TENSOR PRODUCTS OF MINIMAL HOLOMORPHIC
REPRESENTATIONS

GENKAI ZHANG

ABSTRACT. Let D = G/K be an irreducible bounded symmetric domain with
genus p and HY(D) the weighted Bergman spaces of holomorphic functions for
v > p— 1. The spaces H”(D) form unitary (projective) representations of the
group G and have analytic continuation in v; they give also unitary representations
when v in the Wallach set, consisting of a continuous part and a discrete part
of r points. The first non-trivial discrete point v = 3 gives the minimal highest
weight representation of G. We give the irreducible decomposition of tensor product
H3®H?z. As a consequence we discover some new spherical unitary representations
of G and find the expansion of the corresponding spherical functions in terms of the
K-invariant (Jack symmetric) polynomials, the coefficients being continuous dual
Hahn polynomials.

INTRODUCTION

Let D = G/K be an irreducible bounded symmetric domain of rank r in a complex
vector space V with Lebesgue measure dm(z). The Bergman reproducing kernel of
D is of the form h(z,w) P, where p is the genus of D. Let v > p—1 and consider the
weighted Bergman space H” with the weighted measure h(z, z)"?dm(z). They give
naturally unitary representations of the group GG and have analytic continuation in
the parameter v. The set of those v for which H" still form unitary representations
is called the Wallach set and has been determined by various methods ([24], [29] and
[5]). It is a union of an open interval and a discrete set, the last point in the discrete
set is ¥ = 0 and corresponds to the trivial representation. Suppose that the rank
r of D is bigger than 2. The other points in the discrete Wallach set correspond
to some singular representations of GG; the K-types appearing in the representations

a

form some lower dimensional lattices. The first discrete point v = 3 above the

trivial point ¥ = 0 gives the minimal representation and the lattice of K-types is
one dimensional. Minimal and singular representations are of considerable interests
since they normally can not be constructed by standard methods. One may well
expect that the representations appearing in the tensor product decomposition are
also some minimal (singular) representations, thus it is worthwhile to study. Indeed
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we discover some new irreducible unitary (minimal) representations that appear in
the decomposition. We also find the annihilating invariant differential operators of the
tensor product; we find the expansion of a family of spherical functions in terms of the
K-invariant polynomials, which are the Jack symmetric polynomials, the coefficient
being the continuous dual Hahn polynomials.

To give a brief background we consider first the case of the unit disk D = G/K =
SU(1,1)/SO(2) in the complex plane. The Hilbert space H” in question are the ones
with reproducing kernels (1—zw) ", v > 0, with v = 0 giving the trivial (and minimal)
representation; so the problem of tensor product of the minimal representations in
this case is trivial, however the consideration for other parameter of v will give us
ideas for treating higher rank cases. In our earlier papers [32] and [21] we studied
the explicit spectral decomposition of the tensor products. The main idea there is to
study restriction operator R, Rf(z) = (1 — |z|?)” f(z) from the tensor product to the
space C*(D), which was considered earlier also by Repka [22] and [23] (an idea due
to Howe, see loc. cit.); the operator R intertwines the tensor product action with the
regular action of G. We consider further its polar decomposition, R = |R|U. The
operator R is bounded and has dense range into the space L?(D) with the G-invariant
measure, for v > 1. Thus for those v the operator U is a unitary intertwining operator
onto the space L?(D), whose decomposition is given by the known spherical transform
([7], Introduction). However for smaller values of v, the above polar decomposition
does not make sense. Let ¢,(z) be the spherical function on the unit disk. Our idea
is simply to consider the power series expansion of the function (1 — [z|?)™¢x(2),

(1=22)""pa(2) = va,m(k)(zz)%-

Conceptually the 1.h.s. is restriction to diagonal (z, z) of the eigenfunction R~'¢, of
the Casimir element on the tensor product, and the formula is its expansion in terms

of the K = SO(2)-invariant elements (zw)?" in the tensor products. The action of

1) on the coefficients

Pum(A). It turns out that p,,,(A) are the continuous dual Hahn polynomials, whose

the Casimir element is equivalent to a multiplication by (A2 +

orthogonality relation has been proved by Wilson (see [30], [1] and [14]). So by using
the orthogonality relation, we found in [19] the irreducible decomposition of the tensor
product H” ® H" for all v > 0.

Consider general irreducible bounded symmetric domain D = G/K of rank r >
2. By a general consideration we know that the representations appearing in the
decomposition of the tensor product H” ® H” are spherical, for all v in the Wallach
set. Our interests will be the tensor product when v is in the discrete Wallach set. So
let v = (j — 1) be such a point. We consider the expansion of the functions R™¢,
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in terms of the K-invariant polynomials.' more precisely

(0.1) h=(z,z)pr(z me ,2),

in a neighborhood of z = 0. (See Section 1 for the definition of K,,.) This formula
makes sense for all v. For any invariant differential operator M € DY (D) with eigen-
value M()) on the spherical function ¢, the invariant differential operator R~* MR
on the basis vectors { K,,,(z, w)} is then unitarily equivalent to the multiplication op-
erator by M()) on the coefficients {py(A)}, see Proposition 2.4. Our problem will
be partly to identify those polynomials.

The algebra D% (D) is commutative with 7 generators. In his paper [26] Shimura
constructs an r-tuple of generators (L1, Lo, ..., L,). Later the author [35] has found
the eigenvalues of the generators on the spherical functions. When v = £ we prove
that the image R(H? ® E) of the tensor product under R is annihilated by the
operators Lo, ..., L,; see Proposition 4.1. By our early results [35] on the eigen-
values of the Shimura operator we know that a spherical function ¢, is annihilated
by those Shimura operators if and only A is in certain one dimensional hyperplane.
For those ¢, we find the above expansion, where only those m = (m,0,...,0) ap-
pear. The coefficients turns out also to be the continuous dual Hahn polynomials,
their orthogonality relation then gives the spectrum of the multiplication operator
by £1()) and thus the operator of R™'L;R; see Theorem 6.1. For type I domain
SU(2,2)/(S(U(2) x U(2)), this has been done in [20] by using the explicit (Berezin’s)
formula for spherical functions [9].

It turns out that when (and only when) D is a non-tube domain of type one
SU(r,r+b)/S(U(r) x U(r + b)) with b > 2 there are discrete parts, to be called
complementary series, appearing; and they naturally deserve further study. Viewing
the tensor product as the space of Hilbert-Schmidt operators we thus get a quanti-
zation of the complementary series, see Theorem 7.1. In fact, we find that a larger
family of spherical representations can be quantized as Schatten von-Newmann &,
operators on H?, so that we get some invariant Banach spaces (instead of Hilbert
spaces) generated by the spherical functions. See also [4] for the rank one case.

We mention that the tensor product decomposition has been an important methods
in producing new representations, and has been studied extensively in the literature,
in particularly in its relation to dual pairs; see [11]. In their paper [3] Sahi and
Dvorsky studied the tensor products H; ® --- ® H; of several more general singular
representations and construct dual pairs. See also [8], [16], [17] and references therein.
Also, there are some renewed interests in complementary series in connection with
some other analytical problems; see e.g. [12].

