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SUMMARY

This is the second part of a trilogy on parallel solution of the linear elasticity problem. We consider
the plain case of the problem with isotropic material, including discontinuous coefficients, and with
homogeneous Dirichlet boundary condition. The discretized problem is solved by the preconditioned
conjugate gradient (pcg) method.

In the first part of the trilogy block-diagonal preconditioners based on the separate displacement
component (sdc) part of the elasticity equations were analysed. The preconditioning systems were
solved by the pcg-method, i. e. inner iterations were performed. As preconditioner we used modified
incomplete factorization MIC(0), where possibly the element matrices were modified in order to give
M-matrices i.e. in order to garantee the existence of the MIC(0) factorization.

In the present paper, the second part, full block incomplete factorization preconditioners are
presented and analysed. In order to avoid inner/outer iterations we also study a variant of the block-
diagonal method and of the full block method, where the matrices of the inner systems are just
replaced by their MIC(0)-factors. A comparison is made between the various methods with respect to
rate of convergence and work per unknown. The fastest methods are implemented by message passing
utilizing the MPI system.

In the third part of the trilogy we will focus on the use of higher order finite elements. Copyright
© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the first part of this trilogy, see Reference [1], the theoretical basis for this study is founded
and will not be repeated here. We consider the plain strain case of the linear elasticity problem
with isotropic material and Dirichlet boundary conditions.

A finite element approximation of this problem is based on a variational formulation
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including the bilinear form
8uz 61)1 1-0 (’)ui 61},' 6uJ 81}1 1-0 8uz 6’Uj
/{Z ox; 0x; g[ 2 Ozj Ox; v 3;5, ox; + 2 Oz; Gxi]}dﬂ (1)

where 7 is a transformed contraction ratio. We recall from Reference [1] that since we consider
homogeneous Dirichlet boundary conditions, (1) can be rewritten as

_ /{Z Ou; Ov; + 1—-0 Ou; 81}, 1 + 1 8uj 61)Z
O0x; Ox; 2 = 0x; 6.10] 83:] 6.10,

Also recall that in practice 0 < # < 1and 7 — 1 represents an incompressible material.
Further, in Reference [1] a preconditioning technique based on the separate displacement
component of a, i.e.

ou; 6’0, 1- Ou; 6")2
v) = /S;{; ox; 6‘xz 2 Z 8.15] ax] (2)

1

N

plays an important part. In particular the following inequalities hold with o =

tz‘

(1-0) alu,uv) < alu,u) <1 +0) alu,u) (3)

For a natural numbering of the basis functions in the finite element method the assembled
matrices corresponding to a and a become

A Are
A=
3 )

and

[Asy o0
CD—[ 0 Am]

respectively, i.e. Cp is block-diagonal.
The inequalities (3) lead to the upper bound
1+0 2

H(CBI/2ACBI/2) < e (4)

Q

for the condition number when Cp is used as a preconditioning matrix for solving the system
with matrix A in (for instance) the conjugate gradient method, compare with the formula
(6.8) in Reference [1]. Also recall from Reference [1] that this bound is independent of the
discretization, in particular it is independent of the mesh size parameter h. The same bound
is obtained also for a modification where the diagonal blocks in

_ 011 0
=% ]

are different from A;;. In this modification two parameters, 71 and 72, play an important

part. For 4 = = % we get Cy = Aj; i.e. the original separate displacement component

preconditioning method.

(5)
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2 I. GUSTAFSSON AND G. LINDSKOG

In this paper we present a full block incomplete factorization preconditioning method.
As in part one, see Reference [1] , one variant of the preconditioner involves the separate
displacement component of a, see (2) and another variant involves a modification of the
separate displacement part by two possibly different parameters 74 and 7. We analyse these
methods with respect to the condition number of the preconditioned matrix. In both methods
coupled inner/outer iterations are performed.

Other versions of the preconditioners are obtained by replacing the matrices of the inner
systems by the modified incomplete MIC(0) factors. In this way we avoid the inner iterations.
This idea is tested for the block-diagonal case as well as for the full block case. We compare the
rate of convergence and the computational work for all considered methods. The two fastest
methods are implemented in parallel on a Sun Enterprise 10000.

As a side-result of this paper, we have demonstrated how well the idea of modification on
element level in order to obtain M-matrices, see Reference [2], works in practice. Different
techniques to obtain an M-matrix, based on modification of the assembled elasticity matrix,
are used for instance in Reference [3].

