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Abstract. Let v be the Gauss measure on R? and £ the Ornstein-Uhlenbeck
operator, which is self adjoint in L2(v). For every p in (1,00), p # 2, set ¢y =
arcsin [2/p — 1/, and consider the sector Sy: = {z € C: |argz| < ¢, }. The main
result of this paper is that if M is a bounded holomorphic function on S¢; such
that the functions M (eiid’;-) satisfy suitable Hormander type conditions, then
the spectral operator M (L) extends to a bounded operator on LP(y) and hence
on Li(y) for all ¢ such that |1/¢ —1/2| < |1/p — 1/2|. The result is sharp, in
the sense that £ does not admit a bounded holomorphic functional calculus in a

sector smaller than S¢;.

We consider the Gauss measure on R?, i.e., the probability measure v with density

/2

Yo(z) =7~ exp(— \a:\2)

with respect to Lebesgue measure. The Ornstein—Uhlenbeck operator
! A+z-V
RS — :E -
2

is essentially self-adjoint in L2(7y); we denote by L its self-adjoint extension. The spectrum
of £ is N. Let {P,, }nen be the spectral resolution of the identity for which

Lf=) nP.f VfeDom(L).
n=0
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It is well known [B] that if p is in (1,00) and n is in N, then P,, extends to a bounded
operator on LP(vy). Furthermore, if p is in [1, 00), the projection Py extends to a nontrivial

contraction operator on LP(vy).

For each t > 0, the Ornstein—Uhlenbeck semigroup H; is defined by

Hef =Y e Puf  VfeL’(y)

n=0
It is known that {H;};>0 extends to a markovian semigroup, which has been the object
of many studies, both in the finite and in the infinite-dimensional case. A good reference
about the Ornstein—Uhlenbeck semigroup is [B] (see also [Me]), where additional references
can be found. In this paper we shall consider only the finite-dimensional case. Some
results involving maximal operators and Riesz transforms associated to this semigroup are

described in the survey [Sj].

Suppose that M : N — C is a bounded sequence. By the spectral theorem, we may
form the operator M (L), defined by

M(L)f =Y M(n)Pnf  Vfe L)

clearly M (L) is bounded on L?(vy). We call M (L) the spectral operator associated to the
spectral multiplier M.

The purpose of this paper is to develop a functional calculus for L, i.e., to find sufficient
conditions on the spectral multiplier M for the spectral operator M (L), initially defined
in L2(y) N LP(v), to extend to a bounded operator on LP(v), for some p in (1, 00).

On the one hand, we show that if p # 2, then there is no reasonable non holomorphic
functional calculus in LP(vy) for £. In particular, we prove that there is no analogue of
the classical Hormander multiplier theorem in this context. In fact, for each p # 2 there
exists a spectral multiplier M, such that M,(L) does not extend to a bounded operator
on LP(v), and which is the restriction of a function, also denoted by M, analytic in a
neighbourhood of R, that satisfies the conditions

sup |)\j DjMp()\)‘ < 0 Vj e N
A>0

On the other hand, a straightforward consequence of an abstract result of E.M. Stein

[S, Ch. 4] is that if M : N — C is a bounded sequence and there exists a holomorphic

function M of Laplace transform type, such that

M(k)=M(k) k=1,2,3,...,



then M (L) extends to an operator bounded on LP(v) for every p in (1,00). This has
recently been improved by Garcia-Cuerva, Mauceri, Sjogren and Torrea [GMST], who
showed that M (L) is also of weak type (1,1).

Furthermore, if we fix p in (1, 00), it is interesting to determine the “minimal regularity
conditions” on M which imply that M (L) is bounded on LP(y). These conditions are
sometimes best expressed in terms of Banach spaces of holomorphic functions. If ¢ € (0, 7),

we denote by S, the open sector
{z € C: |argz| < ¥},

and by H*(S,) the bounded holomorphic functions on S,;. A straightforward consequence
of an abstract result of M. Cowling [C, Thm. 2] is that if ¢ > 7 [1/¢—1/2|, M : N — C is
a bounded sequence and there exists M in H ©(8S,) such that

M(k)=Mk) k=1,2,3,...,

then M (L) extends to a bounded operator on L7(7).

In this paper we improve this result for the (finite dimensional) Ornstein—Uhlenbeck
operator, by showing that analyticity in a smaller sector suffices to give bounded operators
on LP(v).

For the statement of our main result, we need the following notation. Suppose that
J is a nonnegative integer and that ¢ € (0,7/2). We denote by H*>(S,;J) the Banach
space of all M in H*°(S,) for which there exists a constant C' such that

o 2 dA
(1) Sup/ M DIM(eFYN)|" =< C*  Vje{o,1,...,J},
R>0JR A

endowed with the norm
||M||¢;J = inf{C : (1) holds}.

Condition (1) is called a Hérmander condition of order J [H]. Note that (1) implies that
sup.es, [M(2)] < 20,

Our main result is the following

Theorem 1. Suppose that 1 < p < oo, p # 2, and set ¢;, = arcsin |2/p — 1|. Let M : N —

C be a bounded sequence and suppose that there exists a bounded holomorphic function
M such that
M(k)=M(k) k=1,2,3,....



Then the following hold:
() if M e H % (S¢x;4), then M (L) extends to a bounded operator on LP(y) and hence
on Li(«) for all q such that |1/q—1/2| <|1/p—1/2|;
(i) if M € H*(Syz) and |1/q—1/2| < [1/p—1/2|, then M (L) extends to a bounded
operator in Li(vy);
(iii) if ¢ < ¢y, there exists a function M which decays exponentially at infinity, and
belongs to H>(S,;J) for every nonnegative integer J, such that M (L) does not

extend to a bounded operator on LP (7).

We remark that this result may be sharpened by using spaces H*(S¢s; J) with non-
integral J.

A significant feature of Theorem 1 is that the number of derivatives on M required in
(i) is independent of the dimension d. However, our estimates depend strongly on d, so that
our methods fail to give a multiplier result for the infinite dimensional Ornstein-Uhlenbeck
operator. Note that Cowling’s result holds in the infinite-dimensional case too. We recall
that other important operators related to the Ornstein—Uhlenbeck semigroup, such as the
Riesz transforms, have LP(y) bounds independent of the dimension. The reader is referred

to the elegant analytic proof of G. Pisier [Pi].

Theorem 1 is proved in Section 3. It is a relatively straightforward consequence of the
fact that there exists C > 0 such that

(2) (£ + D)™, < C 1+ [u)®?e®™  Vee(0,1] VueR,

where | - ||, denotes the operator norm in LP(y), and of an abstract multiplier result for
generators of holomorphic semigroups, which is an improved version of an earlier result
of Meda [M, Thm. 4] (see also [CM, Thm. 2.1]). The abstract multiplier result is proved
in Section 2. The estimate (2) is an easy consequence of Proposition 3.1 and Proposi-
tion 3.2, which contain norm estimates concerning two auxiliary operators, JP* (L + €T)
and KP%“(L + €Z), introduced at the beginning of Section 3. The norm estimates for
JP#(L + €T), in turn, hinge on pointwise estimates outside the diagonal for the distribu-
tional kernels of the complex powers of the resolvent operator (£ + ¢Z)~!. This analysis is
rather technical and occupies Section 4 and 5.

