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ABSTRACT. The infinite source Poisson model is a fluid queue approximation of network data
transmission that assumes that sources begin constant rate transmissions of data at Poisson time
points for random lengths of time. This model has been a popular one as analysts attempt to provide
explanations for observed features in telecommunications data such as self-similarity, long range
dependence and heavy tails. We survey some features of this model in cases where transmission
length distributions have (a) tails so heavy that means are infinite, (b) heavy tails with finite mean
and infinite variance and (c) finite variance. We survey the self-similarity properties of various
descriptor processes in this model and then present analyses of four data sets which show that
certain features of the model are consistent with the data while others are contradicted. The data
sets are 1) the Boston University 1995 study of web sessions, 2) the UC Berkeley home IP HTTP
data collected in November 1996, 3) traces collected in end of 1997 at a Customer Service Switch
in Munich, and 4) detailed data from a corporate Ericsson WWW server from October 1998.

1. INTRODUCTION

Statistical simulation is of basic importance for the choice of buffer sizes, protocols, network
configurations and other aspects of the design of complex telecommunication systems. Simulation,
and network analysis in general, must be founded on models which capture important features of
the traffic in a realistic and flexible way. Yet the models have to be simple enough to allow for
understanding, theoretical analysis, and easy fitting to many kinds of observed and synthetic data.
A simple model, here termed “the infinite source Poisson model” and sometimes called the M/G /oo
input model, which has the potential to satisfy these requirements for IP; HTTP, FTP, SMTP and
other protocols for file transfers is surveyed and tested in this paper.

Our aim is to explore the statistical properties and limitations of this model, so its potential
usefulness can be fully exploited. We examine its fit to a number of traffic measurements in order
to understand which aspects of the model agree with reality, where the model is robust to deviations,
and in what respects it may require extension and redefinition. A core issue is the relation between
the micro-level infinite source Poisson model and limiting aggregated models outlined below.

Data sets similar to the ones analysed in this paper are rapidly being accumulated by the digital
networking industry and by academic researchers. A further aim is to survey some statistical
methods which we have found helpful, and which may be of use to the engineers and scientists who
are coping with these data sets.

The background is the identification of self-similarity in various types of teletraffic flow rates at
resolutions above a certain critical threshhold. This has created widespread interest in the possible
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origins and effects of the self-similarity. Willinger et. al. ([57, 58, 59, 77, 83, 84, 85]) discussed
self-similarity of packet counts per unit time in LANS and WANS and a parallel discussion of self-
similarity of bytes per unit time in WWW traffic was conducted by Crovella et al ([15, 16, 19, 17]).
Crovella, Kim and Park ([18]) conducted a large simulation study to assess the causes and effects
of self-similarity in situations that involved slowdown nodes, buffers, varying rates and varying
tail parameters. Errammilli and Willinger ([25]) used experimental queueing analysis to show why
classical models without long range dependence would seriously underestimate delays. Resnick
and Samorodnitsky ([67]) constructed an example of a single exponential server fed by a long range
dependent input which had queue lengths and waiting times which were heavy tailed. Mathematical
studies of the connection between on-off inputs with heavy tailed on-periods appeared in [77] and
[45, 46, 37, 61, 48, 47]. The infinite source Poisson model was studied in [70] and [61].

Attempts to explain observed self-similarity in network traffic have largely focused on heavy
tailed transmission times of sources sending data to one or more servers. The common assumption
is that transmission times have iid random lengths with common distribution F. Often F' has heavy
tails in which case it is assumed F' has a Pareto, or more generally, regularly varying tail so that

(1.1) F(z):=1—F(z) ~z “L(z), z — oo,
where L(z) a slowly varying function, so that

. F(tz)
(1.2) tliglo F) =z % x>0,

where F = 1 — F(z). We distinguish three cases which F may satisfy.

(i) F has such a heavy tail that the mean is infinite and 0 < o < 1. Such heavy tails appear in
the BU study of file sizes for the month of November (see the plots in [70]) and are reported
by a Calgary study [7] of file sizes found on various servers.

(ii) F has a heavy tail with 1 < a < 2 so that the variance is infinite but the mean is finite. This
has been a popular assumption for two reasons. The practical reason is the extensive traffic
measurements of on periods reported in [84] where measured values of o were almost always
in the interval (1,2). The theoretical reason is that mathematical analysis of models has been
based on renewal theory and without a finite mean, stationary versions of renewal processes
do not exist and (uncontrolled) buffer content stochastic processes would not be stable. See
for example [37].

(iii) F has relatively thin tails so that the variance is finite. This includes classical models for
telecommunication.

Section 2 defines the infinite source Poisson model and defines the basic descriptor processes:
number of active sources at time ¢, cumulative inputted traffic to the server in [0,¢], traffic rate,
buffer content at ¢, time for buffer overflow of level v > 0. The traffic rate process is the cumulative
inputted traffic in small time intervals. This is obtained from the cumulative traffic by differencing.
This section also considers known Gaussian and jump process approximations to the basic descrip-
tors. For Brownian motion approximations we could not find a proof in the literature, and hence
have provided one.

In Section 3 the statistical methods we have used are presented.

Subsequent sections analyse four data sets in order to see what features of the model are consistent
with the data. The data sets are:
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e The Boston University data recording http sessions in two labs between November 1994 and

February 1995. This data is available at http://ita.ee.lbl.gov/html/traces.html. We analysed
a 8h 20min part of the trace, with mean traffic rate 30 kbit/s.

The UC Berkeley data with an 18 day trace collected in Nov. 1996 which contains the
home TP HTTP traffic processed by UC Berkeley during this period. It is available at
http://ita.ee.lbl.gov/html/contrib/UCB.home-IP-HTTP.html. Here we analyzed a three hour
peak portion of the data, with mean traffic rate of 341 kbit/s.

A low-resolution and a high-resolution data set from the two universities in Munich which
were kindly supplied to us by Helmuth Gogl. The low-resolution traces were collected around
the clock on Wednesday, November 12, 1997 and Wednesday, December 17, 1997, and consist
of the total number of cells which passed an ATM link in every two-second interval, in the
transmit and receive directions with mean traffic rates 5.6 and 8.8 Mbit/s, respectively. The
high-resolution trace records 1690729 inter-arrival times of ATM cells from a measurement
that captured all traffic in the sending direction of the link over a period of approximately 137
seconds with a resolution of 1 microsecond. The measurement was done on Tuesday December
23, 1997 starting at 14:48:15 and ending at 14:50:33 with a mean traffic rate of 5 MBit/s.
The number of bits transmitted and time stamps of starts and completions of HTTP file
transfers to and from a corporate www Ericsson server, collected on Thursday and Friday,
October 15 and 16, 1998. The trace was very non-stationary, and we restricted the analysis
to a 33 minute part of the trace, with a mean traffic rate 273 kbit/s.

For each data set we attempt to assess compatibility of the data with the model. As expected,
there is not always a perfect fit to say the least. Depending on the richness of the available data,
we wished to sort out the following issues for each data set. Limitations of time and manpower
meant we were not always completely successful.

