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Abstract

Necessary conditions for optimal control problems can be derived from the necessary
conditions for a general extremal problem. One approach is to consider a mathematical
programming problem in an infinite-dimensional space. The purpose of this paper is
to show that a comparatively simple version with a finite number of equality and
inequality constraints can be used to derive necessary conditions for some nonsmooth
optimal control problems.

1 Introduction

Necessary conditions for optimal control problems can be derived by applying the necessary
conditions for a generally formulated extremal problem. There are several general theories
for extremal problems, but here we consider the approach of Neustadt and Halkin (see [5]
and [3]), where a mathematical programming problem in an infinite-dimensional space is
considered. A simple version is the following;:

Problem (P). Let X be a real linear space, and let there be given realvalued functions
©—gqy--->%0,---,¢p (p and ¢ are non-negative integers) defined on X and a subset A of X.
Minimize @g(z) subject to the constraints

wi(z) =0, i=1,...,p, (1.1a)
vi(r) <0, i=—q,...,—1, (1.1b)
z € A. (1.1¢)

Assume that z is a solution of Problem (P), that is, z( satisfies (1.1) and ¢(zo) < po(x)
for all z such that (1.1) are satisfied. Under suitable conditions it is possible to derive a
necessary condition for optimality in the form of a generalized multiplier rule. What we
need is some differentiability properties of ¢; at ¢ and some way of approximating A near
9. When the multiplier rule is applied to an optimal control problem this approximation
of A comes from a certain perturbation result in the theory of differential equations. This
has been applied to fairly general optimal control problems—also with state constraints
(see ([8])—but with data that are smooth with respect to the state variables. The dif-
ferentiability requirements referred to above are weak enough, however, to admit certain
nonsmoothness. In this paper we will treat problems with nonsmooth inequality con-
straints and a nonsmooth cost functional. Such problems, and more general ones, have
certainly been treated by several authors. In [1] and [10] very general results are obtained
using nonsmooth analysis and the theory of generalized gradients and subgradients. See
also [9] and [11] for some recent developments. It could however be desirable to have
a more direct proof of the necessary conditions that do not require the whole theory of
nonsmooth analysis. The purpose of this paper is to give such a proof for a certain class
of problems.



1.1 A general extremal problem

Consider Problem (P) above and assume that the functions ¢; and the set A have the
properties described in Assumption 1 below. Let us remark that that if X is normed, then
the function h; in (ii) might be the Hadamard derivative, i.e.,

lim vilzo + ez) — pi(zg) — hi(y),

e—0t £
2=y

and similarly in (iii). In this case pg . should be a point in A such that pg . = zo+eys+o(e).
The set M may be considered as a set of directions in which it is possible to approximate
A near zy. However, we only need the properties of the composite function ¢;(pg.). It
may also be easier to verify (i), (ii) and (iii) than treating ¢;(z) and pg. separately.

Assumption 1. There exist a set M C X and functions h;: X - R, —¢g <1 < p, with
the following properties: For every finite collection ¥, ...,yx of points in M there is an
€0 > 0 such that for each ¢ € (0,¢¢] and each § € Sy, where

N
Sy={B=(B1,-..,An) ERY : B; >0 for j=1,...,N, Y B =1}, (1.2)
i=1
there exists a point pg,. € A such that with yg = Zjvzl Bijy; € coM,
(i) ¢i(pg,) is continuous with respect to B € Sy for 1 <i < p;

(ii) for 1 <4 <p, h; is linear, and

lim
e—=0t £

(iii) for —qg <17 <0, h; is convex, and

lim sup ¥ (ppe) — pi(wo)

e—0t €

< hi(yg);

and the convergence in (ii) and (iii) is uniform with respect to 8 € Sy.