One of the main ingredients of our approach is a careful analysis of the complex time
Ornstein—Uhlenbeck semigroup. The notation and some preliminary results concerning
the Ornstein—Uhlenbeck semigroup are contained in Section 1.

Maximal estimates for the complex Ornstein—Uhlenbeck semigroup will appear in a

forthcoming paper.



1. Notation and preliminary results

We shall consider LP spaces both with respect to Lebesgue measure and Gauss measure;
we denote the former by LP(R?) and the latter by LP(y).

Suppose that M is a continuous linear operator from C°(R?) into distributions. By
the Schwartz kernel theorem there is a unique distribution mg € D’ (]Rd de) such that

(M, )ga = (ms, Y @ P)gaa Vo, 1 € CZ(RY),

where (-, -)pa and (-, )g2a denote the pairings between test functions and distributions in
R? and in R??, respectively. We call the distribution (1 ® Yo 1)ms the kernel of M and
denote it by m. The justification for this notation is that if mg is locally integrable, then
M may be represented as an integral operator with kernel m with respect to the Gauss

measure. Indeed,
Mo@) = [ ms@y)s@)ay= [ m@.u)ewaw) Ve Cx®.

If M is a bounded operator on L2(7y), then it maps C2°(R?%) functions continuously into
distributions, so that we may consider its kernel. In particular, if Re z > 0, we denote by
h, the kernel of the operator 4, spectrally defined by

Hof =D e Puf  VfeL(v);

n=0

h, is called the Mehler kernel and is given by the smooth function
— 1 1
— (1 — p—22)" U2 [_ 2

(3) hz(z,y) = (1—-e"%) explg g ety -5 o

if z ¢ inZ. For k in Z, the distribution hg, is defined by

(hikm, D) = /]Rd ¢(z, (=1)*z) exp(|a:|2) dz Vo € C° (R xR?).

‘.’E—y|2 V.T,yERd,

It is easy to check that {h,}re »>0 is an analytic family of distributions, and that {#, }re.>0
is an analytic family of continuous operators from C°(R?) to D'(R?). In particular, if
¢ € C*(R?) and k € Z we have that Hiexp(z) = ¢((—1)Fz). Further properties of
{H.}Re >0 are contained in Proposition 1.1 below. For every p in (1,00), p # 2, set
¢p = arccos |2/p — 1|, and denote by E, the set

{z+1iy € C:|siny| < (tan¢y) sinhz}.

If p = 2, define ¢, to be 7/2 and E;, to be S; /5. The set E,, is a closed mi-periodic subset
of the right half-plane. The rays [0, e***rc0) are contained in E, and are tangent to the
boundary of E, at the origin. Note that if 1/p + 1/p’ = 1, then E, = E,», and that
E, CE ifl<p<q<2.



Proposition 1.1. Suppose that 1 < p < oco. The following hold:
(i) the semigroup {M:}+>0 is markovian;
(ii) ift > 0 and 1 < p < 2, then H; is bounded from LP(vy) to L?(y) if and only if
t > —log+/p — 1, in which case it is a contraction;
(iii) the operator H, extends to a bounded operator on LP(vy) if and only if z € E,, in
which case it is a contraction. Furthermore, the map z — H, from E, to the Banach
algebra of bounded operators on LP(vy) is continuous in the strong operator topology,

and its restriction to the interior of E, is analytic.

This result is well known. In particular, (ii) is due to E. Nelson [N], and (iii) to
J.B. Epperson [E]. The reader is referred to [B] for (i) and more on the Ornstein—Uhlenbeck
semigroup.

Positive constants are denoted either by ¢ or by C'; these may differ from one line to
another, and may depend on any quantifiers written, implicitly or explicitly, before the

relevant formula. The expression
A(t) ~ B(t) Vt € D,

where D is some subset of the domains of A and of B, means that there exist constants C
and C’ such that

C |A(t)| < |B(t)| < C" A1) Vt € D.



2. An abstract Hormander type multiplier theorem

In this section we prove a result concerning the existence of a bounded holomorphic func-
tional calculus for infinitesimal generators of symmetric contraction semigroups. We shall

use this result in Section 3 in our study of the Ornstein—Uhlenbeck operator.

Let X be a o-finite measure space and G a positive linear operator on L?(X), possibly
unbounded, but with dense domain. Let {€,} be the spectral resolution of the identity for
which -

gf=/ AdENS Vf € Dom (G) .
0

For every positive real number ¢, we define the operator 7; by

Tef :/ e ™M dExf Vf e L*(X).
0
We assume that each 7; has the contraction property
ITefl, < Ifll, V€ L*(X) N IP(X)

whenever 1 < p < co. A semigroup {7;}+>0 with the above properties is called a symmetric
contraction semigroup, and G will be called the infinitesimal generator of {T;}:+>0. Note

that in many texts on semigroups, the generator of the semigroup is —G instead of G.

Let M be a complex-valued, Borel measurable function on RT. The multiplier operator
M(G) is then defined on a suitable subspace of L?(X) by

M@ = [T M.

By spectral theory, if M is bounded, then M(G) is bounded on L?(X). An important
problem is to find conditions on M (and on the semigroup), so that the operator M(G)

extends to a bounded operator on LP(X) for some p € (1, 00).

Recall that the Mellin transform M f of a function f € L*(R™, d\/)) is defined by

Mf(u):/o f()\))\_i“% ViR,

Let M be a complex-valued, Borel measurable function on RT. Given a positive
integer N, we denote by My : Rt x RT™ — C the function defined by
My (t,A) = (tA)N exp(—tA) M(X),

and by MMy (t,-) the Mellin transform of My (t, ).

If 7 is a bounded linear operator on LP(X), we denote by |7, its operator norm.

7



Theorem 2.1. Let G be the infinitesimal generator of a symmetric contraction semigroup
and assume that the spectral projection &y is trivial. Suppose that 1 < p < oo and that

M is a Borel measurable function on R*. If for some positive integer N

[ s Mt 161, du < o
—oo0 t>

then M (G) extends to a bounded operator on LP(X).

This result was proved by Meda [M, Thm. 1]. A more elegant proof of the same result,
due to Cowling and Meda, is in [CM, Thm. 2.1].

Suppose that M € H*(S,). It is well known that M admits a bounded extension,
also denoted by M, to S,. For || < ¢, let My : RT — C denote the function defined by

My(A) = M (e2).

Suppose that J is a positive integer. We say that My satisfies a Hormander condition of

order J if there exists a constant C such that

R 2 dA 9 ,
sup N DIMy(N)|"— <C*  Vjie{o,1,...,J}.
R>0JR A

The smallest constant C for which this inequality holds is called the Hormander J-constant
of My, and is denoted by || Mp||ys.m 7- Clearly, if M is in H*(Sy;J), then

1M,y = maX (|| Ml ez 72 1M lizmn 1) -

We now state the main result of this section. Its proof is a slight modification of
the proof of [M, Thm. 4]. Our result is related to a previous result of Cowling, I. Doust,
A. McIntosh and A. Yagi [CDMY, Thm. 5.4] on the H* functional calculus for a certain

class of operators acting on Banach spaces.