(1)

How do you identify time points which are statistically verified to form a Poisson process? We
examined initialisations of sessions and beginnings of data bursts. When humans log in, it
is plausible and widely believed to be an internet invariant that the initialization times form
a Poisson process but totally implausible that machine generated downloads triggered by an
initial http request would follow the Poisson assumption. However, even for events caused by
humans, aggregation beyond some scale will have to take place in order for Poisson behaviour
to be in force.

We verify heavy tails for such quantities as file sizes, and file transfer times. Lengths of
time depending on human activity such as the length of a login session at a student lab in
the BU study is less likely to exhibit heavy tails. We expect to observe that fine scalings
appropriate for measuring machine generated activity (milliseconds) are inappropriate for
measuring human activity where seconds or even minutes are appropriate and this may explain
why file transmission times look heavy tailed but login sessions do not. Further investigations
into the nature of distributions where we attempt to fit more than the tail are worthwhile
and useful but it should be noted that it is likely that many macroscopic characteristics of a
network will only be sensitive to tail behaviour.

We seek to study the distribution of transmission rates which can be defined as file size
divided by the transfer time of the file. A more difficult question concerns dependence be-
tween transmission rates and file size and to what extent the dependence on network load is
measurable.

We seek to understand the long range dependence behaviour and the local Hélder behaviour of
combined traffic and relate this to the heavy tails found in item (2). An interesting statistical
question is whether estimates of the tail parameter «, or equivalently of v = 1/, based on
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such techniques as maximum likelihood estimation in generalized Pareto models and QQ-plots
( [39, 69, 39, 53, 10]) are consistent with estimates of the Hurst coefficient H and the Holder
exponent, since theoretically, the model guarantees that these two can be expressed as simple
functions of a for the basic limit approximation. We estimate H and the Holder exponent
using wavelet and quadratic variation based methods.

Note that for fractional Brownian motion (fBm), H and the Hélder exponent are identical
so if in practice the estimates of these two quantities differ significantly, we have reason to
doubt that fbm is the appropriate model.

(5) Many of the descriptors in the infinite source Poisson model have Gaussian or in some cases
jump process approximations. We seek to examine the data to see if there are characteristics
compatible with these approximations and, where possible, decide which type of approxima-
tion is more accurate.

(6) Much of the data exhibits evident non-stationarities. (For example, loads on the internet are
heavy in afternoouns, light in early morning.) How do you analyse non-stationary data? One
simple technique, because of the abundance of data, is to restrict attention to a subset of the
data where behaviour is likely to be more stationary. Although this is our primary technique,
a more complete analysis could be performed by trying to view a natural period of time (one
day?) as a period and to then deseasonalize the data.

2. BACKGROUND AND BASIC MODELS.

For later convenience, we first collect some basic concepts, beginning with discussions of self-
similarity, Hurst and Holder exponents and long range dependence. We define Lévy stable motion
and fractional Brownian motion. We then define the infinite source Poisson model and give basic
properties and descriptor quantities, and asymptotic approximations.

The main parameters of the infinite source Poisson model are the connection rate, A, which is
the intensity of starts of file transfers, and the tail parameter « of the transmission times. The
three cases a < 1, 1 < a < 2, and 2 < « lead to different asymptotic approximations which below
are treated in separate sections. The approximations are for large time intervals, [0, 7] and for the
two last cases also assume that A is large. A further issue is that in the middle case the nature of
the approximation depends on the relation between A and T

2.1. Self-similarity, Hurst and Hoélder exponents, long-range dependence. A stochastic
process {X (¢);0 < ¢t < oo} is self-similar if there exists a constant H, the Hurst parameter, such
that the finite dimensional distributions of the time changed and rescaled process 8~ X (6t) are
the same as for the original process, i.e. in formulas, if

0-1x(0) "2 X(.), for 0<8.

In particular, since a centered Gaussian process is uniquely determined by its covariance function,
it is self-similar if and only if its covariance function C satisfies

(2.1) 0 22C(0s,0t) = C(s,t) for 0< 6.

A second order process, Gaussian or not, which satisfies (2.1) is called second order self-similar.
A fractional Brownian motion (fBm) By is a centered continuous Gaussian process with covari-

ance function

o2

C(s,t) = 5

Since C satisfies (2.1), By is self-similar with Hurst parameter H. By setting H = 1/2 an ordinary

Brownian motion, with independent increments, is obtained. It can be seen from the form of C that

(127 + s — |t —s*"), 0<H<1.
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fBm has stationary (but not independent) increments also for H # 1/2. It follows that fractional
Gaussian noise (fGn), i.e. the difference sequence Y, = X ((k + 1)A) — X (kA) is stationary (here
A is the fixed length of differencing). More details can be found for instance in [75].

As discussed in the introduction, network traces looked at on widely varying time scales above
a certain resolution are in the literature often claimed to have similar statistical properties, and
all the limiting processes which are discussed below are self-similar. This is completely as should
be expected. If a process is obtained as a distributional limit by dilating time linearly and scaling
space, then it has to be asymptotically self-similar. See [55, 23].

The semivariogram V of a second order process is defined by

Vi) = S B(X(+7) — X (1))
It is easy to see that C can be computed from V and vice versa. For a self-similar process,
622V (0t,07) = V (t,7). If the process has stationary increments, V does not depend on its first
variable, V(¢,7) = V(7), and if it also is self-similar, then V(1) = V(1)772# := cr=2#_ If the
process is also a centered Gaussian process, this means that it is a fBm. In general, a process is
said to have the local Holder (mean square) index H, at t if the semivariogram satisfies

(2.2) V(t,7) = er?o 4 o(72He), as T — 0,

for each t. For afBm, H = H,, as is easily seen. The Holder index of a Gaussian process gives precise
information on sample paths (see e.g. Adler [5] for extremal distributions, Ibragimov and Rozanov
[41] for Holder smoothness of the sample paths), on the rate of convergence of non-parametric
estimates of the covariance function (Istas and Laredo [44]) and on the asymptotic behaviour of
wavelet coefficients of X (Istas, [42]). There are other definitions of Hélder indices more suitable
to the study of path properties of non-Gaussian processes such as multifractals (cf. [72]). Data
network applications are discussed in [26],[29] and [73].

A process X, is an a-stable Lévy motion if it has stationary independent increments which follow
a non-normal stable distribution with index o, 0 < o < 2. Clearly 6~/*X,(6-) also has stationary
increments, for any 8 > 0. Further, by the characterizing property of the stable distributions,
6~1/*X,(0t) has the same distribution as X, (t) for any ¢ > 0. It follows that X, is self-similar
with Hurst parameter H = 1/a. An iid sequence of a-stable random variables is called a-stable
noise. Thus, in particular the sequence X, ((k + 1)A) — X, (kA);k =0,1,... is a-stable noise for
A > 0. Extensive information about stable processes may be found in [75].

Since stable variables have infinite variances, the variogram and the local Holder exponent are
not defined for stable Lévy motions.

