0D) and 0 < p < 1. Then f € D} if and

only if there is an extension F such that 6?7 |dF|3 has finite mass, and
f e Qy if and only if *|dF |3 € C,.

Proof of Proposition 4.2. As usual we only prove this for the ball. The
crucial point is to prove (4.7). By (2.6),

1
(5”1dF2/8F/7
/ | | | bg@Ddc@MIP

ep (G 2)" TP Y Joeop d(C,2)MHP
For simplicity let us first consider the case when F' is holomorphic. We
can then write

OF; ‘a(F o

dn+lfp %1—? 0
< p ()| [ S
v 2 Q vo2

By (3.4) and the Carleson-Hormander inequality, keeping in mind that
|0logv|3 is a Carleson measure, we get that I(2) < Q(C). If F is just
(-harmonic, the proof is somewhat more involved. We have that

[dF 5 dd*|F* o F - f(z)?
— n-1 < c
|v|n+1—p |U|n—|—1—p A QD ~ 0 dd |,U|n—|—1—p

F—f(z)?

|U‘n+3fp

A anl

F
|0logv|? + M|8logv|

+ ‘ |n—|—2 P
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By (2.11) and the Cauchy-Schwarz’ inequality we thus have I < @ +

R+ VIVR, where

e [IP-1EP

2
T |0logvlg.

It is thus enough to verify that R < Q. By (2.10) [dlogv|3 < |vl.
Furthermore, since the Poisson-Szeg6 integral is positive and maps 1
to 1, it follows that |F — f(2)|> < U where U is the Poisson-Szegs
integral of |f — f(z)|*. Thus

B (" dA(Q)
|v|n+2p‘/wew' / i c, |n+2 o(C,w) "
N/wew' / (G, 2) |n+2 = a|v(< )
F(w) — ()P
<
> /D o(z, W)

by (2.7), if « is chosen so that 1 —p < o < 1. It follows that R < @
and hence (4.7) is proved.

In the proof of (4.8) we assume that F' = f is holomorphic. The
general case is completely analogous. We first note that || f|| samo@n) <

1fllgz(op), since

1
(i B‘f )
1
<=l < [ /B 1)~ 1P

hn+1p |f |2
s [ BSEE < 1igan

Fix a Carleson cube Q5. We need to estimate th 7|0 f|%. Decompose

f on the boundary as f = fi1 + fo+ f5, where fi = fg,, fo = x(f— f1),
fs= (1 —=x)(f — f1) and x is the characteristic function of Bj. Extend

fito D as f; = Pyf;, so that f = fi1 + fo + f3 also in D. Of course f;
gives no contribution. For f, we have by (4 7)

|f(z) = FOF _ -1
5?1 /51’8]” / / < |IfI3 d+Pt,
o | 2|ﬁ | 2|ﬂ 5, /B, |’U C; |n+1 —p || ||Q
Finally, for f3 we have by [1, p. 272|, |0fs|s < || fllBao/h- Hence

p+n+l

h ntp—
/ 105 < o < B e
Qn h b
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5. INCLUSIONS BETWEEN Q(0D)-SPACES

If 0 < p1 < py < 1itis easy to verify that Q;lfl (0D) C Q;li (0D) C
BMO(OD). In this section we will construct functions that show that
these inclusions are all strict. The examples also show that L>°(0D) is
not contained in any Q(0D).

To simplify the presentation we first consider the Euclidean space
R™. We say that f € @Q,(R™) if and only if

‘2
5.1 su / / ———————dxdy < 400,
( ) phn+p 1 B, /B, |x— |n+1 4

where the supremum is taken over all balls in R” with radius A.

Let B; = {x;|z| <1/i}. Decompose R" \ {0} as UA; where A; =
Bs;i_o \ Bsiiz and let A; = Bs; \ Bs;y1. Choose a smooth function x;
with x; = 1 on A;, suppx; C Bsi—1 \ Bsiy1 and ||dx;||eo < 2. This is

possible since d(Bf, Biy1) = 1 — ZJ%I ~ . Define f = f, by

p) = il x(x)
=1

Proposition 5.1. Assume that 0 < a < 1. Then f, € Q, if and only
ifp>a Ifa=1, fyisinno @Qp, 0 <p <1.