For the formulation of the elasticity problem and earlier research in this area we refer to the
list of references in part one Reference [1]. For later presentations of iterative solvers to elasticity
problems, including papers on separate displacement preconditioning, inner-outer iterations,
3D elasticity problems, locking-free finite element techniques, and parallel implementation, see
References [4], [5], [6], [7], [8], [9], [3], and [10]. Note that the problem with locking, which is a
consequence of ill-conditioning when the elasticity parameter # — 1, see for instance Reference
[4], is not studied in this paper. Also observe that the full-block preconditioning technique in
this paper is not applicable to 3D problems.

The remainder of the paper is organized as follows: in Section 2 the full block incomplete
factorization is presented and analysed. Numerical results concerning the rate of convergence
and work per unknown are given in Section 3. In Section 4 we analyse a discontinuous problem.
Results from the parallel implementation are given in Section 5 and finally we make some
concluding remarks in Section 6.

2. FULL BLOCK INCOMPLETE FACTORIZATION

As an alternative to the block-diagonal preconditioning method given in the introduction
we will also consider the full block incomplete factorization method represented by the
preconditioning matrix

_ Iy 0 L{ L;lAlz _ Ay Ags
Cr = [ AL LTT L, ] [ 0 LT T | AL Ay (6)
where
Azg = A’{;Al_llAlz =+ A22 (7)

and L1LT = Ay, LoLY = Asy are Cholesky factorizations. Below we will also consider
incomplete Cholesky factorizations of A1 and Ass.

Following a technique used in Reference [11] we will derive a bound for the condition number
of C’;l/ QAC’;U ®. Tt becomes clear from (3) that the eigenvalues of C[,' A, i.e. the eigenvalues

of 051/214051/2, are in the interval [1 — 0,1 + o].
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We may write
0—1/2AC—1/2 — A1_11/2 0 A1 Aig A1_11/2 0 — I F
D D 0 A2—21/2 A{Q A22 0 A2—21/2 FT I
—1/2 —1/2 . 0 F . .
where F' = A];/7A19A5, ", Hence the eigenvalues of FT o | arein the interval [—o, 0]
1+v
(8)

F
17 =1 pr o [le<o=372,

or equivalently
We will also use a generalization of the bound (6.5) in Reference [1] obtained by using (6.4)
1(6a® 4+ 67'b%) valid for all real numbers a, b and

in Reference [1] and the formula | ab |<
0 > 0. This gives, for u = (u1,us), the lower bound
a(u,u) > min{l — 1;’795,1 1“_”’5(1 — 0)}a(us, ur)
+ min{ 1 ga—lu — 0)}a(us, un). )
If we choose § = 7%= and 6~ = 126 in (9) we get
a(u,u) > (1 —0?)a(us, us) (10)

where o = 22 (as before).
In the full block incomplete factorization we have, see (7)
Ayy = AP (I + FTF)AL?

(11)

and by (8) we get
23 Aoy < & Aoy < (14 0%)2d Agozy

for all vectors
Finally, by using (10) and (11) we derive the following bounds for the quotient between the

quadratic forms with Cr and A
SL'TCF.’E . ZU?AHIL'l + 233'{1412(172 + Z‘g’fizz.'la
ol Ay + 221 Apaxy + 25 Anp o

1< zTAz T
T xF Ayoxo — 2T Agoxo
zf A1z + 22T Araze + 2 Agsan
<14 %2 Agoze — T Agomy <1+ 7 o? _ ;
- (1 —02)zT Aoy 1-02 1-02
(12)

Hence, for the condition number we get the upper bound
1 @-9?

0_1/2A0_1/2 — 4
i )< 1-02 8(1-7)
Numer. Linear Algebra Appl. 2000; 00:0-0
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4 I. GUSTAFSSON AND G. LINDSKOG

and this bound is independent of the discretization, in particular it is independent of the mesh
size parameter h.

We notice that when & goes to 1 then the bound (12) goes to 2(1
incompressible materials the bound for this condition number is a factor 4 smaller than for
the block-diagonal method, compare with (4).

We note that a system of linear equations with the preconditioning matrix Cr in (6) i.e. a
system of the form

7 i.e. for almost

Ay Az ][7‘1]_[91]
AL, AT AT A + Ag ra || 92
can readily be reformulated into the system
Agory = g2 — AL AL g1 (13)
Anry = g1 — Anaro
Thus the solution can be calculated by solving three inner systems, two with matrix A;; and
one with matrix Ass. If we use an iterative method for these systems as well we get a method
with coupled inner/outer iterations.