A (centered) second-order stationary process X (t) displays long-range dependence (LRD) if its
covariance function decreases at a polynomial rate at large lags,

(2.3) C(r) ~ K%l 17 = oo,

where K is a constant and 0 < § < 1. Another way to think about this is that the spectral density
I'(v) has a polynomial divergence at the origin,

T(v) ~K'lv| ™, v—o0,

for some other constant K'. The paradigm of such processes is {Gn with 1/2 < H < 1. The LRD
parameter then is related to H by f —1 =2H — 2, i.e. H = (4 1)/2. By analogy with fractional
Gaussian noise, the quantity (8 + 1)/2 is sometimes referred to as the “Hurst parameter” of the
process as soon as the behaviour (2.3) is observed, even if the process is not self-similar .
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2.2. The infinite source Poisson model. We now review the elements of a data transmission
model used in [46], [47], [38], [70], and [61]. Let {I'y,k > 1} be the points of a rate A homogeneous
Poisson process on Ry = [0,00) so that {I'y11 — 'y, k > 1} is a sequence of iid exponentially
distributed random variables with parameter A. (In the stationary case the Poisson process instead
should be defined on R = [—00,00), which leads to some straightforward change of notation.)
We imagine that a communication system has sources or nodes, and at time I'y a connection is
made and a source begins a transmission at unit rate to or from the server. The duration of this
transmission is a random variable L; with distribution F, usually of the form F(z) = z7*L(z).
(We find it convenient to use the same letter L to denote a generic slowly varying function, and
r.v.’s with the d.f. above.) When F has a finite first moment, it is convenient to set

p=E(L)= /000 zF(dz).

The input rate could be made to deterministically vary over the transmission time of length Ly
as in [52] but we have not pursued this nor the potentially more useful idea of having random
input rates where at each transmission initiation a rate is sampled from a random distribution. We
sometimes refer to the Poisson rate A as the connection intensity.

We note that

o0
(2.4) M= Z €(Ty,Lg)?

k=1
the counting function on R; x (0,00) corresponding to the points {(I'x, Lx),k > 1}, is a two
dimensional Poisson process on Ry X (0, oo] with mean measure AL x F, where L stands for Lebesgue
measure. (Cf. [65].)

It is useful to note that this model is stable under aggregation. If the traffic from two indepen-
dent infinite source Poisson models are superposed, then the result also follows an infinite source
Poisson model, with a connection intensity which is equal to the sum of the two intensities, and a
transmission length distribution which is a mixture of the two transmission length distributions.

2.3. Descriptors. The first quantity of interest is N(¢), the number of active sources at time t.
So

o0

N(t) = Z Lry<t<T+Ly]
k=1

=M({(7,1) € Ry x (0,00] 1y <t <y +1}).

The second expression makes it clear that for each ¢, N(¢) is a Poisson random variable with
parameter

t t
(2.5) AL x F({(7,]) € Ry x (0,00] : 7 <t <y +1}) = )\/0 Ft —)dy = /\/O F(s)ds = mf(t).

During a transmission, the transmitting source is sending data to the server at unit rate. The
total cumulative traffic in [0, ] is

t
(2.6) A(t) ::/0 N(s)ds.

The traffic rate process is
{A((k +1)A) — A(kA), k = 0},
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for some fixed A > 0. Assume the server works at constant output rate r. The buffer content at
time t, X (¢), satisfies the storage equation

(27) dX(t) = N(t)dt — Tl[X(t)>0]dt,
or ([36], [8], [63])

(2.8) X(t) =\ [A®) — A(s) —r(t — 9)]

s=0
= N(s) —r)ds,
s:\/0/8< (5) =)

where we have assumed the initial condition X (0) = 0.
A final quantity which is a useful performance measure but which is hard to make inferences
about given the data is time to buffer overflow of a level v which is defined to be

(2.9) 7(y) :=inf{t > 0: X(t) > v}
¢ () <
=inf{t >0: \/ X(s) 29} = | \/ X(s) | (),
s=0 s=0

where for a monotone nondecreasing right continuous function f, we write £ for the left continuous
inverse.

We now describe known behaviour of the basic descriptors for the three cases discussed in the
introduction.

2.4. The case 0 < a < 1. In this section we assume that (1.1), i.e. F(x) = z7%L(x), holds
with 0 < a@ < 1 and survey the asymptotic behavior of the model. The analysis assumes that
the connection intensity A is constant and the time interval considered, [0,7], tends to infinity.
However, undoubtedly the same limits apply also if A and 7" tend to infinity together. This is in
contrast to the next case, 1 < a < 2, where the form of the limits depend on the precise relation
between T and .

For the present case the mean transmission time is infinite and the descriptors N, A, X are
unstable. From [70] we get the first order behaviour: In the function space D[0,00) we have as
T — o0

N(Tt) P ,1_, ATt) pt> @
m@ Tm(T) '2—a’
2—a T
z{i%)) £>2t —a’ V(:F(ZF)) @ a e,

where V(T) = Tm(T) ~ AT?~®L(T)/(1 — @) so that the inverse function V* is regularly varying
with index 1/(2 — «). So the time necessary for the content to reach a critical high level v is of
algebraic order y!/(2=9),

The second order behaviour which gives Gaussian process approximations to the basic descriptor
processes is also provided by [70]. Let {G(t),t > 0} be a continuous path, Gaussian process with
G(0) = 0 and with covariance function

(2.10) C(s,t) =(sVt)l™@ — [t —s|'7, 0<s<t.
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Because of the form of the covariance function, G(-) is self-similar with

G(0) L g0-9/2G(.).

However, G(-) is not stationary, does not have stationary increments and is not a fractional Brow-
nian motion. The process

G(t) = /0 G(w)du

which has covariance function C' (s,t) given by
s t
C(s,t) = / C(u,v)dudv, 0<s<t
u=0 Jv=0

is also a self-similar, continuous path, Gaussian process satisfying G (0) =0 and

G(c) L cB-92G(), e¢>o.

We have the following Gaussian approximations. If (1.1) holds and the distribution F' satisfies
a second order condition (given in [70]) then both the number of active sources, N(¢), and the
cumulative traffic, A(t), are asymptotically normal as T — oo,

N(Tt) —m(Tt)

= G(t),

m(T)
A(Tt) — OTtm(s)ds LG
T/m(T) ’

and in fact convergence is in the Skorohod metric on C|0,00). The latter result of course at once

gives that also the traffic rates Y,C(T) = A((k+1)TA) — A(kTA), for any A > 0, are asymptotically
normal. Further, if the output rate r is allowed to depend on T in such a way that for fixed y > 0,
r = rp = m(Ty), then setting X7(¢) to be the buffer content process at time 7't corresponding to
traffic rate r = rp, we have

V) (7~ er®) = G0 - G, 2

Tt
Ty m(s)ds m(Ty)
t) = - t—y) ).
This says that given an output rate r, define y by y = m“(r)/T, and then for ¢ > y, the buffer
content Xr(t) is approximately distributed as

(2.11) Tm(T) (M + cT(t)> :

where cp(-) is given by

m(T)

Finally, we have for the first passage process of Xr(-), i.e. for 7r(t) := T~17(t), the normalized
time to buffer overflow, that

m(T) (ro(Tm(T)y) — (y + do (7)) = x(v),
where  is a process obtained from G and

dw(v):(y 7)2_a y 1-a
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2.5. The case 1 < a < 2. For this case we first derive some basic moment relations and exhibit and
discuss the stable noise approximations which are valid for large time scales and small or moderate
connection rates (i.e. formally, as T' — oo and A is fixed). Then the fBm limit result of [77] which
assumes that first A — oo and then 7' — oo is briefly mentioned, and finally a theorem which
includes these cases as well as intermediate cases where A and T tend to infinity simultaneously is
presented.