Theorem 2.2. Let G be the infinitesimal generator of a symmetric contraction semigroup
and assume that & = 0. Suppose that 1 < p < oo and that there exist positive constants
C and o, and a constant 0 € (0,7/2) such that

670, < C 1+ [ul)” exp(@fu)  YueR

IfJ >0+ 1and M € H*(Sy;J), then M(G) extends to a bounded operator on L?(X),
and

MG, < ClIMllg, -

[
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Proof. We show that M satisfies the hypotheses of Theorem 2.1.
Let 9 be a C°(R) function supported in [1/2,2] and such that

Yo owEFA) =1 VAeR'.

k=—oc0

Observe that

> . dA
MMy (t,u) = / ()N e M) A 2
0
(iN+u)6 > N 0 —iu dA
=e (NN exp(—e”tA) Mg(X) A Y
0
by Cauchy’s integral theorem. A change of variables (t\ = v) shows that
—6u iNg i [, N—iu dv
e MMy (t,u) =71 v exp(—ev) Mg(v/t)
0
= ¢tN0 qiu Z / “ exp(—e"v) Mg(v/t) v (2" )dU.
v

k=—0o0

The rest of the proof is a trivial modification of the proof of [M, Thm. 4]. We omit the
details. 0

In view of the application to the Ornstein—Uhlenbeck semigroup, we need a version of
Theorem 2.2 for generators of symmetric contraction semigroups whose spectral projection

&op need not be trivial. This is the content of the next corollary.

Corollary 2.3. Let G be the generator of the symmetric contraction semigroup {T;}.
Suppose that 1 < p < oo and that there exist positive constants C' and o, and a constant
0 € (0,7/2) such that

(G +eD)™], < C(1+u)” exp(Olul)  Vee(0,1] VueR

Let M : [0,00) — C be a bounded Borel measurable function and suppose that there exists
M e H>(Sy; J) for some J > o + 1 such that

M) =M\ VA e R".
Then M(G) extends to a bounded operator on LP(X), and
M@, < & (1IMO)]+ [M],,,)-

9



Proof. It is immediate to check that G+ €Z is the infinitesimal generator of the symmetric
contraction semigroup {e~7T;}+>¢ and that its spectrum is contained in [¢, 00). Therefore,

we may apply Theorem 2.2 and deduce that there exists a constant C' such that
IM(G+eD)l, <C M|, .

By spectral theory
Eof = lim Tif  Vfe L*(X).
—00

Since 7; is a contraction on LP(X), it follows that & is contractive on LP(X) for every p
in [1,00). Consequently, Z — & is bounded on LP(X), so that

(5) I(Z ~ E0)M(G +<D)ll, < 3], .

Observe that for every ¢ > 0

M(G+ €T)f = M(e) Eof + : M(A+e)dExf  Vf e L*(X).
Thus, if ¢ — 0F
(T —E)M(G + exI)f = : M+ ex) dExf
=/, M(A\) dExf

= M(G)f - M(0)&f  Vf € L¥(X),

whence (Z — )M (G + €xT) converges to M(G) — M(0)&, in the strong operator topology
of LP(X) by (5). Therefore (5) implies that

IM(9) - M(0)&ll, < C | M|

9;0°
and finally that
1M @), < MO +C b

as required. O

Remark 2.4. Suppose that the symmetric contraction semigroup {7;} preserves the class
of real functions (in particular, this holds if {7;} is a submarkovian semigroup). Assume
that for some p in (1, 2) there exist positive constants C and o, and a constant 6 € (0, 7/2)
such that

(6) (G +€Z) ™, < C(1+w)” exp(fu)  Vee (0,1] VueR".

10



We claim that
(6') (G +€Z) ™|, < C(1+ |u))” exp(@lul) ~ Vee (0,1] VueR

and that an estimate similar to this holds, with p replaced by its conjugate index p’.

Indeed, since {7;} preserves the class of real functions, the same holds for its infinites-

imal generator G and for the spectral projections {€x}. Therefore £y f = €y f, whence

(o.¢]

G+ )] = nyf +/ (A + )iv déy f
0

+

oo

= G_iug()? + / ()\ + 6)_iu dg)\f
0

+

=(G+eI)™™f  Vfe L*X).

If f e L?(X)N LP(X), then (6) implies that for all v € Rt

I +eysl, = |[G+D™F|

=g+,
<C(1+0)7 exp(0v) |fll, Ve (0,1]

a density argument then shows that (6’) holds for all u € R.
Furthermore, for every f € L2(X) N LP(X) and every g € L?(X) N L¥ (X)

(G +eD)™f.9) = (£, (G +eD)™)"9)
= (f,(G+€eD)™™g),
where (-,-) denotes the inner product in L2() and * the Hilbert space adjoint. We have
proved that for every u € R the operator (G + €Z)™ extends to a bounded operator on

LP(X). It follows that for every u € R the operator (G + ¢Z)~% extends to a bounded

operator on LP' (X), as required to finish the proof of the claim.

11



3. The main result

In this section we prove our main result, Theorem 1, modulo two propositions. The strategy
for part (i) is to show that if 1 < p < 2

I(£+e2) ™[ < C(1+u? exp(épu)  Vee(0,1] VueR,

and then to apply Remark 2.4 and Corollary 2.3.

First we need a little more notation. We denote by 7: C\ {(—o0, -1]U[l,00)} = C
the transformation ¢
7(¢) = log ﬁ’
where logw is real when w > 0. It is straightforward to check that 7 is a biholomorphic
transformation of C\ { (—oo, —1]U[1, 00) } onto the strip {z € C : |Im 2| < «}. In particular,
if 1 < p <2, then 7 maps Sy, \ [1,00) onto the interior of E, N {z € C: [Imz| < 7} and
the ray [0, e*?»0c0) onto OE, N {z € C:0 < Imz < 7}.

Observe that if z = 7((), then

1 _6—225 —

4¢ 1 1 1 ¢ 4 1 1 1 1
— = - an - = = - — =
(1+¢)% 2er+1 4

From Mehler’s formula (3) for the heat kernel, we deduce immediately that

1 d 2 2 1
D heolen) = i ow[ Tt = (¢l e - of?)]

If z and w are complex numbers, we denote by [z, w] the closed segment in the complex
plane joining z and w. We denote by z, the point 7(e*?»/2), which is in JE,, by «j; the
set 7([0,e'?/2]), and by a, the regular curve ¢ — e%r¢, 0 < ¢t < 1/2. Further, 8} will
denote the union of the segment [z, €!%?] and the ray [e!?»,e!?»c0), and 3, a piecewise
regular curve with range (3.

For every complex number w such that Rew > 0, we define the functions JP:% :
RT™ — C and K?% :RT™ — C by

1 d 1 d
JP(A) = —/ e &2 and KP"()) = —/ e
L(w) Ja, z [(w) Jg, z
Observe that the function w — KP"()) is entire. The function w — JP"(}) is analytic
in the half plane Rew > 0. A complex integration by parts shows that if Rew > 0
A Zp

p,w - w —Az p
(8) TP () F(w+1)/apze dz +

exp(—zp)\)
[(w+1)

12



The right hand side is analytic in the half plane Rew > —1. We shall use (8) to define
JP()A) for —1 < Rew < 0. In particular, JP* () is defined for w € iR.

For every € > 0 we define the operators JP(L+€Z) and KP*(L+€Z) by the formulae

JPU(L+eD)f =) JP(n+€)Puf and KPU(L+eD)f =) KP"(n+€) Puf,

on their natural domains. It is easy to show (see the proof of Theorem 1 (i) below) that if
uelR
(L+eT) ™ f = JP (L4 D) f + KP“(L+eI)f Ve L*(X).