Theorem 1. Let zq be a solution of Problem (P) and let Assumption 1 be satisfied. Then

there exist real numbers A_y, ..., Ap, not all zero, such that
P
> " Aihi(y) <0 for all y € co M, (1.3)
i=—q
MN<0, —q<i<O, (1.4)
Aipi(mo) =0, —g<1< -1 (1.5)

Proof of this theorem can be found in [5], [3], or [6].

1.2 Differential equations

We are going to study control problems whose dynamics are given by the differential
equation z = f(t,z,u(t)) on a fixed time interval I = [Ty, T1]. For the admissible controls
u(-) there is a constraint of the form u(t) € (t) for all ¢t € I. The cost functional and
the constraints involve certain functions f;(¢,z,u), i = —¢q,...,0 (see Section 2). For



f(t,z,u), fi(t,z,u), and Q(t) we make the Assumption 2 below. We say that a function
(t,z) — F(t,z) with values in R" for some r, defined for t € I and € D (D is an open
set in R™) is of Carathéodory-type if it is measurable in ¢ and continuous in z, and if for
each compact set £ C D there exists a function p € L;(I) such that |[F(t,z)| < p(t)
forallt € I, z € E. Let F be the class of all functions F': I x D — R" such that F
is differentiable with respect to x, and F' and g—g are of Carathéodory-type. g—g is the

n X n-matrix with elements gfi, 1<i4,5<n.]

J

Assumption 2.

(i) f is a mapping from I x D x V to R", and f;, i = —¢q,...,0 are mappings from
IxDxV toR, where D CR" and V C R™ are open sets. For each t € I, Q(t) is
a non-empty subset of V.

(ii) f is differentiable with respect to z, and f, % and f; are measurable in ¢ (for fixed
z and u) and continuous in z and u separately (for fixed ¢).

(iii) The set of admissible controls u(-) is

U = {u(-) : u(-) is measurable on I, u(t) € Q(¢) for all ¢ € I, the function
(t,z) — f(t,z,u(t)) belongs to the class F,and the functions
(t,z) — fi(t,z,u(t)), i = —q,...,0, are of Carathéodory-type}.

(iv) There exists a countable family {u;}?2; of functions u; € U such that the set
{u;(t)}52, is dense in €(t) for every ¢ € I. [It can be shown that this is the case, for
example, if the set-valued mapping ¢ — €2(t) is measurable in the sense that the set
{(t,u) e R™*L ¢t € I, u € Q(t)} belongs to the o-algebra in R™*! that is generated
by the Lebesgue sets in I and the Borel sets in R™ (assuming that ¢ # () and that
(t,z) — f(t,z,v(t)) belongs to F and (t,z) — fi(t,z,v(t)), i = —q,...,0 are of
Carathéodory-type for bounded measurable functions v: I — V'); see [7].]

For applications to optimal control the following result about certain perturbations of
a given control ug is of central importance.

Theorem 2. Assume that ug € U and that xg is a solution of £ = f(t,z,uo(t)) that exists
on I. Let ®(t) be the fundamental matriz at Ty of the linear system & = gg(t, zo(t), uo(t))x,
i.e., ®(t) = %(t, zo(t),uo(t))®(t) a.e. on I, ®(Ty) = the identity matriz. Define for
EeR andueld

t
v(t;€,u) = (1) [€+/T @ (1)[f (7, 20(7), u(7)) = f(7,20(7), uo(7))] d7 | . (1.6)

Let ¢ € R" and uj € U, j = 1,...,N, be given. For each B € Sy (see (1.2)) and each
€ € (0,1) there ezist pairwise disjoint sets A; = A;j(B,e) CI,j=0,1,...,N, each a finite
union of intervals, such that U;-V:OAj = I and such that the following is true. Define the
control ug, € U by

uge(t) =u;(t) forte Aj(B,e), j=0,1,...,N,
and let g, be the solution of

N
b=t mupe(),  o(To) = o(To) +e Y Bt

j=1



Then there exists an €9 € (0,1) such that for all § € Sy and all € € (0,e0], 2,() exists
on all I and satisfies

N
wpe(t) = zo(t) + €Y Biv(t; &, u5) +7(t; B €), (1.7)

=1

where r(t; 8,€)/e = 0 as € — 07, uniformly with respect to t € I and B € Sy . Further-
more, for fized €, xg.(t) is continuous in B € S, uniformly with respect to t € I.