We have that N(T'), the number of active sources at 7', is Poisson distributed with parameter
m(T). Since for the case 1 < a < 2, m(T) — m(oco0) = A < oo, it follows that as T' — oo,

N(T) = PO(w),

a Poisson random variable with parameter Au. Furthermore, for any s < ¢, as T — o0, an easy
calculation shows
Cov(N(Ts),N(Tt))
m(Ts)m(Tt)
3 g(tt_s) F(u)du
~ /m(Ts)m(Tt)

Corr(N(T's), N(Tt)) =

7

since F is integrable on [0, c0) and m(v) — Ay as v — oco. It follows that one cannot expect to get
the asymptotic behaviour of A(-) from the asymptotic behaviour of N(-).
Suppose we write the process A(-) defined in (2.6) as

A=Y {((rk + Ly) /\t) _Pk}

rp<t
=Y (LxA(E=Tx) = D At —Tx),
Tp<t T'p<t

where Ai(s) = s A Ly. This expresses {A(t),t > 0} as a shot noise process and the results of
Kliippelberg and Mikosch ([50, 51] are available. See also [52].
Note that from (2.5) and (2.6), as T' — oo,

—)\/EA/C dS—)\/ Lk/\s
/E du—/ m(u)du ~ ATy = )\T/ F(t)dt
0

Var(A(T)) := o*(T) = )\/O E(Ai(s))ds = )\/O E(Lg A 3)2d3
-2
2-a)(3—a)

Furthermore for 0 < s < ¢

c(s,t) := E(A1(s) A1 (2))

T3F(T), T — oo.

(2.12) = B (L{1j1,<q) + sE (L1l<r, <y) + stP[Ly > 1.
Now, consider the case A constant and 1" — oo. Then,
c(T's, Tt) s a 1—
2.13 = — @ —t ) = C(s, ).
(2.13) T2F(T)  a—1 (2—(13 (5,1)
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Thus c(s,t) is multivariate regularly varying with index 2 — « and limit function C(s,t). From [50,
Proposition 2.2, page 129] we get that for 0 < z < y

&(z,y) = Cov(A(z), A(y))
is regularly varying with index 3 — & and limit function (z <y, h =y — z)
C(z,y) := (const) (:I:ZH +y?H — hQH)

where H = (3 — @)/2. Thus, C(z,y), properly normalised is the correlation function of fractional
Brownian motion with Hurst parameter H. As pointed out in [52, page 8-10], this means the
process A(-) properly standardised asymptotically is second order self similar. However, (cf [52])

(2.14) Gr(t) :== —A(TQ (;)’\“Tt

does not converge (even in the sense of finite dimensional distributional convergence) to a limiting
self similar Gaussian process since ([50, Theorem 3.3, page 132]) as T' — oo,

1 00
2.15 —/ P[L1 A u > y|dud 0,
( ) o2 (T) o (T) Y [ 1 y] Y 7L>

for all € > 0. It is not hard to see that in fact the expression on the left converges to

1
/0 (1—y)y' dy #0.

Even though there is no centering and scaling to make A(7T-) asymptotically a Gaussian process,
it is possible to get stable limits. Define

1 —
(2.16) i) = (1=5) (0 =1L,
for some slowly varying function L;. A variant of [52, Theorem 4] in particular gives, for A fixed,
T — oo, that
A(Tt) — ATt
b(T)

in the sense of convergence of finite dimensional distributions, where X, (-) is an a-stable Levy
motion whose marginal distribution is totally skewed to the right. See also [71, 61]. So on large
time scales, A(T-) looks like an a-stable Lévy motion.

Let us compare (2.17) and the fact that G (t) of (2.14) is not asymptotically a Gaussian process,
even though by (2.13) the correlation function of Gr(-) converges. Note that as 7" — oo

(2.17) = X, (t),

o(T) ~ (const)\/T3F(T) ~ (const)TG~/21/2(T),

which may be compared to the asymptotic form of b(-) given in (2.16). Observe that for a € (1,2),
1 3—-«a
a2

Also from (2.17), we find the first order growth rate of A(7"). Observe that the centering in

(2.17) is of the form

o(T) =TAu,
so that since % < é <1,

o(T)/b(T) = TAu/(TV* Ly(T)) := T' "/ Lo(T) — o0,
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with Lg(-) regularly varying. By (2.17),

Consequently, in C[0, c0),
A(Tt) 1—1
v(T)/b(T)

Provided the constant output rate r satisfies Ay < r, the X(-) process of (2.7) and (2.8) has
negative drift and is stable. Being regenerative, X (7') will have a limit distribution. However, high
levels will still be exceeded by X (+) in algebraic time since, according to ([38]), the expected hitting
time of high level 7y (see (2.9)) satisfies

Bry) <" (lfw)k

k:=inf{j >1: A\E(L1)+j>r}
is the minimum number of sessions running simultaneously which are needed to flip the mean drift
from negative to positive. Here we use the notation f < g to mean

0 < liminf f(T)/g(T) < li;HEUPf(T)/g(T) < oo.

where

The limit behaviour in (2.17) and the second order behaviour of G (-) defined in (2.14) assume
that the connection rate A is constant and the time scale T is growing. If T' is fixed and A — oo,
then one may expect A(-) to be asymptotically Gaussian. Thus, on small or moderate time scales,
if the input rate is large, the cumulative inputted traffic should be approximately Gaussian. This
in fact was found in [77] as well as the result that if after letting A — oo one lets T' — oo, then
A(-) is approximated by a fractional Brownian motion. On the other hand, as seen above, on large
time scales, with modest connection rate, the cumulative inputted traffic is approximately a Lévy
stable motion. Allowing the connection rates to vary with T" produces the following result which
give conditions under which either a fBm or Lévy stable motion is an appropriate approximation.
The exact statement is quoted from [61].

Proposition 1. Assume a family of infinite source Poisson models indexed by T where in the Tth
model, A = X\(T') depends on T. Assume the connection length distribution does not depend on T.
Recall the definition of b(:) in (2.16). For the T'th model, let Ar(-) be the cumulative input and
Nr(t) be the number of active sources at time t.

(i) Assume the Poisson rate A = \(T') depends on T so that one of the following equivalent slow
growth conditions is satisfied:

1. limg_, 2370 — 0.