If we replace A;; and As» in (13) by incomplete Cholesky factors Ly LT ~ Ay, Lol ~ Ao
we get only outer iterations, in general of course at the expense of a larger number of iterations.
Note that this is equivalent to replacing L; and L by incomplete Cholesky factors already in
(6).

Like in the block-diagonal method in Reference [1] we also consider preconditioning based
on the modified separate displacement component part

ou; 61}, Ou; 67}1
— 14
v) /Q{Z Bz Oz Za sl (14)
with 7 possibly different from 15Z.
In Reference [1] the following upper and lower bounds for a(u,u) are derived with

T2 <7<1,n=1~ and o = HL:
1—-v 2
< a < a =(1 a 1
o) < maz( 2 P jau) < a) = (e ma (1)
1—-v v4T

a(u,u) 2 7 DJau,u) = (1-0)a(u,u) 2 (1 - 0)a(uz,uz).  (16)

We recall from Reference [1] that these bounds imply that the bound (4) for the condition
number for the block-diagonal preconditioning method still holds if Cp is based on & instead
of & for 1 375 <7< 1L

The analysis for the full block preconditioning method with & instead of @ is now carried
through similarly with the bounds (15) and (16) instead of (8) and (10). We get the following
bound for the condition number, compare with (12):

d(u,u): (1- g

maz(o,7)”
1-0
Observe that A;; and Ay in Cr, see (6) and (7), are modified in this method.
We also give a result when different values at 7 is used in C1; (7 = 71) and Cas (7 = 72),
see also Section 7 in Reference [1]. Let Tpmin = min(Ti,72), Tmae = maz(m, ), 7 = 1Imin

K(CRPACT?) <1+ (17)

14+Tmin’
o= ‘{irﬂ Then for 375 < Tmin < Tmaz < 1, the bound (17) holds also in this case.
Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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3. COMPARISON BETWEEN PRECONDITIONING METHODS

In this section we compare some preconditioning techniques for the conjugate gradient method,
based on the theory in Section 2. The methods considered are:

method 1 (m1) The block-diagonal preconditioning method based on separate displacement
component i.e. on the form a(u,v)

method 2 (m2) The block-diagonal preconditioning method based om modified separate
displacement component i.e. on the form a(u,v), with parameters 71 and 7» in C1; and Cas,
respectively

method 3 (m3) The approximate block-diagonal preconditioning method i.e. with L; and
L being incomplete Cholesky factors of A;; and Ass, respectively

method 4 (m4) The full block preconditioning method based on separate displacement
component i.e. on the form a(u,v)

method 5 (m5) The full block preconditioning method based on modified separate
displacement component i.e. on the form d(u,v), with parameters 71 and 7» in C1; and Cas,
respectively

method 6 (m6) The approximate full block preconditioning method i.e. with Ly and L, being
incomplete Cholesky factors of A;; and Ass, respectively

We note that m1 and m2 are the methods described in the first part of this trilogy, Reference
[1], where also some preliminary computer experiments are presented for these methods.

As mentioned in Section 2, we assume that the inner systems arising in the methods ml,
m2, m4, and m5 are solved iteratively by the preconditioned conjugate gradient method too
i.e. these methods involve coupled inner/outer iterations, while m3 and m6 involve just one
level of iterations.

In order to obtain a high degree of parallelism with almost equal processor load we assume
a proper node-numbering of a regular triangular mesh, see for instance Figure 1. This kind
of node-numbering is motivated in Reference [1], where also other kinds of node-numberings
are discussed. With the considered node-numbering we can (theoretically) utilize a number of
parallel processors equal to the number of nodes along one side of the square in Figure 1.

We use the modified incomplete Cholesky MIC(0) method as incomplete factorization. In
order to garantee existence of the MIC(0) factorization the element matrices are possibly
modified by the technique presented in Reference [2] before the assembling and incomplete
factorization. Whether this modification has to be performed depends both on the orientation
0, the angle between the z1-axis and the hypotenuses in the triangulation, and on the elasticity
parameter ¥, for details see Reference [12]. An alternative to the modification on element level
could be to use the generalized stable incomplete factorization in Reference [13]. This latter
method, however, does not preserve the faster rate of convergence with respect to the mesh
size parameter h.