The paper is organized as follows. In Section 1 we recall some well-known results on
holomorphic spaces on bounded symmetric domains, and we prove a decomposition
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result on the point-wise product of two irreducible polynomial spaces. In Section 2
we incorporate the known results on tensor product of H” ® H” for regular parameter
v. Section 3 and 4 are devoted to Shimura invariant differential operators and their
annihilating property. In Sections 5 and 6 we find the irreducible decomposition of
the tensor product. In Section 7 we study in particular the complementary series
appearing in the decomposition. Section 8 is devoted to the proof of positive definite-
ness of the spherical functions, which, with the help of our explicit formula for the
Clebsch-Gordan coefficients and their orthogonality relation, is straightforward and
of an abstract nature. For the convenience of the reader we list some known property
of the continuous dual Hahn polynomials in the last section.

Acknowledgement. I would like to thank Miroslav Englis for his careful reading of
an earlier version of the manuscript and for some helpful remarks, and Bent Orsted
for his encouragement.

1. BOUNDED SYMMETRIC DOMAINS AND THE POLYNOMIAL SPACES

In this section we fix notations and recall some necessary results on bounded sym-
metric domains. The notation and setup will be the same as in [35] and [34], so that
we will be very brief.

Let G/K be an irreducible Hermitian symmetric space. It can be realized as a
bounded convex domain D in a complex n -dimensional space V with G realized as
the identity component of the group of biholomorphic mappings and K the isotropic
subgroup of 0 € 2. Let g be the Lie algebra of G, g = p @ € be its Cartan decompo-
sition. The Lie algebra £ has one-dimensional center. Let g© = p* @ £ @ p~ be the
corresponding eigenspace decomposition of g€, the complexification of g. The vector
space V = p* can be identified with the holomorphic tangent space.

The vector space V' has a structure of a Jordan triple system so that p = {£,(2) =
v — Q(2)0;v € V} where Q(2) € Aut(V,V) is a quadratic operator. We normalize
the K-invariant inner product (z,w) on V by as in [34], so that a minimal tripotent

has norm 1.
We fix {e1,...,e,} a frame of V and a = R, + --- + RE,. Then a is a maximal
abelian subspace of p with basis vectors &, &, -, &, . Let {ﬂj}gzl C a* be the

basis of a* determined by

ﬂ](gek) = 25]',/6’ 1 S ]ak S r,

and define an ordering on a* via

Br > Pro1>--> 1 >0.
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We will write an element A\ € (a*) as

A= \B;
j=1

and identify A with (A, Ao, - -+, \;). The half sum of the positive roots is given by

r

r b .
(1.1) Ezzpjﬁjzz +1+a(] 1)ﬂj,
j=1

: 2
j=1

where a is the root multiplicity of ﬂ’i—ﬁk and 2b the root multiplicity of [32_]

Let P(V) be the space of all holomorphic polynomials on V. The group K acts
naturally on P(V) induced from its regular action on V. Its irreducible decompo-
sition is now well known; see [10], [25] and [5]. To state the result we let h be a
Cartan subalgebra of € that contains the elements D(ej,e;), j = 1,2,...,7. Let
Y1 > Yo+ > 7, be the corresponding Harish-Chandra strongly orthogonal roots.
Thus v, (D(e;, €5)) = 205. The space V = pT is now of highest weigh ~; with highest
weight vector eq; and dual space V' = p~ is of lowest weight —v;. The subspace P,, of
homogeneous polynomial of degree m is decomposed into irreducible subspaces with

Pm=) _ Pm

where each Py, is of lowest weight —m = —(myy1 + -+ - + m,7y,) with my > mg >

multiplicity one as

.-+ > m, > 0 being integers, and the summation is over all m with |m| = m; + my +
S+ my = m.
We define a K-invariant function h(z) on D so that

h(cier +ceg + -+ crep) = (1 — |ed)) (1 — |ez)*) ... (1 — e ?)

and let h(z,w) be its polarization, holomorphic in z and antiholomorphic in w so that
h(z,z) = h(z). Consider the weighted probability measure

(1.2) du,(2) = ¢, h(2)""Pdm(z)

with v > p — 1 and ¢, a normalization constant. We denote H” the corresponding
weighted Bergman space; it has reproducing kernel h(z, w)™".
The group G acts unitarily on H” via the following

(1.3) T()(9)f(2) = (Jy-1(2))7 f(g '2), g€G,

and it gives irreducible unitary (projective) representation of G. One may also con-
sider more generally the actions of G on vector-valued C*°-functions on D; see (3.1)
below.

We recall now the Faraut-Koranyi expansion of the reproducing kernel h(z,w)™".
Let K,y be as in [5] the reproducing kernel of the subspace Py, with the Fock norm.
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Theorem 1.1. (Faraut and Koranyi [5], Theorem 3.8) The function h(z,w)™" has
the following expansion

(1.4) h™"(z,w) = Z(V)me(z, w)

for all v € C, and the convergence is uniform on compact subsets of D x D. Here

T

(V)m = H(v—§j—1 HHU——]—l +k-1).
Jj=1 j=1k=1
It follows from this expansion that the kernel h~"(z,w) is positive definite and
defines a Hilbert space if and only if v is in

(1.5) W(D )—{0 2(7‘—1)}U( (r —1),00),
also called Wallach set.

If v = $(j — 1) in the discrete Wallach set, only certain subspaces P are in the
Hilbert space H” = H3U~1; more precisely
(1.6) H30Y Z Pum

m: mJ =

Moreover it forms an irreducible representation of G with the action 7(v). In partic-
ular, the algebraic sum of all Py, with m; = 0 forms an irreducible representation of
the Lie algebra g°.

The next lemma will be used in the proof of Theorem 5.2.

Lemma 1.2. Let 1 < j < r—1. Consider the product Puy - Puy (consisting of sum of
point-wise products two polynomials in the respective spaces) of a subspace Py with

signature m = (my,0,...,0) and Py with m' = (m},...,m/_1,0,...,0). Let

j—1»
PmPa =Y Pa

be its irreducible decomposition under K (which is multiplicity free by Theorem 1.1).

Then the signatures n = (nq, ..., n,) that appear in the decomposition satisfy njq =
0.

To prove the lemma we give a more general result on tensor products of Hilbert
spaces with reproducing kernels; it might have been proved previously, but we include
here a simple proof. (Similar arguments have also been used in studying tensor
product of a holomorphic Hilbert space with its conjugate; see e.g. [4].)

Let temporarily H(K;) and H(K5) be two Hilbert space of holomorphic functions
on a bounded domain 2 in C"* with reproducing kernels K;(z,&) and K;i(z,&), so
that the point evaluation is a continuous linear functional. Thus the reproducing
kernels Ki(z,€) and Ki(z,&) are positive definite. The point-wise (Schur) product
K1 Ky (z,§) = Ki(2,&)Ks(z,€) is again semipositive definite. Let H(K;K3) denote
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the corresponding Hilbert space determined by the reproducing kernel and H (D) the
space of all holomorphic functions on D. The tensor product H(K;) ® H(K3) can be
realized as a space of holomorphic functions F'(z,w) in two variables.