2. limy_,0o \TF(T) = 0.
3. hmT_mo COU(NT(O), NT(T)) = 0.
Then the process (Ar(T't),t > 0) describing the cumulative input in [0,Tt], t > 0, satisfies the limit

relation Ap(T") — Tu()
7(T) — TAu(") fidi

. . . di . . .
where Xo(-) is a Lévy a-stable motion. Here ﬁ—f denotes convergence of the finite dimensional
distributions and in fact the result can be strengthened to convergence in the My topology ([71]



12 C.A. GUERIN, H. NYBERG, O. PERRIN, S. RESNICK, H. ROOTZEN, AND C. STARICA

(ii) Assume the Poisson rate A = M\(T') depends on T so that one of the following equivalent fast
growth conditions is satisfied:

1. limg e ”(A—TT) = o0

3. hmT_mo COU(NT( ) N )

(T)
Then the process (Ar(Tt),t > 0) descmbmg the cumulative input in [0,Tt], t > 0, when properly
normalized as
Ap(T) — Tau()
NT3F(T)

converges in D[0,00) to a fractional Brownian motion with self similarity parameter H = (3—a) /2.

Heavy traffic approximations for A(-) and X(-) are considered in [54].

2.6. The case a > 2. We again assume A is fixed. However, as for the case a@ < 1, the result
undoubtedly holds also if A is allowed to increase with 7. As in Case (ii), N(7T') is asymptotically
Poisson and as T — oo, N(T-) is asymptotically uncorrelated. We cannot expect to get the
asymptotic behaviour of A(-) from N(-).

For the case a > 2 we show that the cumulative input A(-) can be approximated by a Brownian
motion. We set

(2.18) AM (g) = A(Tt) = ATtp
\TE(L?)

and show that, in C[0,0), as T' — oo,

(2.19) AT () = B(),

a standard Brownian motion. Furthermore, this implies a functional central limit theorem for X (-):
If A > r, so that the system is unstable,

X(Tt) —Tt(Ap—1)

e oW

(2.20)
in C[0,00). If Ap < r, then the limit is 0.

We now discuss the verification of these claims and continue to apply the results of [50] with
Ag(s) = s A Ly. We have

B(A()) =A /OtE(u A Ln)du = /\/OtF(u)du ~ g,
o*(t) =E ( /0 t (L1 A u)zdu)
.\ /u tzo ( / ZOF(U)Z'Udv) du

2 u
fim 28 Z) Jim F( )2vdv

t—oo L U—»00

=\ / = \E(L?),

so that,
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and we conclude
(2.21) o%(t) ~ tAE(L3).
Using (2.12) we get, as T — oo that for s < ¢
o
(2.22) E(Al(Ts),Al(Tt)> —)/ #?F(dz) = E(L?),
0
since when o > 2 we have T?F(Tt) — 0 and
Tt Tt .2 Tt
Ts/ zF(dz) < Ts/ —F(dr) =1 / z2F(dz) — 0.
Ts Ts Ts Ts

Therefore, when a > 2, the function E(Al(s)Ag(t)) is two dimensional regularly varying with

index 0 and limit function which is identically zero. Thus ([50, Proposition 2.2]) E(A(s)A(t)) is
regularly varying with index 1 and limit function (z < y)

X
C(z,vy) ::/O 1du =z,

which is the covariance function of Brownian motion. Unlike the case 1 < a < 2, where convergence
in distribution to Brownian motion did not hold, it will hold in in the present case 2 < « since we
may verify that the expression in (2.15) converges to 0. This is relatively easy to verify since

1 [e'e) t_ 1 o0 _
! / y / F(y)dudy = / y(t — y)F(y)dy
t Jevi Ju t Jevi

t o0 _ o0 _
<t [ vFwiy= [ yFwiy
eVt eVt

—0, (t = 00),
since E(L?) < co. From [50, Theorem 3.3], we get
A(Tt) — NTtE(Ly)
NTE(L?)

(2.23) AT (g) = B(t),

in the sense of convergence of finite dimensional distributions where B(-) is a standard Brownian
motion.

A version of (2.23) in the J; topology also holds according to [50, Proposition 3.4], provided we
show as T' — oo

1 T
(2.24) = /0 (BA; (00) — BA (u)) du — 0

and
T |M([0,5]xR4)

% VI Do (Ailoo) — Ai(s —T)) 50,
s=0

i=1
Since Aj(oc) = L1, (2.24) becomes

1 [T 1 /T
— | EB(Li—LiAwdu=——= [ E((L1—u)lj, <y )d
\/T/o (L1 — L1 Au)du \/T/o ((1 u)[L1>])u

(2.25)
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which by the Schwartz inequality is bounded by

<L [ e VEE [ fea

Since F is regularly varying, so is VF and its index is —a/2 < —1. So \/F(u) is integrable and
the ratio converges to 0 as required.

We now show how to verify (2.25) for the case a > 2. The left side of (2.25) is
M([0,s]xR+)

> (Li —(s—T%) /\Li>

=1

T

7V

and
O, if s — Fz Z Li,

Li—(s—Ti) AL =
i~ (s =T AL {L—(s—I‘), if s —T; < Ly,

. 0, if Ty + L; < s,
L+ Li—s, iD;+L; > s

Therefore (2.25) can be rewritten
T M 0 S XR+)

(2.26) V Z <Fi + L; — 8) L, 41,>s) 50.

Since I';, ~ n almost surely, it is easy to see that (2.26) is implied by
( 0 S XR+)

\/ Z (FZ + LZ - 5) 1[Fi+Li>5] £) 0.

SE 0 Fn)

(2.27)

%\

The left side of (2.27) is

1 n—1 j
SV RRVED ) (RS A E I V) 3l (RS I

J=0s€[lj,Ij41) i=1 7j=0 =1
Therefore, (2.26) holds if
(2.28) ZP[Z L)l n,5r,) > €Vn] —
as n — oo for every e > O. Now the jth probability term in (2.28) is

J J
P> (Li— (T —T))z,5r,-1, > ev/n] = P[> _(Li = Tj ) ljg,sr,_) > €V/n]
i=1 i=1

and because {I',} is independent of {L;}, this the same as

i o0
=P[) (Li = T9)ljz,5r, > evn] < P> _(Li —Ti) 1,51, > ev/nl
i=1 =1

(2.29) =P[ / / . (y — s)M (dsdy) > ey/n]
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where

D' = {(s,y) eRZ 1y > s}.
Note

o oo
EM(D") = / / MdsF(dy) = X / F(s)ds = M\

s=0Jy>s 0

and therefore, M| is a finite point measure. It may be represented as
PO(Mp)
d
M|pr = Z €(&imi)>
i=1

where PO(Au) is a Poisson random variable with parameter Ay, independent of the iid pairs
{(&,mi),% > 1} which have common distribution

MsF(dy)|  dsF(dy)
A Dt K Dt
So for z > 0,
F(d ©
Pln; — & > ] :// 0 ds—( v :/ —(S)ds.
s p s M
y>s+x

Set ¢; = m; — &;. The probability in (2.29) is

PO(Mp)

P[ Y Gi>evn
=1

and (2.28) is bounded by

PO(Mp)
(2.30) nP[ Y (> evn].
i=1
If & > 2, then Var({;) < co and there exists > 0 such that E(Ci2+77) < oo. Pick 6 such that
n
2.31 0<o< .
(2:31) 2(2+n)
Then
PO(Au) PO(Au) PO(Aw)

nP| 2_; Gi > ey/n] =nP] ; G > ev/n, PO(Au) < n] + nP| Z; ¢ > ey/m, POO) > nf]

<nP[)_ ¢ > ey/n] + P[PO(Ap) > nf]

i<nf

=I+1I1I.