Thus, we are led to the problem of finding LP(vy) estimates for JP" (L + €Z) and KP" (L +
€Z). Our main results concerning J?* (L + €Z) and KP"(L + €Z) are Proposition 3.1 and
Proposition 3.2 below. The proof of Proposition 3.1, which is quite technical and requires
a detailed analysis of the kernel of J»" (L 4 €Z), will be given in Section 5.

Proposition 3.1. Suppose that 1 < p < 2. Then there exists C' such that
[J77(L + D), < C (1 +u)*2e’™  VueR"T Vee (0,1].
Proposition 3.2. Suppose that 1 < p < 2. Then there exists C' such that

I(Z — Po)KP™(L+ €eT)], <C(1+u)/?e*  VYueR" VeeR'.

Proof. Define t, = —log+/p — 1. We claim that there exists C' such that
I(Z —Po)e™H.[l, < C min(1, e~ (Rez=to)) Vz € Ey.

Indeed, on the one hand Proposition 1.1 (iii) and the boundedness of Z—Py in LP(vy) imply
that
I(Z =Po)e™*H.ll, < Clle”*H.[l, <C  VzeE.

On the other hand, if Rez > t,, then
(T~ Po)e "M 1|, < I[H.(Z — Po)fll
= Hre=(Z = Po) fll,

[e.0]

— (Z e—Z(Rez—tp—}-tp)n ||,Pnf||g) 1/2

n=1

<e W=t ||3, (T —Po)f,
< e (Re==0)|(T - Po) ],
<Ce ezt f|l - VfeLP(y)n L (y).

13



The first inequality follows from Holder’s inequality and the fact that y(R?) = 1, the
second is a consequence of spectral theory, the third follows from the hypercontractivity
of H; (Proposition 1.1 (ii)) and the fourth from the boundedness of Z — Py on LP(v).
A density argument then shows that [[(Z — Po)e”*H. ||, < C e~(Rez=t) a5 required to
finish the proof of the claim.

Recall that for every s € R, |T'(s + iu)| ~ |[u[*~1/2 e~ 7*l/2 a5 |u| tends to co. Observe
that

2| <e % Vze B VueRT,

because argz > ¢, for every z in ;. Thus,

|dz]
2|

1
z

iu in(1 —(Rez—tp)
i) /ﬂp 2**| min(1, e )

< C(14u)2ets,

Ik [ e a-mm ] <o

as required. O

Now we prove our main result, Theorem 1, which we restate for the reader’s convenience.

Theorem 1. Suppose that 1 < p < oo, p # 2, and set ¢;, = arcsin |2/p — 1|. Let M : N —
C be a bounded sequence and suppose that there exists a bounded holomorphic function
M such that

M(k)=M(k) k=1,2,3,...

The following hold:
() ifMeH *(S¢x;4), then M(L) extends to a bounded operator on LP(v) and hence
on Li(v) for all q such that |1/q—1/2| < [1/p—1/2|;
(ii) if M € H*(Sy:) and [1/q —1/2| < [1/p —1/2|, then M(L) extends to a bounded
operator on Li(~y);

(iii) ify < ¢}, there exists a function M which decays exponentially at infinity and belongs
to H>(S,; J) for every nonnegative integer J, such that M (L) does not extend to a

bounded operator on LP (7).

Proof. We first prove (i). By duality we may assume that 1 < p < 2.
Suppose that Rew > 0. Recall the following classical formula

—w __ 1 Oow—t)\dt
A _I‘(w)/o tYe ; VA > 0.

14



By Cauchy’s integral theorem applied to the analytic function z — z%¥ =1 e=**

1 d
ATV = —/ 2 e 2
I'(w) ap+Bp z
= JPY(A) + KPY(A).
If Rew < 0 we interpret this formula by analytic continuation. Then, by spectral theory
([, + 6I)—z'u
=Po(L+€L)™™ + (T —Po)(L + €)™
= Po(L + €Z)™% + (T — Po)JP*(L + €T) + (T — Po)KP(L +€I)  VueRY.
If f € L?(y) and hence in LP(vy), then by spectral theory and the fact that ||Pg I, <1

[P0 (€ + ey £, = [ Pos]|, = IPofll, < Ifl, VueR

I

A density argument then shows that
|Po(L + €T) ™ I, <1 Yu € RT Ve € (0,1].

Since Z — Py is bounded on LP(v), by Proposition 3.1 we have that

I(Z = Po) P (L + €T)], < C(A+u)*?e"  YueR" Vee (0,1].
Finally, Proposition 3.2 implies

I(Z — Po)KP™(L + €eT)], < C(1+u)' e YueR" Vee (0,1].
Therefore, we may conclude that

(£ +eZ)~ ™|, < C(A+u)®?eh™  VueR" Vee (0,1].

Then (i) follows from Corollary 2.3 and Remark 2.4.

We now prove (ii). Since McH *°(S¢z), then by Cauchy’s integral theorem it is in
H*(Sy,; J) for any nonnegative integer J and for any ¢ such that |1/¢—1/2| < |1/p—1/2|.
Then by (i) (with ¢ instead of p) M (L) extends to a bounded operator on L?(7), as required.

Finally, we prove (iii). Suppose that ¢ < v < ¢y, and that § > 0. We define M, 5 by

M, 5(z) = exp [—(Sei(”m_”)z] .

Clearly, M, 5 is in H*°(S,), hence in H*(S,; J) for every nonnegative integer J by the
Cauchy integral theorem. The corresponding spectral operator is the operator Hsgi(x/2—v).
If § is sufficiently small, the point de*(™/2=¥) is not in E,, so that Hs,i(x/2-+) is unbounded
on LP(vy), by Proposition 1.1 (iii).

The proof of the theorem is complete. ad
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4. Estimates for some kernels

Suppose that € > 0, 1 < p < 2 and w is a complex number. Let 7% : R xR? — C be

defined by

1

s dz
Tg’w(%y)m/ zY e hy(z,y)

_ x # Y,

z

and 7P (z,z) = 0. It is not hard to prove that this integral is absolutely convergent. We
omit, this verification, as it is implicit in Proposition 4.1 below. Note that the change of

variables z = 7({) and formula (7) for the Mehler kernel show that

(lz|*+]y|*)/2 (1 d _
e _ =+ C) _ 2 1, .2
P,w — w—1 Clz+yl"+¢ |z—yl")/4 1
©) ) = S [ 0" e v(¢) d¢.

The function 7P agrees with the kernel of the operator JP" (L + €Z) outside the
diagonal (see Proposition 5.2 below). In this section we prove pointwise estimates for
P which will be crucial for the study of the operator J?* (L + €Z) we shall perform in
Section 5. In Proposition 4.1 we show that P satisfies standard estimates in a convenient

neighbourhood of the diagonal of R? x R?. Define the local region by
L={(z,y) e R"xR*: |z —y| <min(1, |z +y[™")}.
Pointwise estimates outside L are proved in Proposition 4.3.