Below we present computer experiments for our methods applied on the testproblem in
Reference [1] i.e. the plain isotropic elasticity problem with homogeneous Dirichlet boundary
conditions and constant body force on a unit square with various orientations 6 and the parallel
node-numbering indicated in Figure 1. We use zero starting vectors in outer as well as inner
iterations and a relative residual stopping criterion ||r®)||; < €[|r(®||; with €, = 10~ in the
outer iterations and various values of ¢; for the inner iterations, see below.

Recall from Reference [1] that the number of outer iterations for ml or m2 with

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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6 I. GUSTAFSSON AND G. LINDSKOG
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Figure 1. The test problem
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— In—+1 18
V1o e, th (18)
form2with0<7m =7 < ;—g at most
1 /7+1 2
- In—+1 19
2 2T o €o + (19)
and for m2 with 71 # 7 and Ty,in > é;—g at most
1| 201+ T 2
- — In— + 1. 20
2\/(1 + Tmin) (1 — D) €0 (20)

Similarly, from the bounds for the condition numbers (12) and (17) we conclude that the
number of iterations for the method m4 is at most

3—v | 1 2
4 mlng‘{'l (21)

1 2 2
1/ max(om)? 2 (22)
2 l1—-0 €

and for m5 at most

with o and 7 given in Section 2.
In Table I we present the number of iterations for our methods when solving the model
problem with # = 0.995 and # = 0. The inner systems are solved accurately, ¢; = 1073, In

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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ON PARALLEL SOLUTION OF LINEAR ELASTICITY PROBLEMS. PART II. 7

method m=15 m=31 m=63 m=127 m=255 bound

ml 34 63 78 88 92 101

m2mn =1 =1 51 67 75 80 83 101

m2,7;, =75 =0.1 37 58 76 84 87 101

m2,7, =0.2,75 =0.5 40 58 76 82 86 112
m3 42 80 140 232 376 -

m4 18 33 41 45 47 51

md,mp =72 =1 44 52 68 74 79 100
mb,7; =75 =0.1 20 31 40 43 45 75
mb,7; = 0.05, 72 = 0.5 24 37 47 51 57 87
m6 27 50 99 171 310 -

Table I. The number of outer iterations for various methods applied to the model problem of various
size and the theoretical upper bound for this number

order to compare with the theory we also give the upper bounds for the number of iterations
calculated from (18) - (22) in the various cases. The size of the problem is modelled by the
value m, which is the number of diagonal blocks in the matrices Ay, i = 1, 2; m = 7 in Figure
1. The total number of unknowns in the system is then m? + 1.

The results indicate that the bounds (20) and (22) may be a bit too pessimistic, otherwise
the results agree well with the theory.

Regarding the total amount of work it is not advisable to solve the inner iterations with
such a high accuracy as € = 1073. If we relax the inner accuracy to ¢; = 10~! the number
of outer iterations increases but the total work becomes smaller. In Table IT we give the total
number of floating point operations (flops) per unknown for the test problem and various
methods. Here, one flop consists of one multiplication plus one addition. The problem size is
m=127,0=0, ¢ =101, and # = 0, 0.9 or 0.995.

In 3D the elasticity stiffness matrix has many more nonzero elements per row, thus the
multiplication with it becomes more expensive. Then one should solve more accurately with
the diagonal blocks in order to decrease the number of costly outer iterations.

We see that the simple methods m3 and m6 with just one level of iterations are preferable and
about equal effective with m3 i.e. the approximate block-diagonal preconditioning is slightly
better.

In order for comparison with the computer experiments in Reference [1] we also consider the
test problem with § = 7/8 and m = 63 for various values of . Figure 2 gives the total number
of flops for our methods applied to this problem. By the transformation 1/1/(1 — ) for the
'x-axis’ we discern the behaviour for 7 close to one. We see that for this problem the method
m6 i.e. the approximate full block preconditioning method is faster than the approximate
block-diagonal preconditioning method (m3) for values of ¥ close to one. Thus, it may pay off
to use the former more complicated method in such cases.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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8 I. GUSTAFSSON AND G. LINDSKOG

method 7=0 =09 #=0099

ml 1270 4430 18900

m2,m =7 =1 1120 2730 9320
m2,m =7 = 0.1 3190 4100 12920
m2,7 =027 =05 1840 3020 9410
m3 783 2133 6264

m4 1122 3256 18012

m5,r =7 =1 1835 4732 15046
m5,m =7 = 0.1 3706 3084 10546
m5,m = 0.05,7, =0.5 3852 3096 7332
m6 1238 2850 6412