Now by Chebychev’s inequality
nE(ePO()\u)) neM(e—1)

II1 < = —
~  exp{nf} exp{n?}

0,
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2+n 24
nk (Zigne Cz) E(Zignﬂ Cz)
Is pan 72
s

Let ||(||, be the L, norm of a random variable ¢ and the bound in I is of the form

2+
o

i<nf

as n — oo. For I we have

= (const)

which by Minkowsky’s inequality is dominated by

const 2+n
() ()1 ) ™" = (const

6(2+n)
n —0

nT]/2

as n — 0o, due to (2.31).

Having shown (2.25) for a > 2, we get tightness and hence the functional form of (2.23).

This leads to a functional limit for the content process X (-) of (2.8) and verifies the claims (2.19)
and (2.20) as follows. Define

&r(t) = A(Tt) — rTt
so that from (2.23) we have
§r(t) — Tt(Ap —r)
ATE(L?)
in C[0,00). If Au > r, so that the system is unstable since the input overwhelms the traffic rate,
then applying [82, Theorem 6.4 (ii)] yields
X(Tt) —Tt(A\p — )
ATE(L?)

= B(t)

(2.32) = B(t)

in C[0,00). Note, the condition Ay > 7 guarantees A(T't) — rT't £ o and seems necessary to get
a nontrivial limit in (2.32) due to the denominator becoming infinite. If Ay < r, then the limit in
(2.32) is the function which is identically 0 by [82, Theorem 6.4 (iii), page 81].

3. ESTIMATION METHODS

This section gives a brief introduction to the statistical methods we have used. Many are stan-
dard, but will still be mentioned briefly and references will be given, in keeping with the aim to
give a guide for analysis. However some are of more recent origin. Specifically, we have used rather
recently developed quadratic variation and wavelet methods to estimate the Hurst and Holder
exponents. These methods will be presented in more detail.

In some situations, only traces from aggregated traffic are measured but a micro-level model is
needed for simulation. Hence, a further topic for the present section is to what extent it is possible
to infer parameters of the infinite source Poisson model from measurements of aggregate traffic.

In practice, a frequent goal of network measurement analysis is to construct a simulator for
the design of networks. A simulator needs the parameter values for the model as an input. The
statistical methods we describe provide such values, which can be used directly, or as a basis
for extrapolation to what parameter values may be expected in the future, for new groups of
subscribers. In this section, we also make some brief comments about design of simulators.
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The methods we discuss throughout assume stationarity of the measured traffic. In reality the
characteristics of the traffic, especially of the process of starts of file transfers, vary substantially
with the time of day, between different days in the week, and between seasons, and contain strong
trends. We circumvent this problem by selecting visually stationary parts of the traces for study.
In fact, this may correspond to what is practically interesting: it’s the behavior during the (ap-
proximately stationary) peak periods which is of primary interest.

3.1. Testing for independence of heavy-tailed variables. The infinite source Poisson model
assumes that the transfer times are independent, and similarly the stable limit for aggregated traffic
implies that successive traffic rate measurements are independent.

A basic approach to testing for independence is to use the correlation function. However correla-
tions of heavy-tailed data may have a more complex behavior than in the light-tailed case, see e.g.
[13, 22, 28, 68, 71] and have to be interpreted with some care. A standard useful way to circumvent
this problem is to make an appropriate marginal transformation before computing correlations. In
the present situation this amounts to using the logarithms of the data.

A drawback with this approach is that taking logarithms obscures the impact of the very large
transfer times which are of major importance. Hence it is desirable to complement with methods
which do not use transformations. We employed two methods to check for independence which
use the original observations. Both are based on the heavy tailed acf, i.e., on the autocorrelation
function computed without subtracting means.

The first, informal, method can detect many forms of nonlinear dependence in heavy tailed
observations. It simply is to split the data into parts, say two to five parts, and to compute the
heavy tailed acf on each of the parts. If the observations in fact are i.i.d., or come from a linear
process, then these acf’s should look the same. The second method is to use simulations from
the known limiting distribution of the heavy-tailed acf under independence to construct confidence
intervals, and to reject independence if the observed acf deviates from these intervals. For more
details, see [28] and for a more formal treatment consult [71]. (An alternative, attractive, method
is to use permutation tests for, say, the maximum of the heavytailed acf over some number of lags
to judge if this is larger than what is caused by randomness alone. However, for very large data
sets, such as the present ones, this method is computationally burdensome.)

3.2. Marginal distributions and estimation of means of heavy-tailed variables. The file
sizes, file transfer times, file transfer rates (=(file size)/(file transfer time)), and traffic rates (cumu-
lative inputted traffic in small time intervals) have similar statistical properties, and are amenable
to the same types of analysis.

The precise shapes of the distributions are affected by special, and rapidly changing conditions,
such as, for example, automatic hookup to Netscape’s homepage. Thus only nonparametric (his-
togram or kernel density) estimation seem reasonable for the central parts of the distribution.
However, at high aggregation levels, these details are less important, and what is needed are good
estimates of expected values and tails of the distributions.

For heavy-tailed non-negative iid data X, X;...,X, (such as the ones analysed below) with
tails P(X > z) ~ Lz~* with 1 < a < 2, where existing statistical techniques require that we now
assume that the slowly varying function L in (1.1) is a constant L, the standard finite variance
estimates of variation of the mean are not applicable. It is still possible to estimate the expected
value y = E(X) by the mean of the observations and an asymptotic confidence 100p% confidence
interval for y may be obtained as

_ + ~ N N
(3.1) X = (L)y~Vap-te-tglleg, (1 —p),
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with ¢ = I'(2 — a)|cos(ma/2|/(cc — 1) (c.f. [75] , Theorem 1.8.1). Here S, 1,1(1 —p) is the 1 — p-th
quantile of the completely (positively) asymmetric stable distribution with tail parameter «, in the
parametrization of the cited reference. Estimates of L, « are discussed in the next section.

3.3. Tail estimation. There exists a substantial literature on this topic, see e.g. [24], and devel-
opment still is rapid. A good source for developments to come is the new journal Extremes.

The paradigm is that often, as in the present situation, one cannot hope to infer the behavior
of the tail of a distribution from the shape of its central parts. The standard procedure then is
to choose an appropriate high level u, and only use those observations which exceed the level for
estimation of tail parameters. Since interest usually includes extrapolation outside the range of
values already observed, a parametric model for the tail (corresponding to a semiparametric model
for the entire distribution) is unavoidable. It is also unavoidable that estimates will be sensitive to
the choice of level w.