Proposition 4.1. Suppose that 1 < p < 2 and that N € RT. Then there exists C such
that for every € € (0, 1], and every complex number w with —N < Rew < d/2 —1/N, the
following hold:
(i) if (z,y) € RExR? then
6_¢p Imw

()| < € el gy PR

(w)] ’
(ii) if (x,y) is in the local region L, and x # y, then

—¢p Imw
e e(|$|2+|y|2)/2 |$ - y|2 Rew—d—1 ‘

VP (z,y)| + |V, rPY(z,y)| < C ———

Proof. We assume that x # y, because otherwise the conclusion is obvious. We shall need
the integral I(z,y;w, k), k € R, defined by

/ (¢)wt (1+¢) e~ Qlzty?+¢ T Ha—yl?) /4 7 (¢) d¢.

_1oap Ck eeT(C)
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We parametrise 7=! o i, by ( = e*¥» t, where ¢ is in [0,1/2]. Since

‘T(C)w—l é}c —ei;qi)g T/(C)‘ < Ce—¢p Imw tRew—k—l

by elementary complex analysis, we obtain that

1/2
o ) < Cotrime [ rewt e costuiz—i 11 &
0

gk—Rew—¢p Imw

2 Rew—2k o k—Rew —v dv
=C -crom |z — y| v eV —
(cos ¢p) cos ¢, |z—y[? /2 v

e~ PpImw g y|2Rew_2k if Rew < k
SC Qe ®mw (1 4 loglz —y||) if Rew=k
e~ ¢pImw if Rew > k.

Since Rew < d/2 by hypothesis, we deduce from (9) that

e(le>+lyl)/2

b <C 1 sw,d/?2
(Iz|*+lyl*)/2
€ - m w w—
<Ry

as required to prove (i).
To prove (ii), it suffices to estimate V72", because 2" is symmetric. By differenti-

ating (9) under the integral sign, it is easy to check that

NERRIE

Va:rg,w (:177 y) =z T?’w(.’IJ, y) + 2d I‘(w)

VI (z,y;w,d/2),
and that
1 1
VmI(a:,y,w,d/2):—§(x+y)f(a:,y,w,d/2—1)—E(at—y)f(a:,y,w,d/2+1)
We remark that if (z,y) € L, and = # y, then
1 1 -1
= |z — < |z = <z —
2] = 5 |= y+x+y\_2(\$ y\+lx+yl)_\$ o

so that max(|z|, |z +y|) < |z —y|~". Thus, from the estimates for I proved above we

deduce that
1 1

< Ce Prlmw g _ g2 Row—d1 V(z,y) € L.

17



Consequently,

olal*+ly[?)/2

k) _1 k) -
|V$T€w($7y)| < |.’13 _y‘ |7,€w(x’y)| + 9d |F(w)| |

Vi l(z,y;w,d/2)|

e P alHyl)/2 2Rew—d-1
SCWe |z =y V(z,y) € L,

as required. 0

We now estimate r?® u € R, outside the local region. A similar analysis may be

carried out for 72" for all complex w. We need a little more notation.

Suppose that a is in Rt and that b > 0. Let F, ; : Rt — C be defined by
Fop(s)=—a(s+s ' —2) +iab(s™' —s).

Various estimates for 72" will involve integrals of exp(Fj ) for different values of the
parameters a, b and w. We study such integrals in the following technical lemma, which

will be used in Proposition 4.3.

Lemma 4.2. Suppose that §, k and N are in R*. Then there exists C (depending on §,
k and N) such that the following hold
(i) for every a € RT, every b > 0, every complex number v with |[Rev| < N, and every
o >0 >1/2 such that aoc > k

1/2
/ SV eFa,b(s/U) @
0

<C (ao_)—l 6—2(1—1/25)%0;
S

(ii) for every a € [k, 00), every b € [0, N|, every complex number v with |Rev| < N and

every 0 < 0

{C(l + Mmv|)o®¥ a2  ifb=0

1/2
/ v oFan(s/o) 45| . cod
0 s C(1+ Imv|) o™ (ab) ifb> 0.

Proof. For notational convenience we write F' instead of F,; and ¢’ instead of 1/(26)

during this proof.
We first prove (i). It is easy to check that if v is in (0, 6'], then Re F(v) < —(1—¢")%a/v.

18



Since s/o is in (0,6'],

/1/2 v F(s/a) ds /1/2 Rev ReF(s/o) ds
0 0

S

12 Reu —(1 8§)2ao/s @

0 S
((1 ) )Reu /oo ,U—Reue—u d_U
2(1-6")2a0 v

-~ (aa)_l 6—2(1—5’)%0’

as required to prove (i).

We now prove (ii). Clearly,
1/2 /20
/ g oFls/o) 38| o / g (/) 98
0 s 0 8

Arguing much as in the proof of (i), we see that

/20 /26
/ sv eF(s/a) @ < / gRev eReF(s/a) %
0 0

1/2
n / o Fs/o) 45|
o/26 s

S S
o/26 g ds
Rev ,—(1-¢6")°ac/s 2°
(10) < /0 S e p
— ((1 _ 5/)2a0_)Reu/ U—Reue—v d_’U
26(1—6")2a v

< O oRev g1 6—26(1—5’)%.

By changing variables, we get

1/2
/ v oF(s/0) 48
o/26 S

We claim that there exists C such that

1/20
/ o F(v) dv
’ v

Assuming the claim, (ii) follows immediately from (10) and (11).

— O_Reu

1/20
/ o oF) |
I v

C(+v))a~? ifb=0

(11) = {0(1 + ) (ab)-1 i b > 0.

We now prove the claim, considering the two cases 1/(4 —1/§) < 0 < § and o <
1/(4 — 1/9) separately.
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Suppose first that 1/(4 — 1/6) < o0 < §. By the mean value theorem, we may write
v~ =1+ R(v;v), where

|IR(v;v)| < C(1+ |v|) Jv—1| Vo € [6',2 — 4]

Correspondingly, we write

1/20 1/20 1/20
/ v’ eF'®) dv = / eF'®) dy +/ R(v;v) e du.

’ v '

(v-1? _ (-1

i T8 o sl _
If v is in [§', 2 — §'], then Re F(v) a— < -a g

. Therefore,

1/20
/ R(v,v) ef'® du

’

2—¢'
<ca+ |V|)/ v — 1] e—olw=17/2=8) g,
5/

/6\/0,/(2—5’) ,

ve ¥ dv

=20 (1+v)(2—0)a"

<C(+|Imv|)(1+a)™ .

We now estimate f(sl,/% eF () dy. If b = 0, then

1/20 24’
/ FO) dy < / e—a(v=1)*/(2=8") 4,

92— §'\1/2 dy/a/(2—4") e
2( , ) /0 e ° ds

<C(l+a)~ V2

If b > 0, an integration by parts shows that

1/20 1/20
/ eF('U) dv = / eRe F(v) ei Im F'(v) dw

p 1/20
/2—|—i/ (ReF’(v) Im F"'(v) )eF(”)dv.

o' Im F/(v) (ImF’(v))2

eFTU)

T Im F'(v)

1

Since Im F’(v) = —ab(1 4+ v™2), Im F” (v) = 2abv~3 and Re F'(v) = a(v=2 — 1),

1/20
/ eF'®) qy

!

24§’

SC(ab)_l(l—i-a/ lv—1| eReF(“)dv).

!
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We have already shown that the last integral is bounded by C (1 + a)~!. Thus, we may

1/20
/ eF'®) qy

!

conclude that

< C(ab)™,

as required to finish the proof of the claim in the case where 1/(4 —1/§) < o < 6.
We now consider the case where o < 1/(4 —1/4). Clearly,

From (11) (with o0 =1/(4 — 1/§)) we see that

/Lélv"eF(v)d_” SO+ Mmy))a? ifb=0
~ 1 C(1+ [Imvy|)(ab)~! ifb> 0.