Table II. The total work per unknown for various methods applied to the model problem with
m=127, §=0ande; =10"

'm1
9000 |- -
m5(1)
8000 |- -
7000 m2(1) 7
m4
“m2(0.1)
6000 |- m2(0.2,0.5) |
£
o
g
< 5000 -
5 m5(0.1)
o
4
S 4000 -
=
—-m3
3000 | -
_m6
2000 . R
1000} £+ 4
O | | | | | | | |
2 4 6 8 10 12 14 16

transformed elasticity parameter

Figure 2. The work per unknown as a function of the elasticity parameter © for various methods
applied to a model problem
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~ line of discont.

<

X2
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W

Figure 3. A discontinuous elasticity problem

4. A DISCONTINUOUS ELASTICITY PROBLEM

In this section we consider an elasticity problem with discontinuous material. The parameter
U is discontinuous along some interior boundary with # = #; in Q; and 7 = ¥y in Q5.

At first we prove that the discontinuity does not effect our upper bound for the condition
number in the block-diagonal preconditioning method i.e. the bound (4) holds with & replaced
by max(y, ). Assume, with no loss of generality, that 7 > ;.

Following Reference [1] we write

6u, 1 — 6uZ 1 + 17 auJ au,
/{Z 61’@ 2 . .((91’ 83:] 61’,
(9u, 1 au, 1+1/ 0u auz
/ O + 5" X 2z| Sl o
J#i
6uz 1 Ou; o 6uz 1 6u,

=[G (5D }d01+/ G (50}

J#i J#i

1+ iy Ou; 6u,~ . 1 + Uy / 8u] 8uz
e’} 0 =
+ 2 /Qg | Ox; Ox; [} a(u,u Z | Ox; Ox

Using (6.5) in Reference [1] on each subdomain ©; and Q5 we get, similarly to (6.6) in Reference

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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10 I. GUSTAFSSON AND G. LINDSKOG

1+ 7 1
RICY R B

< 1
a(u,u) < maz{l + 2 1-5,

(1= 0)}a(u,u) (23)

valid for all w (in the space considered, see Reference [1]) and all § € [0,1]. By chosing
0 =3/(3—in) in (23) we get

4
a(u,u) < —a(u, u). (24)
3—1,
Similarly we derive the lower bound
a(u,u) > M&(u,u). (25)
3 - Vo

By combining (24) and (25) we conclude that the bound (4) for the condition number is still
valid with 7 replaced by #», i.e. the largest value of ¥ determines the upper bound for the
condition number.

It is straightforward to carry through the analysis for the condition number of the other
variants of preconditionings in the discontinuous case. For instance, the bound (12) holds for
the full block incomplete factorization with # replaced by .

We now present some computer experiments for the discontinuous model problem where the
parameter ¥ is discontinuous along an interior boundary with 7 = 74 in Q; and 75 in Q, see
Figure 3. Apart from the discontinuity this is the model problem in Section 3 with § = —7 /4.
In this case the matrices C1; and Caa become M-matrices, see Reference [1], and hence there
is no need for modification on element level in this problem. At first we would like to confirm
that the number of (outer) iterations is fairly independent of the discontinuity as the obtained
upper bound for the condition number indicates.

For our discontinuous model problem with #; = 0, 75 = 0.995, m = 255 and inner system
accuracy €; = 1073, the block-diagonal method (m1) required 75 (outer) iterations and the full
block method (m4) required 38 iterations. This should be compared with 74 and 37 iterations,
respectively, for the corresponding continuous problem with # = 0.995. However, as is expected
for a more ill-conditioned problem, the number of inner iterations increases with the degree of
discontinuity.

For the fastest methods i.e. the approximate block-diagonal (m3) and approximate full block
(m6) methods we thus get an increase in the number of iterations in the discontinuous problem
compared with the continuous one. Recall that in these methods the inner systems are solved
with low accuracy.

In Table ITI we compare the continuous model problem with # = 0.995 and the discontinuous
model problem with 73 = 0, s = 0.995. We give the number of iterations for m3 and m6 and
various sizes of the problem.