Lemma 1.3. Consider the operator R : H(K) @ H(Ky) — H(D) by the restriction
to the diagonal Rf(z) = f(2,2). Then R extends to an isometry from (Ker R)* onto
H(KLK,).

Proof. Clearly Ker R is a closed subspace of H(K;) ® H(K3). Thus R defines a one-
to-one map from (Ker R)* into H(D). Consider the elements in H(K;) ® H(K>) of
the form g = > ¢;Ki(z, &) Ka(w, &;). Firstly these elements are in (Ker R)*; indeed
for any f € Ker R, by the reproducing property,

(f,9)=>_6f(&.&) =0

Secondly they are dense in (Ker R)L, since if gy € (Ker R)* is orthogonal to all g, it
is in particular orthogonal to g = g = K;(z,&)Ka(w, §) for any fixed £, and

Rgo(&) = 90(&,6) = (90,9) =0,

namely go € Ker RN (Ker R)* = {0}.
The images of g are

Rg(z) = Z iK1 (2, &) Ka(2, &),

and they form a dense subspace of H(K;K5). Moreover R is an isometry, again by
the reproducing property. Thus R extends to an isometry from the closure of those
g, which is (Ker R)*, onto H (K, K>). O

Specifying the above result with K; and K, replace by H ~3 respectively H 301
we see that the products PPy two irreducible subspaces in the H~2 and H 202 is
a subspace in H~ 201 whose decomposition under K is given by the Faraut-Koranyi
expansion in Theorem 1.1.

2. TENSOR PRODUCT OF 7(v) @ m(v) FOR v > p — 1 AND BEREZIN TRANSFORM

The tensor product of 7(v) ® w(v) for the large parameter v > p — 1 have been
studied in several contexts; see [18], [36] and reference therein. We recall some of
the results in the literature. Consider the tensor product HY @ HY, realized as the
space of Hilbert-Schmidt operators 7' on H” with kernel T'(z,w) holomorphic in z
and anti-holomorphic in w. The group G acts on the tensor product via 7(v) @ 7(v),
and it gives a (genuine) representation. To study the irreducible decomposition we

consider the map R : H” ® HY — C*®(D), defined by
(2.1) RF(z) = F(z,2)h(z, 2)".
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Then R intertwines the action 7(v) ® 7(v) with the regular action m(0) on C*(D).
Clearly R is one-to-one. Note that the inverse operator R~! is defined on the space of
all real analytic functions on D and is essentially the so called polarization. (However
generally, R~! f(z,w) for a real analytic function f is defined only on a small set near
the diagonal, so it is not a function on D x D; we thank Bo Berndtsson and Miroslav
Englis for some kind correspondence. In our case we shall only concern the operator
R as defined on R(H” ® H”).) When considering functions f(z,w) holomorphic in
z and anti-holomorphic in w we will frequently identify f with its restriction f(z, z)

to the diagonal and simply write f(z).

dm(z)
h(z,z)P "
When v > p—1 the operator R is an injective bounded operator into the space L?(D)

Let L?(D) be the L?-space on D with respect to the G-invariant measure

with dense image; the decomposition of the later space is well known by the theory of
spherical transform. Moreover the operator RR* is actually the Berezin transform on
L%(D). Denote (H” ® H), the subspace of K-invariant elements. In that subspace
there is an orthogonal basis given by Kpy(z,w), the spherical transforms of their
images R(K,) under R provide then the Clebsch-Gordan coefficients; moreover they
give also the coefficients in the coefficients of the expansion of the spherical function
in terms of K.

We let
(2.2) Em(z,2) = Emu(2,2) = (V)mEm(z, 2)
2.3 em(z) = emu(z, 2) = 2 = WnHml2r2)

where dp, = dim Py,. The following result is then a direct consequence of (and in fact
is equivalent to) the expansion (1.4).

Lemma 2.1. If v > §(r — 1), then the functions ewy, form an orthonormal basis

of (H, ® H,)o; if v = 57— 1) for some j = 1,...,r, then the functions em, for
m = (my,...,m;j_1,0,...0) form an orthonormal basis of (H, ® H,)o.

The next result is proved in [34] (see (5.5) there). Let ¢,(z) be the spherical
function D. We denote f(A) the spherical transform of a K-invariant function f on

? ()
/f A

The constant ¢, below is that in Note ﬁrst that the function A" (2)¢x(z) is
formally the restriction to the dlagonal of the polarization R~ '¢, of ¢,.

Y

Lemma 2.2. Consider the power series expansion of h_“(z)(/ﬁ,\(z)

(2.4) (R7'a)(2) = b meu ,2)
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in terms of the K-invariant polynomials Exy(z,2). Let
(25) em() = e () = dinimo ().
Suppose v > p — 1. Then the coefficients Em(A) can be obtained by the spherical

transform,

(2.6) by (N dmEmy (X) = (o7 Kun)(A).
and

(2.7) by (Nemu (D) = (G 7 em)(N)

Remark 2.3. The above expansion (2.4) is valid a priori only in a neighborhood of
z = 0. There arises naturally an interesting question as whether it holds for all z € D.
We

Proposition 2.4. Suppose v € {0,5,...,5(r — 1)} U (5(r — 1),00). Let M be an
invariant differential operator on C*°(D) with eigenvalue M(A) on the spherical func-
tion ¢,. Then the invariant differential operator R™* MR on the orthonormal basis
{em(2)} of (H*®H")y and the multiplication operator M()) on system of polynomials
gem(A) have the same matriz form. Namely if

(2.8) (RT'MR)en(z Z“m

then

(2'9) 5mu Zam 5m’u )

Proof. Suppose v > p — 1. The matrix form (2.8) can also be written as, after
multiplifying the constant c,,

M(c,h em) (2 Zam e hY (2) e (2).

We perform the spherical transform on the equation and use (2.6). The LHS then
becomes M (A)b,(A)em,»(A) and the r.h.s. is

Zam by (A)em v (A);

dividing the both sides by bU(A) proves the claim for v > p — 1. It is easily seen that
the matrix forms (2.8) and (2.9) depend polynomially on the parameter v. Thus it
holds for all » and m whenever ey, , is well-defined. O

Remark 2.5. The above Proposition is a justification of a simple formal calculation.
Let L be a self-adjoint operator on a Hilbert space, and {e,,} an orthogonal basis so
that each vector is in the domain of L. Suppose

Ley, = apem—1 + bmem + Cm€m+1
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and that ¢ = Y °_, fmen is an eigenvector of L with eigenvalue A (in some proper
sense). Then the coefficients f, satisfy the following recurrence relation

)\fm = am—|—1fm—|—1 + bmfm + Cm—l.fm—l

which we may refer as the dual relation to the former. On the other hand, if the
two relations hold then the series 1) = > -~ fie., is an eigenvector of L whenever it
makes sense. If moreover {e,,} is an orthonormal basis then a,,+1 = ¢, since L is a
self-adjoint, and the two relations are exactly the same.