Proof. Assume first that p > «. To check (5.1), it is enough to consider
balls centered at 0 with radius 1/5k for some k. By symmetry we may
also assume that |z| > |y|. We want to show that

_ ontpel f)?
=k Z/ /|y|<|w| lz —y |7hLl o — g Y

i>k
is bounded as £k — oo. Divide the range of integration in the inner
integral depending on wheter |z — y| < 1/4% or not. If z € A; we
always have |f(z) — f(y)| < |f(z)| + |f( )| < i@=1/2_If furthermore
|z —y| < 1/42, then in order that f(z)— f(y) 76 0 also y € A; and hence
[f(z) = FW)IP =" ale) = xa@)* S 4w =yl

This implies

|f(z) = fly)P
T et !
/|y|5|w| |z — y|rtior Y

< ia+3/ d—y+2-a1/ dy -
- z—y|<1/42 lz —ylr |z—y|>1/i2 |z — y[ntip ™

and we get
I(k‘) < ntp—1 Zia_2p+1|Ai| ~ fntp-l Zia—%—n ~ kP < 00
i>k i>k

asa—p<0.



16

Conversely, if p < « it is enough to show that

_ 1.n+p—1 )|2
=k Z/ /1;63k |$_y|n+1pd e

>k

as k — oo. For z € A; there is a ball B, with center on the ray from
the origin through x with radius ~ 1/7% contained in Bs; s \ Bsiys-
Then on By, f(y) =0 and |z — y| ~ 1/7%. Thus

n (v)|”
>k+p12/ / |x_y|n+1pdy
kn-l—p 1Z,L (n+1-p)+a— 1/ d$/

i>k YEBy

~ Ln+p—1 § : 0—2p—N ~, .O—D
~ k 7 ~ k — 0,
1>k

as a—p>0.
O

When we try to transfer this example to C", there is an additional
difficulty due to the non-isotropic distance. Therefore we modify the
example slightly and let A; be a certain part of the annulus (but
with volume comparable to it) where only the distance in the "long”
directions are important. The details are as follows: Fix a point
p € 0D and choose coordinates r = (z1,2') € R x R?"2 so that
d(z) = d(z,p) ~ |z1|+|2'|?. In analogy with the Euclidean case we let
Bz’ = {.T; |l‘1| < 1/’L, |LL"| < 1/\/%}, AZ = B5i_2\B5Z’+3 but now we let Az
be that part of A; defined by

A { | < = ! = < |z'| < L }
i: T T .

B Vi V5i
Note that |A;| ~ |A;| ~ 1/5"T1. We also let

~ 1
A; = {3:; |z1] < — < 2’| <

1 1
2i” /57 + 2 5i—1}
and choose x; with suppx; C A;, x; = 1 on A; and [|dx]|ee < 7°/2.
Note that [xi(z) = xi(y)| S ©**z —y| S \/*d(z,y). Define f = f, by

falz) = Zz‘“—lxxx) -

Proposition 5.2. Assume that 0 < a < 1. Then f, € QE} iof and only
ifp>a Ifa=1, f, isinnleﬂf‘,O<p<1.
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Proof. The proof is very similar to that of Proposition 5.1. If p > «,
we want to estimate

S I / LOES (01

1>k d(y)<d(z

If z € A; and x;(y) # 0 for some j # i then |z — y| 2 5 and hence
d(z,y) 2 wm. Thus if z € A; and d(z,y) S 5 we have |f(z) —

~J

FW)| < i@ xa(x) — xi(y)| < @7 ty/i3d(z, y). Otherwise we use that
\f(z) = f(y)| <i*! to obtain