Proof of this theorem can be found in [3] and [4] (in slightly different notation) or [6].
An important part of the proof is a lemma by Halkin (see [3]; a proof is also given in [6])
which states that the sets A;(3,¢) can be chosen so that

m(4g) = (1 —&)(Th — Tp), m(A4;)=eBj(T1 —Tp), j=1,...,N,
m(A;(B,€) & Aj(B,e)) »0as B—f, B,8 €8y, j=0,...,N,

and

t

N t
(=) | frmo(n)uo(r)dr+e> 6 | o(r),ug () dr
j=1 0

t
— | f(r,z0(7),upe(r))dr| <e* foralltel, (1.8)
To

To

and also so that (1.8) holds with f replaced by f = (f=g,---, fo). From (1.8) and a general
result about the effect of perturbations of the initial value and the right-hand side of a
differential equation Theorem 2 follows (see [6]).

2 A nonsmooth optimal control problem
Let f(t,z,u), fi(t,z,u) for i = —¢q,...,0, and Q(t) satisfy Assumption 2. Consider the
problem of minimizing
T
9o(z(To), z(T1)) + [ fo(t,(t),u(t))dt
To

over all pairs (z,u) such that z: I = [Ty, T1] — D is absolutely continuous, u € Y, and

z(t) = f(t,z(t),u(t)) a.e. on I, (2.1a)
9i(z(To),z(T1)) =0, i=1,...,p, (2.1b)
T1
9i(z(To), =(T1)) + [ fi(t,x(t),u(t))dt <0, 1=—g,...,—1 (2.1c)
To
Here g;: R xR" - R, i = —q, ..., p, are given continuous functions. Assume that (z¢, ug)

is a solution of this problem and that the following assumption is satisfied. We use the
notation z = (zp, 21), etc., for points in R” x R" (in matrix products z; and z are treated
as column vectors), and we denote e(z) = (2(Tp),z(T1)), eo = e(xo).

Assumption 3.

(i) The functions z — g;(z), i = 1,...,p, are continuously differentiable.



(ii) For i = —gq,...,0, there are convex and compact sets G; in R” x R™ such that

gi(eo + ew) — gi(ep)

lim sup <max~y’v forallveR" x R", (2.2)
e—0t € 7€G;
w—v

(iii) For ¢ = —gq,...,0, f; satisfies the following Lipschitz condition: For each u(-) € U
there is a constant ¢, > 0 and a function p,, € Li(I) such that

|fi(t, z,u(t)) — fi(t, zo(t),u(?))| < pu(t)|z — zo(t)| if |z — 2o(t)| < by, t € I.
Furthermore, for each ¢ € I there is a convex and compact set F;(¢) in R™ such that

filt, zo(t) + ez,u0(t)) — filt, zo(t), uo(t))

lim sup < max (Ty forall y € R".
e—07F € CEF;(t)
z—Y

(2.3)

The setvalued function ¢ — Fj(t) is measurable and integrably bounded. Since F;(-)
has compact values there are several equivalent ways of describing the measurability,
see [7]. That F;(-) is integrably bounded means that there exists a p; € L1(I) such
that || < pi(t) for all { € Fi(t) and all t € I.

Remark. If g; (—q < i < 0) is continuously differentiable, then we may take G; =
{ag’ eo)}, and if g; is convex, then G; is the subgradient from convex analysis. If g;
is locally Lipschitz, then the assumption is satisfied by G; = 0g;(eg), where Og;(eg) is
Clarke’s generalized gradient; in general G; C Jg;(eg), and the inclusion may be strict.