3. INVARIANT DIFFERENTIAL OPERATORS

We introduce the Shimura system of generators of all invariant differential operators
on D. Let (X, 7) be a holomorphic representation of K€ on a finite dimensional vector
space X. This then induces a homogeneous bundle W on D. A smooth section of the
line bundle will be identified with an element in C*°(D, X), the space of X-valued
C°°-function on D = G/K. The induced action of G on C*°(D, X) is

(3.1) mx(9)f(2) = 7(dg *(2)) 'f(g *2).
In particular, if X = C is one dimensional with 7 on K€ being (det(k)) », we get
the action (1.3) on C*(D).

We let D = Dx be as in [35] the holomorphic covariant differentiation operator on
C*(D, X). It maps C*(D, X) into C*(D,V'® X ), where V' is the dual space of V,
viewed as the space of holomorphic cotangent space. More importantly, it intertwines
the corresponding actions of G,

Dx(mx(9)f) = mviex(9)(Dx f)-

Let D} = Dgm-1y1gx - .. Dyvigx Dx be the iterate of D. It has been proved in [35]
that D™ actually maps C*(D, X) into C*(D, S,,(V') ® X), where S,,(V') stands
for the subspace of symmetric tensors of ®™V'. The space S,,(V’), as a K-module,
is equivalent to the space of all homogeneous polynomials of degree m, thus can be
decomposed under K as irreducible subspaces Sy, (V'), of signature m = (my, ..., m,);
we let P, be the orthogonal projection onto the corresponding subspace. The operator
Py D™ thus maps into the subbundle S, (V') ® X. The Shimura invariant differential
operators on C'*°(D, X)) are then defined by

Lm = (DY) PuD¥,

where (D7R)* is the Hilbert space adjoint. In the present paper we will only consider
the operator £, on the trivial line bundle on D.

The operator D has been previously studied by Shimura for classical domains. In
particular, Shimura [27] has given easier formula of the operators PnD™ in terms
of the Cayley-Capelli type operators, when m are the fundamental representations



TENSOR PRODUCTS OF MINIMAL REPRESENTATIONS 11

m= 1= (1,...,1,0,...,0). We specify his results (see Theorem 4.7 loc. cit.) to
the special case of scalar-valued functions; it is proved there for classical domains and
is generalized in [35] for all bounded symmetric domains.

Theorem 3.1. Let1 < j <r ande = %(j—1). The operator Py;0’ has the following
intertwining property

(3.2) Py (J5(2)f(92) = Jo(2)7 (@7 dg' () (P ) (92);

the operator Pl_ij on the space C°(D) with the reqular action of G can be expressed
in terms of Pyid? as

(3.3) PyDlf = 20D P,/ (R 307D f).

Consider the trivial line bundle on D. It has been proved by Shimura [26] that the
operators

(3.4) Li=Ly, j=1,...,r

form a system of generators of the algebra of all invariant differential operators on
C>(D).

Recall the intertwining operator R. Via conjugation by R we get r invariant dif-
ferential operators

(3.5) Li,=R'CLyR, j=1,...,r

on the tensor product H" @ H".

4. THE INVARIANT ANNIHILATING DIFFERENTIAL OPERATORS OF THE SPACES HY
AND OF THE TENSOR PRODUCTS H” @ HY AT THE DISCRETE POINTS.

We shall prove in this section that the Shimura operators on C* (D) are annihilating
differential operators of the image under R of the H” ® H” at the reducible points
v=2%5((—-1),j=1,...,7. We mention that holomorphic differential operators that
annihilate the H” have been studied in [2] and [31].

Proposition 4.1. Let 1 < jo < r. Consider the intertwining operator R = Raj, 1)

from the tensor product H2U0~Y @ H2Wo=Y jnto C°(D). Its image R(H2W™Y ®

H200=1) s annihilated by the Shimura invariant differential operators L; for jo <
Jj<r.

To prove the proposition we need the following

Lemma 4.2. Let 1 < j < r. The operator Pl_jaj annthilates all polynomial spaces
Pm with m = (my,...,m,) and m; = 0.
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Proof. The space H2U~Y) is an irreducible representation of G with the action 7 (%(j —
1)). Consider its subspace of the algebraic sum of all polynomial, by (1.6) it is a direct
sum of those Py, so that m; = 0. It forms an irreducible representation of of g¢. By
the intertwining property of Py;0? stated in Theorem 3.1 we know that the kernel
Ker P;07 is an g“-invariant subspace. Clearly the constant function f, = 1 is in
the kernel. By the irreduciblility we know that Ker P;;07 is the whole polynomial
space. ]

Proof of Proposition 4.1. The function 1 ® 1 is a cyclic vector of the H” ® H” under
the action of G as easily seen using the reproducing property (see e.g. [4]), thus the
function R(1 ® 1) = h” is a cyclic vector of R(H” ® H”). Let v = %(jo — 1). We
prove £;R(1 ® 1) = £;h50°~Y) = 0, the result then follows by the cyclic property of
R(1®1). Now £; = (D?)*PyiD? and by Theorem 3.1 we have

Plj'Djh%(jo_l) — h%(j—l)pljajh—%(j—jo)_

We claim that P;;0” h~20=5) = (. Indeed consider the Faraut-Koranyi expansion of
h_%(j_jo):

h_%(j_j")(z, z) = Z (g(j — J0))mKm(2, 2).

mim;—jo+1=0
Being the power series expansion of h~207J0)(z, 2) it is absolutely convergent in a
neighborhood of z = 0. Each term K,,(2,%) is a sum of holomorphic polynomi-
als in Py with m;_;+1 = 0, consequently m; = 0, with coefficients being anti-
holomorphic polynomials. Thus Pyjd’ K,(z,2) = 0 by Lemma 4.2. Consequently
Py h~2(~J0) = (, by the commutativity of the differentiation and summation in a
power series expansion. O

Proposition 4.3. The spherical function ¢, is annihilated by all L;, 7 = jo,...,T,
if and only if A is in the Weyl group orbit of (ip1, - ., i0r—jos WPr—jot15r—jot+2s - - - » Sp)
for some (Sy—_jo12-..,8,) € G071,

To prove the result we recall the formula for the eigenvalues of £; obtained in [35],
Theorem 5.3.