<kn+plzla1/ dz

>k Ai

{ / S . / L}
dey)<i-3? AT Y)"P Sy y)>i-ae d(@, y) Pt
< KLY eI | < )

i>k
and hence I(k) is bounded as desired.
When p < « it is enough to show that

2
_n+ 1 )|
b=ty [ /Bﬁk Ly

>k

is unbounded. For x € A; there is an Euclidean ball of radius 13%

contained in A,-\/Nli, and hence also a Koranyi ball B, with radius 1/73.
For y € By, d(x,y) 2 1/17* and hence

) 2 kel y e / dz / Sntr=Ny
1>k
> pntp-l Zi2a—3p+1 > p2a—p) _y o
i>k

as k — oo. O

6. BOUNDEDNESS OF THE SZEGO PROJECTION

Our aim now is to prove Theorem 1.2, and to begin with we prove
the similar statement for the explicit operator Py in (2.2). In the ball
case Pyf coincides with the Szegd integral Sf and so we are done. In
the general case it was proved in [10], see also [2], that Sf = Pof+ Rf,
where Rf is somewhat regularizing; in particular it maps L?(0D) into
C<(0D) for some e if p is large enough, and Theorem 1.2 follows.
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Proposition 6.1. Assume that 0 < p < 1. The explicit projection Py
maps Dy — D, and Qf — Q.

Proof. Let F' be the extension of f from Proposition 4.2; thus the -
harmonic extension in the ball case. Letting ¢ = F/v™ in (2.11) we get
that

F
Pof(z)z/8 U—nzgoodterms-l—/daF/\a AQrt
D

D

SO

=1
0, Py f(z) = good terms +/ 00F A azacv—n AQML
D

It follows from (210) that |625<1}_"|Q rS |U|_(”+1) SO

10, Py f(2)|a < good terms—i—/ |8F|an+1 :
D

Hence if 0 < € < 1 we have

(6.1) & 9Py f[3 < good terms + 67! / oF s / s

- o€
< good terms + 67! €/D\8F\?2‘U|T+1.

If € is chosen so that —1 < p—1 —¢€ < 0 and we integrate with respect
to z we get

/ 5Oy f1 < / 51 9F |2,
D D

which proves that Py maps Dy onto D,.
To prove the Q, boundedness, we obtain from (6.1) (ignoring the
good terms) and Fubini’s theorem that

5“(’(1})/ or” (z)‘aPOf‘Q

€D d(z’ w)n+a+p71

o € 2 51)_1_6(2)
S [ o QIorQ) / W P e

s [ {QIFOf

€D d(é‘,w)n—ka—kp—l )

where the last inequality follows from (2.8) if « is small enough. Hence
by Lemma 3.2, Py f € Q,. O
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7. MULTIPLIERS ON D, AND Q,

There is a precise characterization of the multipliers M(BMO) and
M(BMOA), due to Stegenga [17] for n = 1 and [15] in a general
strictly pseudoconvex domain, and for the Bloch space, see [14]. In
one variable there is also a characterization of the multipliers M(D,)
of D, due to Taylor, [18|. For the Q, spaces, 0 < p < 1, no such
characterization is known. As in one variable, [21| we have though the
following two partial results.

Proposition 7.1. If g € M(Q,), then g € H* and

I -

Note that in particular, by Lemma 3.1, M(Q,) C Q,.

Proof. For any f € Q, we have by Lemma 3.6 that

9(2) f(2)] < lgflle,10g(1/5(2)) < [Mylll| flle, log(1/6(2)).
If we take f,(z) =logv(w,z) and let z = w we get by Example 1 that

l9(2)|10g(1/8(2)) < [ M, 1og(1/5(2))

and hence g € H*. Furtermore, using

9glalfI? < 10(gf) G + 1015,

we obtain
a1 f[*|0g]?
0(2) | —r 2t Sllaflla, + 1115, SIS,
D |v|tP
Taking again f(¢) = f.({), we get the desired conclusion. O]

A similar argument shows that any g € M(D,) must be bounded.
Proposition 7.2. If g € H*® and
- s [ s o2
D d(¢, z)™tP
then g € M(Q,).
Proof. By Lemma 3.6 we have for f € Q,