; v

Since v — Re F'(v) is decreasing in [1,00), we have that Re F'(v) < —(1 — §")2av/(2 — §')?

on [2 —¢',00), and so

1/20
=Y S/ ,UReueReF(v) d_U
2

2§ v Y v

/Oo JRev o~ (1-8)%av/(2-5") 4V

24’ v
((1_6’)2a>—Reu/°° Rev —s ds
=|——=5 s e —
(2—-10)? (1—6")2a/(2—5") s

~a ! e—(1—5')2a/(2—5’)’
as required to finish the proof of the claim and of the lemma. O

We now estimate 7P** outside the local region L. We call the complementary set of

L the global region and denote it by G. Explicitly,
G={(z,y) ER*xR%: |z — y| > min(1, |z +y[~")}.
For 0 < n < 1, let D" be defined by
D" = {(z,y) € R*xR? : |z — y| < n|z +yl}.

Proposition 4.3. Suppose that 1 < p < 2 and that 0 < n < 1. Then there exists C such
that for every € € (0,1] and every u € R* the following hold:
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(i) for every (z,y) € GN D"
|2t (2, y)|

— oy d/2—1 _13/2
cC@pup ety (1 %) ool +1y[2=(c0s ¢ o] lo-+y1)/2.
N T () | \m—y|d/2+1 \x+y|1/2 ’

(ii) for 1/2 <n <1 and for every (z,y) € G N (R xR% \ D7)

e~ o—mlz—yl?
IT(iu)| |z — y|?

|r’€”i“(:r:, y)‘ < C(1+4u) e(1z1* +y|* = (cos ¢p)|z—y| lz+u1)/2

where p = (1 — 1/2n)*(cos ¢p) /2.
Proof. We consider (9). By elementary complex analysis

u—1 (1 + C)d

O Giger T (©) =2 T 4 R(G w0,

where the remainder R satisfies the estimate

IR(Ciiu,€)| < C(1+u)e %" |¢7Y*  v¢er (o),

p

for some C independent of u. Then, we may write

e(lzl*+lyl*)/2 ellzl®+lyl*)/2

12 p,iu = A(z,y;i -
( ) IrE (:C7 y) 2d—zu I\(lu) (‘7’.7 y’ z,u’) + 2d F(Zu)

B(z,y;1u),

where
Az, y;iu) = / ¢iu=d/2-1 o= oty +¢ Moy *)/4 g ¢

7 loay
and
B({L‘7 Y; zu) = / R(C’ 7:’LL, 6) e_(C|$+y|2+C_1|$_y|2)/4 dC

T loay
We parametrise 771 o a, by ( = e'?rt, where 0 <t < 1/2. It is easy to check that
1 .
— Cla+ y? + ¢tz —y)?) = —a(t/o + o /t) +iab(o/t — t/o)
= Fop(t/o) — 2a,
where a = (cos¢p) [z +y| |z —y|/4, b = tan¢,, 0 = |z —y|/ |z +y| and F,p is as in

Lemma 4.2. A simple computation shows that

1/2
(13) A($7 Y; ZU) — ei¢p(iu—d/2) e—2a/ tiu—d/2 eFaﬁb(t/O') %7
0
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and similarly that

B(a,y;iu)| < / R (G e)| e~ RelCletulHeHemu/t g
7~ loay,
(14) 12 U
< C(1+u)e P 6_2“/ t17/2 gFao(t/o) —
- t
0

We now prove (i). We claim that if (z,y) € G N D", then |z —y| |z +y| > 1. Indeed, if
min(1, [z + y|_1) = |z +y|™", then |z — y| |z +y| > 1. If, instead, min(1, [z + y|_1) =1,
then |z +y| <1, and |z — y| > 1 because (z,y) € G. Thus,

le+yl <1<|z—yl<nlz+yl,

which contradicts 7 < 1, and the claim is proved. Consequently, a > %. We may apply
Lemma 4.2 (ii) (with x = C°S4¢”, v =1iu—d/2 and § = n) to estimate the absolute value of
the integral in (13) and (with the same values of k£ and §, but with v =1 —d/2 and b = 0)

to estimate the last integral in (14). We obtain that

d/2—1

|A(CE, Y, ’I,U)| S C (1 + u) e_¢llu % 6_(COS op)|z+y| |m—y|/2.
r—Yy
and that
d/2—3/2
B(x,y;iu)| < C (14 u)2 e~ %" % o~ (cos gyl lo—y1/2.
r—Yy

By combining these estimates for A(xz,y;iu) and B(z,y;iu) with (12), we obtain the re-

quired estimates for 2% in the region G N D".

We now prove (ii). We claim that if (z,y) € G N (D7)¢, then |z — y|> > 7. Indeed,
|2 —y| > min(1, |z +y|"") > min(1,p]e —y| ")

Then either 5]z —y|™" > 1, so that |z —y| > 1, or plz —y|™" < 1, so that |z —y| >
nlx — y|_1, ie, |z — y\2 > 1, as required to prove the claim. Now, o > n and therefore
ac = (cos¢p) |z — y[> /4 > n(cos ¢p)/4. Thus, we may apply Lemma 4.2 (i) (with k =
n(cos ¢p)/4, v =1u —d/2 and § = n) to estimate the absolute value of the integral in (13)
and (with the same values of k£ and 4, but with v = 1 — d/2) to estimate the last integral
in (14). We obtain that

Az, y; iu)| < C e 9% | — y|~2 = (cosdp)latyllo—yl/2=(1=1/2n)° cos gpla—y[*/2
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and that

|B(z,y;iu)| < C(1+u)e=®" |z —y| =2 e=(c0sdn)latullz—yl/2=(1=1/20)" cos gplo—y[*/2,

By combining these estimates with (12), we obtain the required estimates for r?** in the
region G N (D")°.
The proof of the proposition is complete. O

The next proposition gives a condition which implies that an integral operator with
kernel supported in the global region G is bounded on LP(7y). A related result, due to
S. Pérez, is in [P, p. 71].

Proposition 4.4. Suppose that 1 <p < oo, [1/r—1/2|<|1/p—1/2[,0<n <1, x>0
and m : R xR? — C is measurable. The following hold:

(i) if for every (z,y) € D"

3/2
( [z —y| )e(|m|2+|y|2>/z—|1/p—1/z||m—y||m+y|7

then the integral operator My defined by

Mid(z) = /G  mey) i) Ve O (®Y

extends to a bounded operator on L"(7y);

(ii) if for every (z,y) € (D")°

im(z,y)| < C S Ul +lu)/2=11/p=1/2lz—yl lo+yl

then the integral operator Mo defined by

Mad(z) = / m(z,y) $(y) dy(y) Vo € C(RY)

GN(Dn)e

extends to a bounded operator on L" (7).

Proof. We fix r such that |[1/r — 1/2| < |1/p —1/2|. Let U, : L"(R?) — L"(7y) denote the
invertible isometry defined by

Uf=v""f VfeL (R
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We prove (i). We need to show that the operator U1 M;U,, whose kernel with

respect to Lebesgue measure is ( e 70/ )mxg, extends to a bounded operator on

L"(R%). We define ¢, : R xR? — R by

z+yl |z —yl.