Theorem 3. Suppose that (zg,ug) is a solution of the problem above and that Assump-
tions 2 and 3 are satisfied. Then there exist numbers A_q,..., Xo,...,Ap, not all zero,
points v; = (74,0,%i,1) € Gi (—q < i <0), measurable functions (;(-) with (;(t) € F;(t) for
all t € I, and an absolutely continuous row vector function n(-) such that

of

() = —n(t) 5 -(t, @0 (t Z McE (@) ae onl, (2.4)
i=—q
Bgz
Z Xivio — ZA ~(c0), (2.5)
i=—q
Z vl + Z,\ 99i (e, (2.6)
i=—q
Ai <0 fOT—QSZSO, (2.7)
Ty
Ai [gi(eo) + . fi(ta$0(t)au0(t))dt] =0 for —g<i<-1, (2.8)
0
H(t,uo(t)) = max H(t,u), a.e. on I, where
ueN(t)

H(t,u) = nt) f(t, zo(t),u) + Z Aifilt, zo(t), w).

i=—q



Proof. Let X1 = C™(I) be the real Banach space of all continuous functions z: I — R”
(provided with the norm ||z|| = max;c; |z(t)|) and let X = X; x RIT!, where the points in
R?*T! are denoted s = (s_q,...,5-1,50). We take A as the set of all (z,s) € X such that
x: I — D is absolutely continuous, and there is a u € U such that

z(t) = f(t,z(t),u(t)) a.e. on I, and
si:/lfi(t,a:(t),u(t))dt, i=—q...0.

Let

If

si = | filt,zo(t),uo(t)) dt, i=—g,...,0,
I

and s* = (s%,...,50), then (xo,s") is a solution of the problem of minimizing yo(z, s)
subject to

vi(z,s) =0, i=1,...,p, (2.10a)

vi(z,s) <0, i=-—¢q,...,—1, (2.10b)

(z,s) € A. (2.10c)

In fact, (wo, s°) satisfies (2.10), and for any (z, s) that satisfies (2.10) there is a u € U such
that (2.1) is satisfied, and

@0 (0, 5°) = go(eo) + s§ = goleo) + /Ifo(taxo(t)auo(t))dt

< go(a(To), 2(T1)) + / folt, 2(t), u(t)) dt
= go(z(Tv), z(T1)) + so = @o(z, s).

Thus our problem is formulated as a special case of Problem (P). We want to apply
Theorem 1, and to that end we must verify Assumption 1.
Let [see (1.6) for the definition of v(¢; €, u)]

M ={(5,0) € X : y() = v(3€,u), and
7= [ 1ilt 00, u(t) = ittao(@), wo (D) dt, g < <0,
for some £ € R" and u € Z/{}. (2.11)
Let (y1,01),...,(yn,0on) in M be given. Then we can write
y;(t) = v(t; &5, u ),

Tji = /1 [filt, zo(t),u; () — fult, 2o (t), uo(t))] dt, —q < i <0, (2.12)



for some §; € R*, u; €U, j =1,...,N. We can now apply Theorem 2 with these §; and
uj. The conclusions of Theorem 2 hold, and we also have (1.8) with f = (f_g4,-.., fo)
instead of f. Then ug. € U, and we have

/f(tawﬂ,eau,@,s) dt—/f(ta'TOauO)dt
I I
— /I F(t, 25,0, u0) — F (¢, 0, u0)] dt + /I F(t, 0, u.e) — F (¢ 20,u0)] dt

N
+ ]Z—:l /A(ﬂ 6){[f(t’ xﬂ’g’uj) o f(t’ .’L'(),’Uj)] - [f(ta mﬂ,&auﬂ) - f(t,wo,uo)]} dt

=Ji + Jo + J3, (2.13)

and
A N A~ A~
‘(1—5)/If(t,x0,u0)dt—I—E;ﬁj/If(t,wo,uj)dt—/If(t,wo,u[;,s)dt <2 (214)