Lemma 4.4. Consider the Shimura operators L; on the trivial line bundle on D.
Their eigenvalues on the spherical functions ¢ are given by

j
Li(A)=C;> hig(ps— 0l P — P}
(4.1) p
x my, (AT +pf, - A0+ pi) -
Here C; is a positive constant, hy, is the complete symmetric function of degree k and
my the kth elementary symmetric function.
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Proof of Proposition 4.3. The result will follow somewhat easier if we follow the proof
of Theorem 5.3 in [35]. Suppose that ) is as in the Proposition. We may assume, up
to the Weyl group action, that \j 1 = po, ..., \s =ip,_ji1,sincer —j+1<r—jy+1
and the set {p1, p2, ..., pr_j+1} is a subset of {p1, p2,..., pr—jo+1}. It is proved in [35]
(see formula (5.20) and (5.25) there) that in this case the eigenvalue of £; is of the
form
! 1+b !
£;) =G [+ () =G [T +aD)
s=1 s=1

Thus if in addition Aj 41 = ips, then £;(A) = 0.

Conversely, suppose now that ) is such that £;(A) = 0 for all jo < j < r. We start
with the condition £;(A) = 0 for j = r and prove that after a signed permutation we
have \; = ip;, and prove successively by using the result by the condition £;(A) =0
forj=r—1,r—2,...,%-

Indeed, the eigenvalue £, () is

j=1

Thus £,(A) = 0 implies that one of the Ay is +ip;. We may assume \; = ip;. Fix
this value of A\;. We study the condition £;(A) = 0 for j = r — 1. The eigenvalue of
L;(A) for j =r —1is then, by Lemma 4.4

r—1
Li(N) =Cr1 D> heoak(ph — p1)mu(0, 73 + 05, -+, A7 + pf)
k=0

r—1
=Crr Y (05— D) T Fme (A3 4 o3, A+ p))
(4.2) k=0 L
= Cra(p = 1)) (05 — p) Fmi (NS + 3, A+ p))
ij
=Cra(py — o) ]+ (03 = 007 (A% + 00))
k=2

where in the last equality we have used the formula
l

I
ka($1; L)t = H(l + Txt)
k=0

k=1
for the generating function of my. The product is then, disregarding a positive factor,

T

TTO% + o).

k=2
Thus if £;(A) =0 for j = r — 1, then one of Ay, k = 2,...,7, is ipy; we may assume
)\2 = ’Lpg
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We claim that generally if A; = ips, for all 1 < s < j, for a fixed 1 < 5 < r, then
the eigenvalue of £,_;(}) is

(4.3) ¢ I %+ 2.

k=j+1

Accepting temporarily the claim, the eigenvalue of £;(A) = 0 for j = r — 2 implies
that A3 = ip3, and the result is then proved by repeating the argument.
The eigenvalue £,_;(}) is, disregarding the nonzero constant,

Zhr ek (05 =L e = ) e (=05 L —pF 01 AT+ 0L A+ Y)

To simplify the nation we write ¢, = p2 — p? for k = 2,...,7 + 1. The above formula
is

Z he—j-k(cas - - -5 Cjp1) mi (—Cz, <oy 6y )\J+1 + ,01 )\72" + P%)

As a polynomial of A%, the point A\2,; = —p?,, is its zero. Indeed, denoting tem-
porarily d = (42 + pf,..., A + pf) € C771, at the point A\j,; = —p7,, the
polynomial is

<.

r—

hrfjfk(CQ: ) Cj+1) my(—ca, -+, —Cj; —Cj41, d)

k=0
r—j

= E by — —j—k 027 .- C]+1 E my— l —Cg,° ", —Cy, _Cj-f-l)ml(d)
k=0
r—j r—j

(4.4) = > my(d E hr_j_k(ca, ..., cip1) mp—i(—cay- -+, —Cj, —Cjt1)

=0 k=l
r—j r—j—l

= ml E h’k Coy -y cj—|—1) mrfjfk(_c% Ty, =Gy _Cj+1)
=0 k=0
r—j

my(d)dr—j—1,0 = my—;(d)

=0

where 6,_;_; is the Kronecker symbol; here we have use the formula

k

(4.5) D (=1 mghg s = Ok;

=0

see [15], Section 1.2. But the dimensionality of d is 7 — j — 1 which is less than r — j,
thus m,_;(d) = 0.
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Consequently £,_;()) as a polynomial of A\3,, has a factor A\,, 4+ p?,,. Being a
symmetric polynomial of A2, ..., A7, it has a factor A} +p7,, forall k = j+1,...,7;
thus it is a nonzero constant multiple of their product, thereby the claim (4.3). O

Remark 4.5. The above proof has in effect solved a system of polynomial equations
L;A)=0,jo<j<r

5. MATRIX FORM OF THE OPERATOR R;lﬁlR% AND EXPLICIT FORMULAS FOR
2
THE SPHERICAL FUNCTIONS

We consider now that v = Z. As is proved in the previous section the invariant
differential operators £; for j > 2 act as zero operators on the image of tensor product
H” ® HY under R. We thus consider now the spectral decomposition of the operator
Ly,2 = R™'L,R. Moreover, the representations appearing in the decomposition are
spherical; any spherical representation is uniquely determined by the spherical func-
tion, which in turn is determined by the corresponding eigenvalues of the Shimura
operators Lq,...,L,. The operators Lo, ..., L, annihilate the spherical functions ap-
pearing in the representation. We need only determine the eigenvalues of £; on the
spherical functions that appear in the decomposition, which in turn is given by the
spectrum of Lqa.

We will find the matrix form of the £; ¢ acting on the basis Ky, of H>® Hz. As

remarked earlier, the functions K, are polynomials in (z,w), holomorphic in z and

anti-holomorphic in w, so are also their actions under £; 4, thus they are uniquely
determined by their restriction on the diagonal; the restrictions are then K-invariant,
and are determined by their restriction on exp(a®) -0 = {(s1,...,5:);0< 83 <--- <
sp < 1}

Write s; = exp(t;€;) - 0 = tanht;, j = 1,...,r. In terms of the coordinates
(t1,-..,t,), the radial part of the Laplace Beltrami operator is

Z&Z-HL Z coth(t; £1;)(0; + 0)) +22coth2t8 +2b200tht8)

r>i>5>1 j=1 Jj=1

see [7], Chapter II, Proposition 3.9. However it is more convenient to use the coordi-
nates x; = s3, it is

L, = iju — 1,)%0? + 2(1 — 1;)%0; + qu — ;)%
— = =

(1—xz; Tk)
+0,Z ]—.Z'k ﬂijaj
Jj#k

We can then find a formula for the operator £,, = R, !£1R,. When acting on K-
invariant functions in (z,w) and restricting to the diagonal (z,z2), z = (s1,..., ),

(5.1)
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with coordinates (z1,...,z,) = (s1,...,52)
El,u = R;lMlRu

S (12 - 21— )

2 + Z (1= 25)%0; = v(1 - ) + bz (L= 2;)0; —v)
1Y U 1 g - )
gtk Tk

As is proved in the previous section the spherical functions that appear in the
decomposition of the tensor product satisfy, up to the Weyl group action,