@) = = 5| 1o =] - |
r,y)=|———=|||z|” — — ===
qr\Z, Y 9 ) D

Note that

o ()7 o ()7 (a1 /2= 11 /p =172l la—yl la+3] < gar(m0),

Since ¢, < gp, our hypotheses imply that

jz — y*?
<1 + 71/2> eqp(m’y) V(JI, y) e D".

vo!" (@) [z, y)| " (y) < C
T+ 9|

If E C RIxR?, we denote by E, its x section, i.e., the set {y € R? : (z,y) € E}. We claim
that

ey ey
(15) sup / — <1 + 71/2) e®(@Y) dy < oo.
zeRd JG,ND"

If the claim holds, then by symmetry (15) holds with the role of z and y interchanged, so
that

1/r 1/r' 1/r 1/r’
swp [ (@) i) )y s [ @) () 95 () do < .
z€R4 JG,ND", yeRE JG,ND"
Hence U7 M1 U, extends to a bounded operator on L}(R?) and on L>°(R?). By interpo-
lation, U M1 U, extends to a bounded operator on L"(R?), as required.

To complete the proof of (i), it remains to prove (15). We denote by B(z,r) the

Euclidean ball centered at z and with radius r. It is straightforward to check that for

1 2
every x in R?\ {0} the set D", is the ball B(l i 772 z, 7 il 5 |x\> Thus, if (z,y) € D"
/’7 pa—

(16) H< | -

2
Moreover, x + y is in the ball centered at 7 z and of radius .2 |z|, so that

_772

(17)

2
2] < o+ yl < —— Jal.

1+7n
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Note that G, N D", is nonempty if and only if |z| > ¢ for some positive c¢. It is easy
to check that there exists a constant ¢ > 0 such that for every = in R* we have that
G, C{yeR:ly—z|>a/(1+|z))}

We treat the cases where d =1 and d > 1 separately.

If d = 1, then g, = 0. In view of the remarks above

[ e e E N T R
«ND7,

<C [z / 2=y dy+C [2] ! / dy
G,ND"n, G,ND"n,

12 |z 112z
<C |:1:|_1/2/ - r=32dr + C |x|_1/ - dr
a/(1+|z|) a/(1+|z|)

<,

as required.

Suppose now that d > 1. We need to estimate ¢, on G; N D",. By combining (16)
and (17), we obtain that

Iy = 10| + 2=yl [0 +y] < |o — | (2l + [y] + |2 + v))

<= lo—yllal
x —yl||z|.
Sy lemv
If £ # 0, let 7, : R — R? denote the orthogonal projection onto the hyperplane of R?
2
orthogonal to z. Since ‘|y|2 - \x\z‘ — |z -y |z +y|> = —4|z|® |7, ()|, we see that
2 2
2 2 x| |me(y
WP =[]~ la =yl o 4 9] = 4 2 el

2 2
Iyl = 1o’ + s =yl |o +y]

Therefore,

d/2-1 (n—1) || |72 (y)1?/lz—y|
/ o y|d/2-|-1 @@V dy < O |$\d/2_1/ : /241 dy.
G.nD, |z — Y| G.ND", |z — Yyl

We pass to polar coordinates around z, i.e., we write y = z + rw, where r is in Rt and

|w| = 1; the right hand side in the last inequality is bounded by

2| 2
C |m|d/2_1/ da(w)/1 T /2l exp((n— 1) 2] [ma(z + 1) ) g
Sd-t a/(1+|z|) r T
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We observe that | (z + rw)|> = r2 |m, (w)|?, change variables by letting |z| |, (w)[> r = v

in the inner integral, and obtain for d > 2

d/2—1
/ % e (@:Y) dy
G,ND"7, —

|z —y|
14142 ey (w) 2 d
1
<C / do(w) [ms @)~ [ o¥/271 gm0 =2
Sd—1 alz||me (w)]?/ (1+]2]) v
—d d—2
<c | 70 (@) 27 (Jo] I (@)])* do(w)
{Ims ()1<1/ 2]}
e / 7a (@) 2% dor(w)
{Ims (@)|>1/]2]}
<C,
since here |z| > c. For d = 2 we get
d/2—1 12z |y (w)|?
/ |z + y|d_/2+1 e (@Y) dy < C do(w) /1 ’ (=1 40
G.ND", |z — Y| §d-1 alz||me (w)2/(1+]=) v

< C/ da(w)/ e dv
§d-1 clma (w)]? v

/Sdl 10g(1 + riw”) do(w)

Analogously, we may prove that

|.'E + y‘d/2—3/2

zerd JG,NDn, |x—y|d/2 1/2

as required to finish the proof of (15) and of (i).

We now prove (ii). By arguing as in the proof of (i), we may reduce the problem to

showing that

(18) sup / 1 . etr@v)=nle—yl® 4y < o0,
z€Rd JG,N(RI\D",) |T — Y|

We observe that |z —y| > ¢ for y in G, N (R¢ \ D",). Since g, < 0, (18) is easily proved.

The proof of the proposition is now complete. O
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5. Analysis of J?" (L + €Z)

In Lemma 5.1 below we prove estimates for [|J?" (L + €Z)|, when Rew > 0. We denote
by jP* the kernel of JP" (L + €Z). In Proposition 5.2, we shall prove that the distribution
JP" agrees outside the diagonal with the function 2" from Section 4. It follows that j?v
is locally integrable for Rew > 0, and if Rew = 0 its singular support is contained in the

diagonal of R? x RY. The main result concerning JP (L + €Z) is Proposition 3.1.

Lemma 5.1. Suppose that 1 < p < 2 and that N € Rt. Then there exists C such that
for every € € RT and for every w with 0 < Rew < N

e—¢p Imw

pw |, < C .

Moreover, let u be in R\ {0}. Then JPY(L + €I) converges to JP**(L + €I) in the strong
operator topology of L*(v) as w tends to iu in S, /.

Proof. Note that argz > ¢, and |z| < C for every z in aj. Thus, |2*| < 2[R g=¢p Imw

and we deduce from (8) that

6—¢p Imw
D,W < —RezpA Rew _—ARez .
|JP (V)| _07|F(1+w)| (e —I—)\/ |z| e |dz|)

ap

We claim that
)\/ 2R e A Rez | 4z < €

p

A
(1+)\)1+Rew'
Indeed,

1
)\/ |2|ReW g=ARez | 4y gcx/ Rew o=t qp.
a 0

p

and considering separately the cases A < 1 and A > 1, one easily verifies the claim.

Thus, there exists C such that for every w with 0 < Rew < N

—¢p Imw
‘JP,UI()\)‘ <C € ‘ (e—Rezp/\+

YA > 0.
- 14 w)

)
(1+)\)1+Rew

The required estimate for | J?" (L + €Z)]|, follows from this by spectral theory.

A routine computation shows that JP%(\) — JP**()) tends to 0 and is uniformly
bounded as w tends to iu within S, /5. Therefore, by spectral theory

|77 (e + ey f = L+ DSy = 3T 0t €)= Tt ) [Pl =0,
n=1
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as required to finish the proof of the lemma. a

Proposition 5.2. Suppose that 1 < p < 2 and that ¢ € R™. The following hold
(i) if Rew > 0, then the distribution jP" is the locally integrable function r?";
(i) ifu € R\ {0} and ¢ € C(RExRY), then

((1®70) 52, ¢) = TP (¢) ¢ T, dw+// ¢(z,y) —¢(z, x))rP ™ (z,y) dz dy(y).
RIxRd

In particular, jP*“ agrees with r?** outside the diagonal.