Let yg = Z;VZI Bjyj, 08 = E;VZI Bjo;. Equation (1.7) can be written

.’Eg’s(t) =zo(t) + SZg’E(t), (2.15)

where 23 .(t) — yg(t) as € — 0, uniformly with respect to t € I, 5 € S.
Now, let

58, = / fltape(t),upe(t) dt, ppe=(pe,58,)-
I

We have that pg. € A. Consider first 1 <4 < p and let gg’u = ggj (eg) forv =0, 1,
hi(.’E, 8) = gg,ow(TO) + gg,lx(Tl)a (iL‘, 3) € X. (216)

Then ¢;(pse) = gi(x,(T0), 28, (T1)) = gi(e(zs,)) = gi(eo + €e(zs,c)) is continuous with
respect to (3, and it follows from (2.15) that

0i(ppe) — ei(wo,s°)  gileo + e(za,)) — gileo)

£ (9
0g;

= 5, (eoelys) = hi(ys, 05) ase =0,

and the convergence is uniform with respect to 8 € Sy. Thus, (i) and (ii) in Assumption
1 are satisfied.
Next, consider —g <4 < 0. Then

wi(pse) — pi(w0,3°)  gileo + ee(zp,)) — gieo)

€ - €
_|_/ fi(tawﬂ,e’u,@ﬁ) _fi(taa:o’u()) dt. (217)
I (5
It follows from (2.2) that
lim sup 9i(co + £e(28,)) — gieo) < max 'yTe(yﬁ) (2.18)
e—=0t € 7€G;



uniformly with respect to 8.
From Assumption 3(iii) and (2.15) it follows that there is a function p € Ly (I) and an
g1 > 0 such that

|f(t7 wﬂ,sauj) - f(tax()au]” < Ep(t) for .] = 07 ]-a e 7N

if ¢ <&1. Thus we have for the term J3 in (2.13) that

\Js| < Z/ 2ep(t) dt = er1(B,¢), (2.19)

and it follows from the properties of the sets A; that ri(8,e) = 0 as ¢ — 0, uniformly
with respect to 8.
According to (2.14) the term Jy in (2.13) can be written

N
\/I[f(t’ :L'Oauﬂ,g) - fA(t’mOauO)] dt = SZ/BJ /I‘[f(tamo’u]) - f(t,CC(],’U,())] dt + f(/Ba 6)’
=1
’ (2.20)

where |#(3,¢€)| < 2.

From the theory of set-valued functions it follows that ¢ — max¢e ) (T (t) is mea-
surable, hence integrable since Fj(¢) is integrably bounded, for every = € X;. For the term
Jp in (2.13) we want to show that

timsup - | [7it,25(6), w0 () = £t aolt), wa )] dt < [ max Typle) dt = H(5)

uniformly with respect to 3. Assume that this is not true. Then there is a 6 > 0 and
sequences ¢ > 0, B, € Sy, k=1,2,..., such that ¢, — 0 and

1
- /[fz'(t, 20(t) + €r2py .0 (1), u0(t)) — filt, mo(t), uo(t))] dt > Hi(B) + 6
I
Since Sy is compact we may assume that 8, — 8 € Sy as k — o0o. Let

bi(t) = i[fi(t, 20(t) + ex2pye5 (), w0 (1)) — fi(t, o(t), wo ()]

The function H;(f) is continuous, so we obtain

limsup/zl)k(t) dt > H;(B) + 6. (2.21)
I

k—00

By Fatou’s lemma we have

lim sup/@bk (t)dt < /lim sup ¥y (t) dt
T T

k—00 k—00

Since
281, (8) = Y50 < 126165 (8) — Y ()] + [y (£) —y5(8)| = 0 as k — oo,
(2.3) gives

li <
1]1£ri)solipll)k() Cgllglx < yg(t).