(53) A = (ipl, ey i,Or—1, )\),

for some (with some abuse of notation) A = A, € C. We will find the recurrence
relations (2.8) and (2.9) with )\ as above.
Notice first that when v = £ the expansion (1.4) becomes

o0

_a a
) = 30 (S mKm(22)
m=0
with m = (m,0,...,0), and for z = sje; + - - - + s,e,
1 a Lo (a
Km(z,2) = -3 (23:1v ](/&2‘)_107 s s
Sm oy S, Rl B!
(D Gk ok ok
(54) Em(z, Z) = Z Wsl S
k1+--+kr=m
For simplicity we write hereafter m = m.
Lemma 5.1. With the above notation,
(55) Ll,%Em = AmEm—l -+ BmEm -+ CmEm+1
where
Ap = (m+ gr)(m+1+b+ g(r— 1)),
B, =— <m(2m +ar+b) + gr(l +b+ g(r — 1)))
and

Crn = (m +1)(m + g)

Before performing the calculation we note that by invariance the operator El,% maps
each vectors E,, into a unique linear combination of themself. By the formula (5.2)
we see easily that £q,a Ey, is actually a linear combination of Ep,—1, Ep, and Ey, 1. To
find the coefficients we rewrite £, , (for general v) as a sum of three operators that
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are rising, lowering and respectively keeping the degrees of a homogeneous symmetric
polynomials. First consider the last term there,

Q—m) N~ O—a) | O—w)  x~(@i—a) (7
Z$j—xkxj_z($j—$kxj+Jfk—ﬂfjxk)_z .’L‘j—LEk _<2)’

Jj#k i<k j<k
and
l-z 1—2)(1 —x;

Z (7, _ 2 (1 = zj);0; = Z ( ,k)( 7 (2;0; — xx0k).

itk Tj— Tk r Tj— Tk
Thus

El,u =L + £0 + Ei,
where
Zmy v—1)+2vz;0; + 2507) + Z(]/l‘j + 230;)

(5.6) =1

50:—2(1/+1+b)2x]~ QZxQ(?Q—aZ z; + xk) xj — 20k
(57) Jj=1 j<k

—vr(1+b) —va (T)
2
and

(5.8) L = ix]a]? 1+1b) Za n az Iga — ikak
j=1 i — Tk

i<k

To treat the last term in £~ we observe further that the operator % acting on
a symmetric polynomial f(z,y) = z¢y? + y°z¢ (¢ > d > 0) is

10, — YO0, _ T4 —yed
(59) T—y yf(a:,y)—(c—d)(acy) T—y

= (c—d)(@y) (= + -y,

if we evaluate the result at y = 0, it is possibly nonzero only if ¢ > d = 0, in which
case it is cx®1; if it is further evaluated at © = y = 0, it is zero unless ¢ = 1.
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Proof. Recall that v = §. We calculate £L*E,, and evaluate it at (z1,22,...) =

(21,0, ...,0), which we write as (x1,0). We find
1

L4 En(@1,0) = (5)m— (5(5 = 1) +am+m(m—1)+3 +m) af™*!
+

2
a 1
= GGyt

(m+1)(

a 2 m+1
(5 +m)

a 1

5 +m)(§)m+1m

= (m+1)(5 +m) B (a1,0).

m+1
Zq

So that
a
LYE,(z1,...,2,) = (m+ 1)(5 +m)Ep1(21, ..., 2r)

by the uniqueness of of the recurrence (5.5).
Next we calculate £~ E,,(z1,0). Clearly

ij m(71,0) = 27 tm(m — 1) (&)

m)!

= (m— 1)(% +m —1)Ep_1(z1,0).

To deal with the differentiation ) %_, 0; = 01 + ) __, 0; we write

kr
ro

Onp 5 @G
ml 1 ol k2
ki+--+kr=m,k1<m

Em(x) = ez

the differentiation 0; on the second term in E,,, when evaluated at (z1,0), is clearly

m o Em e
alEm(fL'l,O) :81 72’)’1' Ty = 27(1}' 1.

zero. Therefore

Using the observation (5.9) we see that

- - (%)m—l(%)l m—1 _ %(%)m—l
Za m (21,0 (Zaj) (Z mxl xj) =(r- Uﬁ

=2 7j=2
So that
L Ep(z1,0) = C%x?’_l = CEp_1(z1,0)

with the constant C' given by

C= (m—1)(g+m—1)) 1 +b)(2 +m—1—|—(r—1)2)+a(r—1)(g+m—1)
a(r—1)(r—2)
+ a2 5
a a
=(m—-—1+ §r)(m+b+ 5(7‘— 1)),
which is the A,, claimed in the Lemma. Finally £L°E,,(z;,0) can be calculated by
similar method. 0
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We consider the dual relation of (5.7):

(5.10) _()‘2 + P?»)gm(&) = Am11Emi1(Qd) + Brn€m(A) + Cro1Em-1(d)
with £ (A) = 1. This relation (5.10) is exactly (9.3) in the appendix, (with « there
being p,, 3 = L and v = —1£2 + ¢) which along with the given &(A) uniquely

determines the polynomials; therefore

. . a a
(5.11) Emn(QA) = sFa(—m, pr + 1M, pr —iX; 1+ 0+ 5(7‘ —1), o7 1).
Consequently, by the argument in Remark 2.5, the series

(5.12) Y(2) =) En(N) En(2)

is an eigenfunction of £ ¢ with eigenvalue —(A\? + p,)?, whenever the power series is
uniformly convergent.

Theorem 5.2. The function h™%(2)¢5(2) for A as in (5.3) has the following expan-

ston

(5.13) h(z) 26y(2) = Y Em(A)Em(2),

m

and the series converges uniformly on compact subset of D.
To prove the theorem we need a technical estimate.

Lemma 5.3. Suppose o, 3 € C and y > 0,0 > 0. Let M > 0 be such that |o| + M >
v, |8+ M > 6. Then

(laf + M)m (8] + M)m

(&) m(V)m
Proof. By its definition
- () (@);(8);
Fa (= a g0 = 3o () 2
e ; 3/ (7);(9);
We observe that
m
5) s
J
and for any two positive numbers a > b > 0
(<0t (9
— b7 bb+1) — ~ (b);
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for any j > 0. Using these two inequalities we have

sF2(—=m, a, 357, 6; 1))

(1a); (18D
SWZ}@M%

(laf + M
(v

;1B + M);

i(0);

(Jol + M) (18] + M)
(7 m(é)m

ol +M)n (8] + M)m

' (V)m(0)m

IA
3
NE

(5.14)

<.
Il
)

A
3
NE

<.
Il
)

£
+
=

O

Proof of Theorem 5.2. We prove that the function ¢(z) defined in (5.12) is convergent
and that ¢,(z) = h2(2)¥(z). Notice that E,(sie; + --- + spe,) < (57)m (2m  where

m!

s = max{si,...,s,}. Using the previous lemma, with «, 3,y and ¢ replaced by the
corresponding numbers in (5.11), and a fixed large M, we get

(o] + M) (18] + M)y V)1
(V)m(6)m m!