Proof. We first prove (i). For every pair of functions ¢ and v in L2(v)

o0

(JP(L+ eD)p, ) = Y JP (n+€) (Pnd, 1))

n=0

=1 dz
— w ,—(nte)z
o [, T P

where (-, -) denotes the inner product in L2(v). Since > oo [(Pno, ¥)| < |I¢ll, [|1¢¥]l, and

1 d _
—/ 2 etz T2 o Cw) [ |27 " |dz| < oo,
®p

I'(w) z

Qp

we may interchange the order of summation and integration to get

(TP (L + D), ¢) = r%) / % Y e (Pag )
1 dz w ,—€z
- s / e / /R o 109) 60) V(@) dr () ().

Suppose now that ¢ and 1 are in C°(R?). From formula (7) for the Mehler kernel, we
deduce that

sup @ My = sup 0@l
<Ce? gup I¢| =2 e cosbula—yl*/aKl o—Iy*/2 gy
Cel0,e'?r /2] /R
< Cel=l’/2,
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Thus, by Holder’s inequality,

/LWJJZ e”“ha(x,y)b(y)y ()| dy (= ¢Mﬁ%

d
<16l [, 41(0) sp el e |/ =
d
< C||¢||oo /Rd d’)/(aj) e|33| /2 |¢($)|/ |Zw| %
< o0.

Therefore, we may interchange the order of integration and obtain that

(e Ds ) = [[ s o) i) drie) drw)

and finally
L+ D) = [ o) o) drta).

as required.

We now prove (ii). We first observe that jP* tends to 52 in D'(R?¢) as w tends to
iu within S, /5. Indeed, let ¢ and 9 be in CZ° (R%); then by Lemma 5.1

(1©7)8", % @ d)gea = (JE (L + €1)$, Y)ga
= (J(L+ €D)p, 1)
= (1 ®70)52™,% ® ¢)pau -

To identify jP*“, we continue jP* analytically to the half-plane Rew > —1. If Rew >
0 and ¢ is in C°(RE xR?), we may write ((1 ® 70)5P%, ¢)gza as

a9) [[ o) @)~ s o) s i)+ [[ 20w dle0) dedr(o)
Since
(,y) — ¢(z,2)| < C |z —yl,

it follows from the pointwise estimates for r2** proved in Proposition 4.1 that the first

integral is absolutely convergent for Rew > —1/2 and defines an analytic function there.

To continue analytically the second integral, observe that by Proposition 4.1 (i) for

Rew >0 4
// / e ““hy( a:yq§(a:a:|da:dfy )‘ i
RIxRe J ‘ ‘

< Ce—d)p Imw // e|a:| /2 |¢(CI;, x2)r|{ e_|y|2/2 dz dy
—2Rew
RaxRd |z — y
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In this double integral, we integrate first in y, and obtain a continuous function of z,
which is clearly in L'(R?). Therefore, we may interchange the order of integration in
the second integral in (19) by Fubini’s theorem, integrate first in y, use the fact that
Jga hz(z,y) dy(y) = 1, and obtain that

[ e s =1w@ [ oo
RdxRd

Rd
The right hand side here has an analytic continuation to Rew > —1.
This concludes the proof of (ii) and of the proposition. O
We now prove Proposition 3.1, which we restate for the reader’s convenience.

Proposition 3.1. Suppose that 1 < p < 2. Then there exists C' such that

[JP# (L + eT)], < C(A+u)?eh"  Vee(0,1] VueRT.

Proof. In this proof, C' will denote a positive constant independent of € in (0,1]. Let ¢

be a smooth function on R? x R? which vanishes outside L, is equal to 1 in

1
z,y) e R*xR? : |2 —y| < },
{@y) Y S ST T+ D

and satisfies the estimate
(20) Vap(z,y)| + [Vyo(z,y)| < C lz —y| 7"

By Proposition 4.3 and Proposition 4.4 we see that the integral operator with kernel
(1 — )jP* (with respect to the Gauss measure) is bounded on L"(vy) for |1/r — 1/2| <
|1/p — 1/2|, and its operator norm is bounded by

_¢pu

C (1 + u)? E(wﬂ

Ve € (0,1] Vu € R".

Moreover, JP»*(L + €Z) is bounded on L?(7y) by spectral theory (Lemma 5.1 (ii)), and

e~ Pru

priu |, < C ———
[77*(L + )], < C T+ iu)

Vee (0,1] Vu e RT.

Therefore, the integral operator with kernel ¢jP** (with respect to the Gauss measure) is

bounded on L?(7), and its operator norm is bounded by

VYe€ (0,1] Vu € R".

(1+u)? 1 )

e o
Ce (Srar * T
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The kernel of the same integral operator with respect to Lebesgue measure is (1®70) Pt
We show that this kernel satisfies standard estimates. From Proposition 4.1 (i) we deduce
that for every (z,y) in L such that z # y,

e~ Pru

22 _d
Yo(y) o(z,y) [iP (@, y)| < C = e~ W/2 |1 g7
| <€ irgw)

Since elzl’~lvl* ig uniformly bounded above for (z,y) in L, we may conclude that

$pu
(z,y)| < C \r( ] z—y| ™%

pzu

Y0(y) (2, y) |5t

The gradient of (1 ®’yo) ©jP" with respect to y is the sum of three terms: (1®Vy’yo) P

(1®79) VypiP™ and (1®9) ¢V,jP*. By Proposition 4.1 (ii) the absolute value of the

last term is bounded by
6_¢Pu

T

-y V@) el z#y
Since

lyl <le—yl™"  Vl(z,y) €L,
we deduce from Proposition 4.1 (i) that

IVyro®)] [0i2"(z, y)| = 2|y ()| |0 (z,y))|
< 2|z =y [yo(y) i (2, y)|

By (20), the second term satisfies similar estimates.

A trivial modification of the above argument shows that

e~ Pru —d—
TGy ° Y

Vo [(1®70) 9i?™]| (z,y) < C

We deduce from [GMST, Thm. 3.7] that the integral operator with kernel ¢jP** with
respect to the Gauss measure is bounded on LP(y) and its LP(~y) operator norm is bounded
by a constant times the sum of its L?(vy) operator norm and the constants appearing in

the standard estimates, i.e., by

—¢pu (1+ u)2 1 1 .
ce ( T (du)| * |F(1+iu)|) Ve € (0,1] VueR".
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By Proposition 4.3 and Proposition 4.4 the integral operator with kernel (1 — );?-** (with

respect to the Gauss measure) is bounded on LP(vy), and its operator norm is bounded by

_¢pu
C(1+u)’ —— Ve € (0,1] Yu € RT.
T (¢u)|
Thus, we may conclude that
- _ 14 u)? 1
JP(L 4+ €T)||, < Ce Pt ( Ve e (0,1] Vu e R*.
L+ el < Ot (St + rag) Yee @1 v

From this and the asymptotics for the I'-function, we deduce that
[J7 (L + eT)||, < C (1 4 u)>/?e™/2792)%  Vee (0,1] VueRF,

as required. O
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