Thus,

limsup/lzpk(t) dt S HZ(/B)’

k—00

which contradicts (2.21).
Let

Fr={¢"e X7 :C*( /CT t)dt for x € X,
where ((-) is measurable, and ((t) € F;(t) for all ¢ € I'}.

It follows (Filippov’s lemma; see [7, Theorem 6.8]) that

T *
t) dt = .
Icg%)c z(t) Crgleafz}c (z)

Thus we have shown that

timsup < [ it 500 u0(t) — filto(®),uo(®))dt < max ). (222)
I

e—0 CeF}

Combining (2.17), (2.18), (2.13), (2.19), (2.20), (2.22), and (2.12) we find that

. —n. 0
lim sup i (pﬂ,s) 2 (370, S )

e—0 9

e(ys) +Zﬁg / Filtyz0,15) — filt, 0, uo)] dt + max ¢*(yp)

CrEFy

= + (op)i + “(ys) = hi(ys
maxy Te(yp) (O'ﬁ)z &aﬁ?( (ys) = hi(yp, o)
uniformly with respect to 3, where

hi(z,s) = ;neza;'yTe(x) + CI*nea% C*(z) + 85, (z,8) € X. (2.23)
Since h; is convex, Assumption 1 is satisfied.

The set F* is convex and weak™ compact. The convexity is obvious. Let (* € F.
Since | [; ¢(t) z(t) dt| < [, [C@)||=(t)|dt < [; pi(t) dt ||z||, we have ||(*|| < prZ t)dt = c;,
so that F} C B* = {z* € X{ : ||z*]| £ ¢}. Since B} is weak* compact, it is enough to
show that F} is weak* closed. Since X7 = C"™(I) is separable, it follows from [2, Theorem
V.5.1] that Bz* (in the weak* topology) is metrizable. It is therefore sufficient to prove
that (;; — 2" as k — oo with ¢/ € F;" and z* € B implies that z* € F;". We have

/ﬁk (t)dt - 2" () ask — oo

for certain measurable functions (i such that ((¢) € F;(¢). Since |k (t)| < pi(t), it follows
from Dunford-Petti’s theorem ([2, Corollary IV.8.11]) that there is a subsequence {(x; }32;
that converges weakly in L7(I) towards some function ¢ € LP(I). Then (by Mazur’s
theorem) there are functions wg, K = 1,2,... , each a convex combination of finitely many
Ck; such that wy — ¢ in LP(I) as k — oo. Finally there is subsequence of {wy}7° that
converges pointwise a.e. towards ((t). Since F;(t) is convex and compact it follows that
wi(t) € Fi(t) and ((t) € F;(t) a.e. Thus z*(z) = lim;_,«, [; C,Z; (t)z(t)dt = [, (T (t)z(t) dt
so that z* € F;*. Therefore F}* is weak® compact.



As we have shown, Assumption 1 is satisfied, and according to Theorem 1 there exist

numbers A_g, ..., Ap, not all zero, such that
P
Z Aihi(z,s) <0 for all (z,s) € co M, (2.24)
i=—q
\iwi(z0,8%) =0, —g<i<-—1. (2.26)

From (2.25) and (2.26) we get (2.7) and (2.8). According to (2.16) and (2.23) we can write
(2.24) as

by T A * ¢ A(s) <0, 2.27
izq smaxy"e(z) +i§: i max, ¢°(z) + £(@) + A(s) < (2.27)
where
p 0
Uz) = Nilghox(To) + giz(T)],  As) = D Aisi, (2.28)
i=1 i=—q

so that £ € X7. Each v = (7,71) € R" x R” defines a continuous linear functional
v*(z) = vl e(z) = Y (To)+7¥ z(T1), i-e., v* € X}. Let G} be the set of functionals v* that
correspond to points v in G;. It is easy to see that the linear mapping I': R* x R* — X7}
defined by I'(y) = v* is weak* continuous. Therefore, G} = I'(G;) is convex and weak*
compact. Then (2.27) takes the form