On theoretical grounds (asymptotic theory, stability under change of level, and “the right amount
of flexibility”) the Poisson—generalized Pareto model is preferred. In this model, the exceedances
are i.i.d. and follow a generalised Pareto (GP) distribution of the form

—1/y
Gy(w)zl—(l—{—%) , 1+¥>0,a>0,7eR

This is a heavy tailed distribution for v > 0 with @ = 1/v; for v = 0 this is the exponential
distribution and for v < 0 the distribution has finite upper endpoint. See for example [24]. The
times of exceedances occur according to a Poisson process which is independent of the sizes of the
exceedances. This model is implied by the stronger assumption that the observations {X,,} are iid
with a regularly varying tail.

The intensity of the Poisson process is simply estimated by the number of exceedances divided
by the total number of observations and the parameters of the GP distribution may be estimated
by the method of maximum likelihood. S+ programs for this estimation have been made available
by A. McNeill, http://www.math.ethz.ch/ mcneil/. Another relevant software package, Xtremes,
is a PC package for analyzing and graphing extreme values and comes on a disk with the book [64].
Straightforward asymptotic confidence intervals based on the information matrix do not perform
well for a small or moderate number of exceedances, but instead profile likelihood intervals do, see
[76].

In addition to maximum likelihood analysis, we have used semiparametric graphical methods for
variables with a Pareto-like tail, such as qg-plots of quantiles of a standard exponential distribution
against the logarithms of the ordered exceedances and estimating « by the slope of an ordinary
regression line. This method of QQ-plotting does not use the detailed form of the GP distribution
and is asymptotically less efficient than other similar estimators, such as the Hill estimator. How-
ever, it can be used with any standard statistical software, and has the advantage of being directly
linked to a readily interpreted graphical display. It also gives a useful impression of the size of
deviations from a Pareto model, since a Pareto tail corresponds to a straight line. The method is
discussed in detail in [53].

Finally a practical consideration, similar to the choice of bandwidth in density estimation, and a
subject of much current research, is the choice of the level u, or, equivalently, the number of order
statistics used for the tail estimation. In this paper we have used informal, graphical methods as
discussed e.g. in [69], which look at changes in the estimators as the level u is changed.

3.4. Starts of file transfers. That the file requests appear as a Poisson process is equivalent to
the interarrival times being i.i.d. and exponentially distributed. We have investigated the Poisson
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process assumptions by making qqg-plots of the interarrival times against exponential quantiles, and
by looking at the correlation functions of the interarrival times.

3.5. Stable Lévy processes. At low aggregation levels, and for 1 < a < 2 traffic rates in the
infinite source Poisson model are asymptotically stable and independent. For maximum like-
lihood estimation of the parameters and model checking we have followed the prescriptions in
[62] and used the very convenient accompanying software which can be downloaded from http://
www.cas.american.edu/ jpnolan/stable.html.

We have used the most common parametrization of stable distributions, which corresponds to
the characteristic function

Eexp(itX) = { exXp (—0a|t|a (1 —40 tan(Z2)sign(t)) + iét) a1

(87
2
exp (—olt| (1 + i82 sign(t) In|t|) + i6t) a=1

3.6. The Holder index. For a Gaussian process {X(¢),¢ > 0}, a short survey of estimators
for the local Holder index H, is given in Lang ([56]). Hall and Wood ([34]) study the so-called
box counting estimation method based directly on the capacity of fractal dimension ([40]) and
show that the estimator has a large asymptotic bias. Hall et al. ([35]) and Feuerverger et al.
studied estimators based on level crossings. Constantine and Hall ([14]), cf. also Gladyshev ([32])
discussed estimators based on simple empirical quadratic variation. At scale 1/n and for a process
with stationary increments on [0, 1], this is
1 >
Va =5 (X(k/n) = X((k—1)/n))?,

2
k=1

which suitably normalized converges with probability 1,
lim n2fe=1ly, = c,
n—oo

where c is given by (2.2), i.e. by V(1) = cr2tle 4 o(72H0),

However, these quadratic variation estimators are not scale invariant and all of the estimators
mentioned so far converge slowly. Istas and Lang ([43]) and Kent and Wood ([49]) propose an
improved method, where the “simple” difference X (k/n) — X((k — 1)/n) is replaced by general
discrete differencing of X. More precisely, they introduce the weights a = (ao,a1,... ,ap) of
a discrete difference operator of degree p > 1, and consider the empirical quadratic variations
associated with it,

n—p+l / p 2
Ua,n: Z (ZGZX((Z-I']_D/”)) :

j=1  \i=0
In this paper we use an estimator of H, which is based on two such “general” quadratic variations.

Specifically, from the sequence a = (1, —5,10,—10,5, —1) we define a sequence b with “double time
mesh”, i.e. by putting be; = a; and bg; 1 = 0 for 0 <4 <5 and estimate H, by

2 1 Ubn
Hy=-1 n )
0 9 119 (Ua,n)

This estimator is discussed in Istas and Lang ([43]) p. 432). This sequence a corresponds to the
binomial coefficients in the expansion of (u—wv)?, (u,v) € R?. An advantage of the estimator is that
it filters out polynomial trends up to order 4, and hence is rather robust to smooth non-stationarities
of the mean.
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3.7. The Hurst exponent. In this section we describe a recently developed wavelet estimation
methodology. The method works under a variety of assumptions. If the process under investigation
is stationary with finite variance, the method yields an estimate of the parameter § introduced in
(2.3), with 8 > 0 corresponding to LRD. When applied to the increments of a selfsimilar process,
the wavelet method yields an estimate of 2H — 1, as shown below. Now, for a selfsimilar process
with finite second moments and stationary increments the increments process has § = 2H — 1.
Hence also for this case LRD corresponds to 8 > 0.

However, if the selfsimilar process has infinite second moments, 2H — 1 can be greater than zero
even if there is no LRD. For example, stable Lévy processes have Hurst parameter H = 1/a, so
that 2H — 1 > 0 (since 0 < a < 2) even though the process has independent increments and hence
is as far from LRD as possible. To summarize, for processes with finite variance, if the wavelet
method gives an estimate clearly greater than zero, then there is LRD. However, for processes with
heavy tails an estimate of which is greater than zero does not necessarily mean that there is LRD.

A naive estimator for # may be obtained from the empirical covariance function. For strongly
correlated data this is known to be unreliable. Several alternative estimation methods have been
developed: the aggregated variance, Whittle, R/S, absolute value, periodogram, variance of residu-
als, aggregated Whittle, local Whittle and wavelet methods. The first three methods are treated in
[11]. For discussion and comparisons of all of the methods we refer to [6],[3] and references therein.
Here we use the wavelet method because it provides an appealing compromise between low compu-
tational cost and good statistical performance. It is also more flexible than maximum-likelihood-
based estimators such as Whittle’s estimators since it does not require an exact parametric model
for the spectral density. In addition, it is based on identification of scaling in a log-log diagram,
which makes it possible to judge the range of scales on which the model fits. A final advantage is
that it is robust to smooth non-stationarities. In many cases we have also computed, as a sanity
check, estimates using traditional techniques such as the R/S statistic and associated plot and the
variance-time plot, and in all cases agreement with the wavelet method was good.