By the ratio test the series t(z) is convergent if s < 1, we thus get the uniformly

|Em(A)| B (sie1 + -+ -+ spep) < (m+1)!

convergent on compact sets of D. The function 9(z) is an eigenfunction of £, a
with eigenvalue —(\? + p?), that is, the function hZ(2)i(z) is an eigenfunction of
the Laplace-Beltrami operator £;. We prove that h2(z)y(z) is also eigenfunction of
the higher order Shimura operators £; for 7 = 2,...,r with eigenvalue 0, namely
they are K-invariant eigenfunctions of a system of generators. The result follows
then by the uniqueness of the spherical function. By its definition and Theorem 3.1,
Ly; = (D?)*PyD? and Py D? = h30~YP;;09(h=307Y), so that P, D7 acting on the
function hz(2)(2) is

PyDI(h (2)1(2) = h3U D (2) Py d? (297 Vh2 (2)1(2)) = Pud’ (b 2V (2)1(2)).

The function 9(z) is a sum of K,, with my = 0, namely the expansion (5.11), and
the convergence is uniform on compact subset of D, as just proved; the function
h=30U=2(2) a sum of Ky with n;_; = 0, also with the same uniform convergence
(see Theorem 1.1). The product of two such K, and K,y is a finite sum of K,, with
n; = 0, by Lemma 1.2. That is, =202 (2)4(2) is a sum of K, with m; = 0, all of
which are annihilated by Py;87, by Lemma 4.2. Thus Py; D?(h24)) = 0, consequently
L1 (h2¢) = 0. O
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Proposition 4.3 and Theorem 5.2 can be then summarized in the following corollary;
that (a) implies (c) is in Theorem 5.2, and that (¢) implies (a) can be proved using
the same method as in the above proof (which will not be used in the present paper).

Corollary 5.4. The following assertions are equivalent for A € (a*)©
(a) ¢y is annihilated by all L£;, 2 < j <.
(b) A is in the Weyl group orbit of (ip1,ipa, ..., ipr—1, A) for some X € C.
(c) In the expansion of h™2(2)px(2) in terms of Kym(z,2) all the coefficients of
K are 0 if mg > 0.

Remark 5.5. By the formula (1.3.16) in [14] we see that for z = sjey, the function

Y(2) is
L a a . L a a st
P(z) = (1 - 5%) 2355 (57}07 + A, pr — 0A; 9" 1+b+ §(T - 1); 52 i 1) ’
and consequently
2
a . N a a 5
¢A(Z) :3F2 <§7pr+l)\;pr —2/\;§T,1+b+§(’r—1), S%—l) :

If we formally put » = 1 and a = 0, namely when D is the unit ball in C'*?, then
above formula reduces to

: : |2*
odr(z) = oF1 (,D—H)\,p— iA; 1+ b; SE-1 ;

this is the known formula for the spherical function on rank one domains (see e.g. [7],

p.484 or more explicitly [33]).

6. IRREDUCIBLE DECOMPOSITION OF THE TENSOR PRODUCT H? ® H?

In terms of the orthonormal basis e,, of H? ® H?, the matrix form of Li,2 18

A1) ? st 2
(6.1) EL%em,% = Am ( d 1) €m—1 + Bmem + Cm (d—_H> Cm+1

On the other hand, recalling Proposition 2.3 with &,,()) defined in (2.5), we have
(6.2)

1
2

1
dm-1\? dm 2
_()\2 + P?)Sm(ﬁ) = Am ( d 1) gmfl(A) + Bmgm(A) + Cm ( d+1) 5m+1(A)-
This can also be proved by direct calculation by using (5.10), noticing that Amt1 —
Cm

dg‘%.) Namely the operator £ s on e, and the multiplication operator —(\*4p7) on
£m has the same matrix form. However, in view of the formula (5.11) and Theorem 9.1
in Section 9, &, are orthonormal basis for a L?-space with respect to certain measure,
and consequently it gives the spectrum of the multiplication operator by —(\? + p?)

and further the spectrum of £yq.
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We summarize our results in the following theorem. Observe that discrete parts
appear if @ < 1 + b; this happens precisely when D is the Type I non-tube domain
SU(r,s) (r <s) with b =s —r > 2. Thus for other irreducible domains there are
only continuous spectra. We let ¥ = R* for other domains and

1+5b
E:R*U{i(g—%—i—k);k=0,...,k0}

if D is the type I domain SU(r,7+b)/S(U(r) x U(r +b)), and where kg is the largest
nonnegative integer such that & — %b +k < 0. Let u be the measure given in Section
9 with

1 1 a 1
(6.3) a=p = 5(1+b+a(r— 1)), 8= 5(1—}-()), Y=g~ 5(1+b).

Theorem 6.1. With the above notation the map ey, to €., extends to a unitary opera-
tor from (H2®H 2 )y onto L?(%, du), and the r-tuple of operators (L1,a, Lo s Lya)
is unitarily equivalent to the the r-tuple of multiplication operators (L£1()),0,...,0);

a
,5,..

the vector eg = 1®1 and the function o(A) = 1 are cyclic vectors in the corresponding
spaces. The spectrum of the r-tuple (El,%, Loga,..., Lr,%) of generators of invariant

differential operators on H> @ H? is
{(=(0*+0),0,...,0); A € 5}

7. QUANTIZATION OF THE MINIMAL COMPLEMENTARY SERIES REPRESENTATIONS

Let Ca_110 ., be the discrete part appearing in the decomposition in Theorem 6.1
2 2
and we refer it as a complementary series representation. In this section we construct

directly an intertwining operator from the complementary series C%_ by g into the

_|_
space Sy(H ) of Hilbert-Schmidt operators on H? using the expansion (5.13). Here k

1+b
2

be defined on all spherical functions ¢, for all k. However we prove that it maps the

are nonnegative integers and § — -2 +k < 0. The intertwining operator can formally

¢, into a Hilbert-Schmidt operator if and only if £ satisfies the above condition. This
gives an alternative proof that those spherical representations appear discretely in the

decomposition of the tensor product H? @ H?%, and a quantization of the spherical

. .« . . a
representations as operators on the minimal representation H 2.

Theorem 7.1. Let A be as (5.8) with A = —i(®=2+k), and 0 < k < 2(r—2)+1+b
being integers. If

1+b+a(r—1)
(14+b+5(r—2)—k)

q>

then the map

a _1 1 1 o b
$r(2) = B3 (2, 0)9x(2,w) = Y din® o Sm (AT, pr, §(l+b), a—(1+0)

)ém(2, w)

I3
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extends to a linear operator from the linear span of {px(92); g € G} (of all translations
of ¢ under G) into the Schatten von Neumann class &, of bounded operators on HsS.
Define the norm of an element in the linear span to be the Schatten - von Neumann
norm of the corresponding operator. The closure of the linear span of {¢,(gz2); g € G}
s then an G-invariant Banach space.

The rest of this section is devoted to the proof.
Recall the expansion (5.13). From which we get immediately an expansion for its
polarization,
a 1 —(1+5b
BE ) m) = e S (40, T Y

m

)ém(2, w).