"~ 10(gf)[3
5(2)/,3 a(C, 2

-1 of |3 67~ 1(log(1/6)*0g4
$96) [, T 490 [, g e 51

Thus by Corollary 3.2, gf € Q,.
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One can obtain similar results for the real spaces Q;lf. The lack
of a complete characterization of M(Q,) causes us some problems in
proving corona type theorems for Q,, or more generally for computing
the joint spectrum for an m-tuple of multipliers on Q,. For technical
reasons we must assume that the multipliers g; € M(Q,) actually
are multipliers on the real space Q;lf. We do not know if this extra
assumption is necessary in general. Indeed if n = 1 it is not since we
have

Proposition 7.3. Assume that 0 <p <1 andn=1. If g € M(Q,),
then it is also a multiplier on the space ng.

Proof. Assume that g € M(Q,) and u € QF. Since the Szeg projector
S is bounded on Q, it follows that u is the boundary values of f + f for
some function f € Q,. Since gf is in Q, by assumption it is enough
to check that ¢f is in QE. However,

d(f9)|s S 10f1s +10(9f)ls
and hence by Corollary 4.3 fg € Q,. O

8. SPECTRAL PROPERTIES OF MULTIPLIERS ON D, AND Q,

Finally we consider corona type theorems for Q,. Let M (Qp) denote
the space of holomorphic multipliers on Q;lf, i.e., the set of functions
b € H? such that f — bf is bounded on Q}f. If n =1 we have seen

that M(Q,) = M(Q,).

Theorem 8.1. Let 0 < p < 1 and assume that gi,... ,gm € MV(Qp)
satisfy

(8.1) lg| > 6> 0.

If € Qp, there are u; € Qp such that Y gju; = ¢ and |lullg, <
Cs||¢llg,, where Cs is independent of m. The same result holds for D,
instead of Q.

The case p = 1 was proved in [15]. For analogous statements for other
functions spaces, see [14] and [3| and the references given there. With
a small generalization we get a statement about the joint spectrum
(Taylor spectrum) of multipliers on Q, and D,,.

Theorem 8.2. Let D be a strictly pseudoconver domain in C* with
smooth boundary and assume that g1, ... , gm € M(Q,). Theno(g, Qp)
= g(D). Again one can replace Q, by D,.
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For the definition of Taylor spectrum and related results see [3| and
the references given there. Following the set up (and notation) in [3],
the proofs of Theorem 8.1 and Theorem 8.2 boil down to get DE and

QF estimates of each of the terms (6,K)*(y N (97)F N ¢ given that ¢ is
in D, or Q,, where v =" v;e; =Y g;/|g/’¢; and K is an appropriate
solution operator for the 0- equation. We concentrate on the case with
9p, 0 < p < 1 ; the estimates for D, follow in a similar but simpler
way.

If £ = 0 then we have to show that the boundary values of u =
g;i#/lg|* is in QF. By Corollary 4.3 it is enough to check that 67~ !|du3,
is in C,. However, using that |g;| < 1 we get

|dule < 10gjlald] + |9|0d]a < |06la +10(g;¢)|a
and since both ¢ and g;¢ are in 9, it follows that 6*~*|du|? is in C,.

For k > 1 we need estimates of the operator K.
Theorem 8.3. Let 0 < p < 1. There is an operator
K: C(‘)’ZH(E) — Co4(D),
such that OK f = f if 0f = 0, and which satisfies the estimates
(8.2) 1671 flalle, S 167712 flalle,

for any (not necessarily O closed) f and T > p — 2.

In the limit case T = p — 2 we have, for the complex tangential
boundary values of K f,

(8.3) 1K flloz S 116772 Flalle,
and
(8.4) 1K flige S 1167 IfIale,-

We can now conclude the proof of Theorem 8.2. Let k¥ = 1 and put
f=~vN0ynN¢. As before one verifies that

|f1a S 10616+ [0(99) 4 -

Hence 0?'|f[3 € C, and by (8.4), K f is in Q.