0 0
Ai max v*(z) + Ai max (*(z) + £(z) + A(s) <0 for all (z,s) € coM. (2.29
32 0 map 7o)+ 32 % g o)+ ) 30 < (@, (2.29)

An important step in the proof is to show that there exist 7] € G} and ( € F;* such that

0 0
S M@ + D Mg () +Lx) + A(s) <0 for all (z,s) € co M; (2.30)

i=—q i=—q
cf. [8]. Let
C =cl{t(z,s):t >0, (z,s) € coM},

where cl denotes the closure in the norm topology. Since the left-hand side of (2.29) is
positively homogeneous and continuous in (z, s), it follows that

0 0
i max v*(z) + X max (*(z) +£(z) + \(s) <0 forall (z,s) € C. 2.31
0 ey (o) 3N e o) 400) X < (rs)€C (23D
Define

0 0
Ni={r"eXi:a"= Y Mmi+ D N( +4 1 €G], § € F}
i=—q i=—q

0 0
=Y ANGi+ > NE 4L

i=—q 1=—q

10



Now, X;G} and A\ F;* are weak* compact, and therefore Ny is weak* compact. Finally, let

N*={(z*,s") € X*: ¥ € N{, s* = A},
C* ={(z",s") € X*: (z",s")(z,s) =z"(z) +s"(s) <0 forall (z,s) € C}.
Then N* is convex and weak* compact, and C* is convex and weak* closed (see [13,
Lemma 5, p. 34]).
We want to show that N* N C* # (). Assume that this is not the case, but N* and C*

are disjoint. By [2, Theorem V.2.10] there exist constants ¢ and ¢ > 0 and a linear weak*
continuous functional F' on X™* such that

F(y*,s") <c—e<c< F(z*,\) forallz® € Ny, (y*,s%) € C".

By [2, Theorem V.3.9], F' is generated by an element (yg,00) € X, so that F(z*,s*) =
z*(yo) + s*(o9) for all (z*,s*) € X*. Thus

v (yo) + s*(00) <c—e <e<z*(yy) + AMop) for all z* € Nf, (y*,s%) € C*. (2.32)

Since t(y*,s*) € C*, if t > 0 and (y*, s*) € C*, (2.32) implies that ty*(yo) + ts*(00) < ¢
for all ¢ > 0, (y*,s*) € C*. Lett—)ootoobtaln(y, *)(y0,00) = y*(v0) + s*(00) <0
for all (y*,s*) € C* It then follows from [13, Lemma 4, p. 32] that (yo,00) € C. With
y* =0, s* =0 in (2.32) we get

z*(yo) + AM(og) > e >0 for all z* € NY. (2.33)

Since z*(yo) is weak™* continuous as a function of z*, and G; and F}* are weak™ compact,
there exist 4] € G} and (f € F; such that 4;(yo) = maxy-cq: v*(y0) and (f(yo) =
max¢sepr (*(yo)- Therefore, (2.31) implies that Z*(yo) +A(0o) < 0 with z* = Engq XY+
Zz__q A\i¢F + £ € Ny. But this contradicts (2.33) and proves (2.30).

We can write (2.30) as

Z)\ %Ong +’y,1:1:T1 +Z)\/CZ t)dt + £(z) + A(s) <0

i=—q i=—q

for all (z,s) € co M, where (v;0,7i,1) € Gi, and (;(-) is measurable with (;(t) € F;(t) for
all t € I. Choose (z,s) as a typical element in M (see (1.6) and (2.11)):