For the approximate block-diagonal method (m3) the increase in the number of iterations
for the discontinuous problem is not dramatic but for the approximate full block method (m6)
it is more pronounced. Also note that for large enough problems the method m3 is faster
than the method m6 in particular for the discontinuous problem. The method m3 requires
27 operations per iteration per unknown while the method m6 requires 37.5 operations per
iteration per unknown (for large enough problems).

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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problem size | continuous | discontinuous
m m3 m6 | m3 m6
15 19 11 29 20
31 31 21 51 44
63 53 31 81 82
127 74 59 | 140 154
255 151 124 | 222 316

Table III. The number of iterations for the methods m3 and m6 applied to a continuous and a
discontinuous model problem

5. PRALLEL IMPLEMENTATION

For the parallel implementation we use Sun Enterprise 10000, where 16 processors have been
at our disposal. The parallelization is performed by message passing implemented by the MPI,
Message Passing Interface, system.

We consider the testproblem in Figure 1 with the node-numbering indicated. We have used
the orientation # = 0 and the elasticity parameter 7 = 0.995.

We have implemented the conjugate gradient method without preconditioning, method
0 (m0), the approximate block-diagonal (m3) and the approximate full block (m6)
preconditioning methods.

The goal for the parallelization is to get as equal processor load as possible and also to
make effective message transfers. The main principle for realizing this is to make an equal
decomposition of the domain between the processors and to let each processor calculate only
the data elements corresponding to meshnodes in its own area of the domain. Data elements
here refer to the vector elements in all types of calculations in the algorithms and to the parts
of the scalar products calculated in each processor. In Figure 4 the problem size parameter
m = 11 and the domain is partitioned between three processors, P1, P2 and P3.

The various calculations in our algorithms are scalar products, vector updates, matrix-vector
multiplications and the solution of the preconditioning systems. The scalar products and the
vector updates are easily parallelized since vector elements are needed only in the processors
where they are calculated. Hence no vector elements are needed to be transfered to other
processors. The scalar products are calculated by summing up the contributions from each
processor. Matrix-vector multiplications are involved in the multiplication by the matrix A,
see Section 1, and in method m6 also in the solution of the preconditioning system. The
submatrices A11, A12 and Ass involved in the matrix-vector multiplication have a non-zero
structure given by the nonzero couplings shown in Figure 5. Because of the nonzero couplings
between node a and the nodes ¢, d, f and g, see Figure 5, the parallel implementation of,
say Aji1d, d a vector, by the main principle mentioned above, utilizes that elements of d
corresponding to nodes being nearest neighbours to the subdomain boundaries have to be
transfered to the nearest neighbouring processor. The actual nodes are denoted by O in Figure
4. The data transfers can all be made in parallel.

Concerning the parallel implementation of the preconditioning systems, the methods m3
and m6 both involve the solution of the systems LiLiTri = g;, i = 1,2, see Section 2. We
consider for simplicity only Lih; = g1, where hy = LTr;. As is pointed out in Reference [1],

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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X2

P3

P2

P1

X1

Figure 4. Decomposition of the domain between three processors. Data in the node s O need to be
transfered in the pcg-algorithm.

the proper nodenumbering for parallel solution of the preconditioning system and the non-zero
couplings of a node to its neighbours give a block structure of L; with diagonal blocks in the
diagonal. Hence the vector h; can be calculated in parallel on each vertical line of nodes in
Figure 4. Because of the nonzero couplings between node a and the nodes ¢ and g in Figure
5, an assumption for the parallel solution is that the elements of h; corresponding to nodes O
in Figure 4 are transfered to the nearest neighbouring processor before the next vertical line
of nodes is treated.

The numerical tests are performed for m = 31,63,127,255 and 511. The stopping criterion
for the iterations is ||r(®) ||y < 1072||r(®)||5 . The programs are run in parallel in batch mode on
4,8 and 16 processors. In Table IV we give the number of iterations, the time for sequential
execution and the speedup for various number of processors. The results show a quite good
speedup for the larger problems. For lagre enough executions the times include some waiting
periods due to other programs. Here this will occur in the largest sequential executions,
resulting in a somewhat larger speedup than the number of processors in some cases. For
small enough problems the use of an increased number of parallel processors will not cause
an increased speedup. A reason for this is that the arithmetic operations are not enough to
compensate the communication times.