Finally we consider k > 2. We have proved that 6*~!|dg N ¢|3 €
Cp. Also, by Theorem 7.1, g € H* N Q,. Hence |0glq < 671/2 and
6?1 0g|3 € Cp. Thus

5(k—2)/2+p—1‘,)/ N (37)19 N (NQ
< 67119glal0g N Bla S (09[4 + 109 N 8[3) €€, -

By k — 1 applications of (8.2) and one of (8.3) we obtain (6,K)*(y N
(07)FNg) € OF.
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Sketch of proof of Theorem 8.3. We shall choose K as the operator K|,
in [2|, with « large enough. It then satisfies the estimate

89 rels [ gehein (U00)

where 7 is some large number, and o((, z) is like d({’,2") + |d(¢) —

d(z)| + /d(C) + d(z)c({’, 2"), where ¢({’, 2') is the distance between ('
and z' in the complex tangential directions. Moreover, the boundary
values of K f has an extension u to the interior such that

57"71
(8.6) \du|95/ljd(ciz|ﬂfr.

We first consider (8.2). We decompose the integral in (8.5) into two
parts; one where d((,z) < co((, z), and one where d((,z) > co((, 2).
The first part immediately is handled by Lemma 3.4. In the second
case d(C, z) ~ 6(¢) ~ 0(z), and using this the desired estimate follows
by a straight forward calculation.

Next we prove (8.3). Since §(¢) < d((, z) we may assume that r is
suitably small in (8.6). By Schwarz’ inequality we obtain

|dU:(Z)|?2 5/ M/ 6(g)2Tfp—1/2|f|Q |

cep d(C, z)mtrHr=L foep d((, z)m TP

By Lemma 3.1 the first integral is bounded by 6~" and hence

. 5(2)710ul
0% (w) /zeD d(w, z)nrotr-l
< 5%(w) L GG
521 5(¢)2r -
* /zeD d

w, z)n—l—a—l—pfld(c, Z)n_H”_Hip .

Now, if r = p — € and € and « are small enough (2.8) implies

p—1 2 ) p—3/2
5a(w)/ (5(2) |au|531 SJ 5a(w)/ (Z) ‘f|§jl ’
2€D d(wv Z)n+a+p ¢eD d(w7 Z)n+a+p
and (8.3) follows by Lemma 3.4.

To prove (8.4) we use (8.6) and proceed exactly as in the proof of
Proposition 6.1, and conclude that the C, norm of §*~*|0u|? is bounded
by a constant times the C, norm of 67| f|%.

O

Remark 2. To prove Theorem 8.1 when p = 1 we need a somewhat
deeper result than Theorem 8.3. The estimates (8.2) and (8.3) hold for

p =1 as well, but (8.4) has to be replaced by the Wolff type estimate
(8.7) IK fllBaco S N falle + N10flalle,
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The extra condition on 0f in the last estimate cannot be dispensed
with. In fact, let f be Ou, where v is the function from Remark 1.
If there were a solution v € BMO to v = f, then also the L?(9D)
minimal solution v — Sv would do since S is bounded on BMO; but
one can check that v — Sv = K f is not in BMO.

In [3], (8.7) is proved by duality and the T'1 theorem. However in this
connection it is natural to suggest another argument. It is shown in |2]
that there is a decomposition Kf =T f + MOf + error terms, where
Tf is anti-holomorphic. Moreover, 0T f satisfies the same estimate as
K f, namely (8.5), and as in the proof of (8.4) we get that |0T f| € C;.
Since T'f is anti-holomorphic it follows that T'f|sp is in BMO. The
boundary values of M (0f) has an extension v to D such that

dolg < [ L2108 le
*% Jy dig, e

Using Lemma 3.4 with o = —1/2 we get that 6~/2|dv| € C;, and

6~12|dv|q < 671, and by an easy argument, cf. [19], it then follows

that Mdf|on is in BMO. 0
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