Here we use the S,, to denote the continuous dual Hahn polynomials; see Section 9.
The operators (§)mKm are pairwise orthogonal projections, their &, norm satisfy

a .
15 mEmllg = dim(Pm) = dm,

and
1—4
lemllg = dm *;
thus
1 1 1 a—(1+b)\? 1-¢
-5 q _ 2 2 _ 2
11) ol = 3 (o ey ) (S0 50+, = )

Let us take A = —i(% — 2(1+b) + k). Then

1 a—(1+0b
S’m()\%apra 5(]— + b)a %

(7.2) - (gr)m(l Th+ %(r 1))

)

X 3F (—m,gT+k,1+b+%(T—2)—k;gr,l-l-b-i-%(r—l);l).

To estimate it for large m we use the Thomae’s transformation formula (see [6], p
59),

a a a a
3y (—m,§r+k,1+b+§(r—2)—k,ir,1+b+§(r—1),1)
Gtk
A+0+50r—1)m

a a a
3 Fy (—m,—k,1+b+§(r—2)—k,—r,1—m—§—k,1)

2

The term 3F, in r.h.s. is now bounded for all m, due to the appearance of the
parameter —k so that it is a finite sum of k-terms, each of which is bounded. Thus
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we find
, 1 a—(1+b), a (G + K)m
|Sm (AL, or 5(1 +b), f)‘ ~ (§T)m(1 +b+ §(T = 1))m (L+b+2(r—1))m
= (37)u(g + R

Also, the dimension d,, of the space P,, has been calculate by Upmeier [28]:
(Dt 86 =),
o (1)m(%)m
We can find the estimate of each term in (7.1):

() (Grom G+ 1

(7.3) ::((%”"A%-Fkbn)qdmlq

o (ST S HE-1-9) - (L= @)(§r+14+b+ 5 (r-1)~ 3 1)

~ ma(r—l)—i—b—l—q(k—l—b—%(7‘—2)) ]

Thus (7.1) is convergent if and only if
a(r—1)+b—|—q(l€—1—b—%(r—2)) <-1
or
q(1+b+g(r—2)—k) >1+b+a(r—1)
Since ¢ >0, k=0,1..., and r > 2, the above condition is equivalent to
O§k<g&—m+1+b

and
1+b+a(r—1)
(14+b4+45(r—2)—k)
This proves the first part of the theorem, and the remaining part is then follows by

q>

abstract arguments.

Remark 7.2. Observe that since k£ > 0 the cut-off in the theorem is
1+b+a(r—1)
(14+b+5(r—2)—k)

Namely those operators are never trace class. When ¢ = 2, the condition amounts to

> 1.

14+b6 a
0<k<——=
- 2 2
which is our previous condition in Section 6. Notice further that when
1+b6 «a a
e C<k<=(r—2)+1+b
5 5 Sk< 2(7‘ Y+ 1+

a

the operator h™z (2, w)¢,(z, w) is in &, with ¢ > 2, since ¢ — 2 > 0 in this case.
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Remark 7.3. The unitary complementary series C%f Ly for the group SU(NV,2)
have also been discovered previously; see [13] Theorem 2.1 (a)(iii). (In that paper
Knapp and Speh classified the unitary principal series representations Indysay (7 X A)
induced from a minimal parabolic subgroup M AN with 7 being an one-dimensional
representation of M. In our case 7 is the trivial representation; our series C%_ by
are exactly the all those classified in Theorem 2.1(a)(iii) there. However our result

also gives the K-type structures of the representations.)

8. POSITIVE DEFINITENESS OF SPHERICAL FUNCTIONS

Proposition 8.1. The spherical function ¢x(z) is positive definite for all A in (5.3)
and \ € X.

Proof. Fix Ay € R". For any 0 < 6 < )¢ take nonnegative C*°-function f on (0, c0)
with compact support (Ag — 6, Ag — J) so that

Ao—0
|y pdu =1
Ao—0

Consider the element

Ao—0 "
Fy = A SOV (2, )65 (2, ) dp(N)

0—0

By Theorem 6.1 Fj is a unit vector in Hz ® H%. But

Ao—9d

() @ (3@ FsF) = [ oo+ 0du(

Xo—06
with is positive definite function of ¢ € G. Let § — 0. We claim that

a a

(n(3) © 7(5)(9)Fs, Fy) = éa(g-0),

therefore ¢,(g-0) is a point-wise limit of positive definite functions, and consequently
is positive definite. The proof of the above claim is a routine method. Indeed for any
e > 0 let § be chosen so that [¢x(g-0) — @r,(g-0)| < € when |A — Ag| < 0. Then

- Ao—0d
((3) ® T(5)@)Fs. F3) = dalg-0) = ([ FO)(@alg-0) = dna(g- 0)du()

Ao—9

and its absolute value is dominated, using Cauchy-Schwarz inequality, by

[ oy < ([ nwraw) a0t <

0—0 0—0d

since p is a probability measure, p(Ag — 0, Ag — §) < 1. O
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9. APPENDIX: ORTHOGONALITY RELATION OF CONTINUOUS DUAL HAHN
POLYNOMIALS

We summarize here some formulas that we used in this paper; see [30] and [14].
The continuous dual Hahn polynomials are defined by

(91) Sm(xQ,a,ﬂ,’y) = (a+ﬂ)m(a+7)msm(x2aaaﬂ:7)
where
(92) §m(‘7’l2) = ‘§m($27 «, ﬂ: 7) = 3F2 (_m7 o+ 7;35, o — Z‘Ta o+ /67 o+ Y3 1) -

Then the functions S, (22, v, 3,7) satisfy the recurrence relation (see [14])

(9.3)
—(0® +2°)Sm(2%) = Ams1Sm+1(2%) = (Amst + Crne1)Si(2?) + Cruet St (27),

where

Ap=(m+a+p)m+a+y), Cp=m+1)(m+p+7).
Their orthogonality relation is given in the following
Theorem 9.1. Let

@+ B)ml@+Nm\" = ,
(B +2m ) Sim(@”, @ £,7)

(94) so(a?,,07) = (

If o, 3,7 are positive then

/ Sm(SL'Q,OJ,ﬁ,"Y)Sl(.TZ,OZ,,B, V)d,u'(m) = 5ml-
0
where du(x) on (0,00) is the measure

_ 1 1 ‘F(a +iz)[ (8 — iz)(y + iz) |?
27 T(o+ B)C(a+7)T(B+7) T (2ix) '

If v <0, a and B are positive then

dp(r) = dpia,p(7)

/(o,oo)u{z'(w—k);k:o,1,...,~y+k<0}
where du(x) is the sum of the above measure on (0,00) and the discrete measure on
{i(y+k);0< k< —n}:

3 Py + BTy + )T'(B = )T (a = 7)

ot ['(=2y)
2)k(y + Dy + By + )i
(Ve(y =B+ Di(y — a + 1)kt

Here 0;(y4x) stands for the Dirac measure at the given point.

(9.6)

(_1)k5i('y+k)-
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