An analysis of the parallel algorithm corresponding to method m3 shows that the amount
of arithmetic operations per iteration per processor in terms including m is (27m? — 24m)/k,
where k is the number of processors. The amount of communication per iteration is 12m data
transports in each processor. Hence, the computational time will increase by a factor about 4
and the time for communication will increase by a factor 2 when m is increased by a factor 2.
This is in agreement with the numerical results shown in Table V for method m3 and the use
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Figure 5. The nonzero couplings of a node to its neighbours

method m=31 m=63 m=127 m=255 m=511
m0 Number of iterations 145 321 732 1965 4253
Sequential time 0.46s 4.26s  42.77s 561.00s 5821.93s
Speedup:
4 processors 1.6 2.7 4.0 5.2 4.8
8 processors 1.2 3.0 5.3 8.7 11.6
16 processors - 2.7 5.1 10.8 13.2
m3 Number of iterations 41 68 107 183 299
Sequential time 0.19s 1.19s 8.02s 67.71s  520.26s
Speedup:
4 processors 1.0 1.7 2.5 3.8 4.6
8 processors 1.0 1.7 3.1 6.2 8.0
16 processors - 1.5 3.0 7.0 10.7
m6 Number of iterations 27 50 80 137 226
Sequential time 0.16s  0.75s 8.81s 71.53s  603.42s
Speedup:
4 processors 1.0 1.7 2.9 3.5 4.7
8 processors 1.0 2.0 3.4 5.3 7.1
16 processors - 1.1 2.5 5.8 10.4

Table IV. Results from the parallel implementation.

of 4 and 8 processors. We give the computational time per iteration and the communication
time per iteration for various m. The growing factors for computation and communication
mentioned above and the fact that the time for communicaton is a large percent of the total
time per iteration for the smaller problems explain the small speedup values for these problems.
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Work m=31 m=63 m=127 m=255 m=511
Computational
time per iteration:
4 processors 0.0012s  0.0042s 0.0171s 0.0730s 0.3214s
8 processors 0.00078s 0.0028s 0.0108s 0.0376s 0.1587s
Communication
time per iteration:
4 processors 0.0034s  0.0060s 0.0128s 0.0243s 0.0567s
8 processors 0.0038s 0.0074s 0.0133s 0.0261s 0.0587s

Table V. Times in seconds for one iteration with method m3.

6. CONCLUSIONS

We have compared block-diagonal and full block incomplete factorization preconditioners for
the solution of the linear elasticity problem by the preconditioned conjugate gradient method.
For problems with almost incompressible material we have shown a condition number for the
full block incomplete factorization method, which is a factor 4 smaller than for the block-
diagonal method. Numerical tests on the rate of convergence confirm the theory. Furthermore,
for large problems the theoretical upper bounds for the number of iterations are close to the
number of iterations from our computer experiments.

The approximate block-diagonal and approximate full block preconditioners,where no inner
iterations are performed, give a slower rate of convergence. However, the smaller amount
of computational work per iteration results in the lowest work per unknown for these
methods. For the testproblem with § = w/8 and ¥ close to one, the approximate full block
preconditioning method is faster than the approximate block-diagonal preconditioning method.
The approximate block-diagonal method is however slightly better than the approximate full
block method for § = 0 and various o.

For a discontinuous elasticity problem it is shown that the condition number is independent
of the discontinuity, which also is confirmed by numerical results. The number of outer
iterations is almost independent of the discontinuity. The approximate block-diagonal method
is the fastest method for this problem. However, the rate of convergence is slower than for the
continuous problem.

The parallel implementation of the fastest methods, i.e. the approximate block-diagonal and
the approximate full block methods show a good speedup for larger problems. We have used
4, 8 and 16 processors and the implementation is made by message passing using the MPI
System.

It is obvious how to generalize the (approximate) block-diagonal preconditioning method to
three space dimensions, see Reference [1]. The (approximate) full-block method, however, is
not applicable to 3D problems. We note that the computer experiments have been performed
on very regular domains and meshes. In Reference [12] our idea of node-numbering giving
a high degree of partial parallelism and equal processor load is generalized to more general
triangulations of more general domains and to 3D.

It is apparent how to solve the three subproblems corresponding to different space directions
in 3D, appearing in the block-diagonal method, in parallel utilizing just three processors. This
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low degree of parallelism is considered in Reference [4] for instance. Parallelism can also be
achieved by dividing a mesh into subdomains. Our type of methods can then be applied to
each subdomain to get a higher degree of parallelism.

In the third part of this trilogy Reference [14], we generalize our theory and methods to higher
order approximation by using hierarchical finite element technique. Promising computer tests
have been performed also for this generalization.
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