2(t) = v(t: £, u) = B(Y) [é + [ @ @), uim) - 1t $0(7),U0(T))]d7] ,

To
8 = /I[fi(t,-TO(t)au(t)) — fi(t, zo(t), uo ()] dt, —g<1<0.
Let us first take u = ug. Then, using (2.28),
0 0 Ty p
{ > Ail(v Hyhem) + ) )\i/T Tt dt+ > Ni(gio+ gé,lé(Tl))}é“ <0
i=—q i=—q Y =1
for all £ € R*, hence
0 Ty p
D Al T (@) + D A /T L@@ dt+ Y Xilgho +9i,8(T1)) = 0. (234)
0
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Next, choose £ = 0. With B(7) = ®~1(7)[f (7, zo(7),u(T)) — f(7,20(7T), u0(7))] We obtain

t
(meﬁzngzl T1/ By 3 x A " e [ i) ar a

i=—q i=—q
P A / it @0 (),u(t)) — fi(t, mo(t), wo(£))] dt < 0. (2.35)
1=—q
Let
— [(Z /\nyzl—i—Z/\Zgzl (1) + Z/ ed G d7H(1).  (2.36)
i=—q i=—q
An application of Fubini’s theorem gives

T
/ n(6)1F (&, 20(8), ut)) — F(t, 20(t), uo (1)) dt

To

7, O
+/T Z il fi(t, zo(t), u(t)) — fi(t, zo(t),uo(t))]dt <0 for all u € U,

0 j=—¢q

or, using the definition of H (¢, u) in (2.9),
/ H(t,u(t)) dt < / H(t uo(t)) dt for all u € U, (2.37)
I T

From (2.34) and (2.36) we obtain (2.5) and (2.6). From the definition (2.36) it also follows
that 7(-) satisfies (2.4).

Let us finally turn to the maximum principle (2.9). This will follow from the integrated
form (2.37) and part (iv) of Assumption 2. Let u; € U, j = 1,2,..., be such that
{u;j(t)}32, is dense in Q(t) for every t € I. Let t' € (Tp,T1] be a Lebesgue point of

t — f(t,zo(t),u;(t)) and of t f(t,zo(t),Uj(t)) for every 7 = 0,1,2,... . Define for
O<e<t' —Ty,j=1,2,...,

o (t) = ui(t), it —e<t<t,
” uo(t), otherwise on I.

Then uj. € U, and if we apply (2.37) to u;, divide by £ and let ¢ — 07, we obtain
H(t' u;(t") < H(t',up(t")) for all j.
Since {u;(t')}52, is dense in Q(¢'), and H is continuous in w, it follows that
H(t',u) < H(t' ,ug(t')) for all u € Q).
Since t' can be almost any point in I, this proves the theorem. O

2.1 An example

A typical situation is that the cost functional contains an absolute value. Let fo(t,z) =
u(t)|f0(t,x)|, where fy and %% are of Carathéodory-type, and u € Loo(I). Let

Ey={t€I: fo(t,zo(t) =0}, Ey=1T\Ey,
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and let y € R* be arbitrary. If ¢t € Ey, then

fo(t, zo(t) +e2) — fo(t, mo(t)) _ u() | fo(t, zo(t) + €2) — fo(t, z0(2))|
€ €
afo + : n
— u(t) %(t,xo(t))y ase — 07, z =y in R".

If t € Ej, then fo(t,zo(t) + €z) has the same sign as fo(t, zo(t)) if € > 0 and |z — y| are
sufficiently small, so that

. Jol20(8) + £2) = folt. (1)

e—0t €
Z—Y

= u(t) lim sign fo(t,mo(t))fo(t’m(t) +ez) — fo(t,zo(t))

e—=0t €
2y

= (1) sign folt, 20(1)) 22 1,0 (1))

Thus
t t — t t
lim fo(t, zo(t) +€2) — fo(t, zo(t)) < max Ty, tel,
=0T € CEFy(t)
Z—y
where

_ UG s —1<x <1}, ifte B,
Fo(t) = .z af .
{p(t) sign fo(t,wo(t))a—£(t,x0(t))T}, if t € Ej.

Each set Fy(t) is convex and compact, and the function ¢ — Fy(t) is measurable and
integrably bounded, so that Assumption 3(iii) is satisfied.
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