We here outline the main ideas and refer to [4],[1], [80],[3] and [81] for an exhaustive presentation.
A wawelet 1 is a smooth function which is well-localised both in position and frequency and which
satisfies the admissibility condition 0 = [+ = F(¢)(0), where F(¢) is the Fourier transform of
. Usually, it is also required that the wavelet has some vanishing moments, [¢")(t) =0, n =
0,1...N. By “well-localised” is meant that the function has compact support or at least is rapidly
decaying. To a reference wavelet 1, usually called the “mother wavelet”, is associated a two-
parameter family of functions 1, obtained by translation and dilation,

Yo (t) 1= %w (#) ,bER, a>0.
If the mother wavelet v is localized around some central position %y, then it is clear from the def-
inition that vy, is shifted to position aty + b. Similarly, if the Fourier transform F (1) is centred
around some central frequency vy, then F(1,) is centered around a~'vg. The admissibility con-
dition zﬁ(O) = 0 ensures that the function stays localised in frequency after dilation. The wavelet
transform Wy X of a process X is a function on the position-frequency plane R x R*,

(3.2) W, X (b, a) = / %w (?) X (t)dt = / Jaw(s)X (as + b)ds.

Roughly speaking, the filter Wy X (b,a) retains the part of the process which contributes to the
frequency a at the position b. No information is lost, in the sense that the original signal can be
retrieved from (3.2) by a reconstruction formula.
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For random processes, the wavelet transform captures the stationarity and scaling properties. If
the process X (-) is stationary, or has stationary increments then the process Wy X(-,a) is again
stationary as is clear from the second formula in (3.2). If a process Y is H-self-similar with
stationary increments and finite second moments, then it follows readily from the definition that

E|W,Y (b,a)|* = T E|W,Y (b/a, 1)
If we define X (t) =Y (t+ A) — Y (t) for A > 0, then by change of variables, and using a first order
Taylor expansion and self-similarity in the third step,
(3.3) WyX(b,a) = / v E=by v+ A) — Yy}t
_b+A b
= [ Valits - L2 — i - Y (e

~ / \/E{——w’(s)}a ¥ (s)ds

= —agfI"12A / P (s)Y (s)ds, a — oo,
under suitable regularity conditions. Thus, if second moments exist
(3.4) C(a) = E|WyX(b,a)]> ~ K™ a — o,
where K = A?E| [¢'(s)Y (s)ds|>. Thus, in particular this holds for fGn.

Now assume X (-) is any stationary process with the LRD property (2.3). The large scale be-
haviour of the wavelet coefficients is

(3.5) C(a) = E|WyX (b,a)|? ~ Kga®, a — +o0,

where K3 = K [ dv|v|=#|F(1)(v)|?, as shown by a straightforward computation. This of course
agrees with (3.4) for f{Gn, since H = (6 + 1) /2.

Even if the original process X (-) is long range dependent, the corresponding wavelet transform is
short-range dependent as a function of b. The idea of the wavelet estimator of the LRD parameter
for LRD stationary processes is to take advantage of this decorrelation and to compute an estimator
B using (3.5). In practice, this is done using so-called multiresolution analysis, which provides a
fast algorithm to compute the wavelet coefficients on a dyadic grid in the position-time plane, i.e.
the coefficients d(j, k) = Wy, X (27k,27), j, k € Z. The information contained in these coefficients is
sufficient to reconstruct the process (see [21]). By (3.5)

(3.6) C(2) = Eld(j, k)|* ~ K32P, j — +oo,

and the decrease of correlation between the wavelet coefficients d(j, k) is controlled by the number
of vanishing moments, N, in the following way ([79],[27]),

(3.7) |Ed(j, k)d(j, k)| = O(|1279 (k — K")[*P7172N), 1279 (k — &')| — oo

Now, C(27) may be estimated by the sum of the coefficients at fixed scale,
1
27) = = "|d;l,
nj <

where n; is the number of available coefficients at scale 2J. The parameter 3 in (3.5) or equivalently

H = (8 +1)/2 is then simply estimated from a linear regression in the log-log diagram of C(27).
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However, taking the logarithm introduces a bias (E log # log E). Under the simplifying assump-
tions that the process is Gaussian and the wavelet coefficients are perfectly decorrelated (instead of
(3.7)), C(27) is a sum of chi-squared independent variables, and the bias can be explicitly computed
and removed.

Since the variance of the wavelet coeflicients increases with the scale, the quality of the estimator
is improved by performing a weighted linear regression, which gives more weight to small scales.
Altogether, the estimator of 3 is defined as, see [81],

> y; (i8S = 8j) /a3

p= :
SS;i — S'J2
where
S=Y"1/0%, 8; = j/o}, Sj=>_i*/o},
with
N I'(n;/2) 1
() = I'(n;/2)log 2 logy(n;/2) =~ njlog?2’

y;i = log(C(2)) —g(j),
((2,nj/2) 2
log? 2 _njlog22’

o} = Var(y) =

I" being the Gamma function and ¢ a generalized Riemann Zeta function. Here, the sums run
over some selected range of scales [jmin, Jmaz), Which is chosen a priori. The smallest scale jpn
should be large enough for the asymptotic regime to be reached, while j.,4, is limited by the lack
of coefficients at the coarsest scale. Using the relation H = (8 + 1)/2 the estimator of 8 at once
gives an estimator for H.

In [81] it is shown that, if decorrelation actually were perfect, then the asymptotic variance of
the estimator for 8 would achieve the Cramer-Rao lower bound. Numerical simulations exhibited
in [81] show agreement with this approximate result. Moreover, the estimator is empirically shown
to be robust with respect to some deviations from the Gaussian assumption. An approximate
confidence interval for H is (see [4]):

I:Iu —0p,Re <p< f{u +0[f[uzea
where z, is the 1 — € quantile of the normal distribution and
5 2 1-277
Tia = nj. log? 21 —27TF1(J2 +4) 427277
J = Jmax — Jmin 1S the number of scales which is used in the regression. This of course also gives a
confidence interval for H.

We also performed a small simulation study. On 500 simulated paths of length 4096 of a fGn
with H = 0.8 we computed the estimator of H using j; = 1, jo = 10 and the Daubechiesl wavelet.
The empirical means and standard deviations of the estimator were 0.797, and 0.038, where the
latter should be compared with the value 0.012 obtained for the theoretical standard deviation.

An appealing feature is that the wavelet transform performs a “smooth differentiation” of the
signal, with the degree of differentiation equal to the number of vanishing moments. Thus, as
already mentioned, means and smooth trends are removed, and non-stationary processes which
have stationary increments of order N produce stationary wavelet coefficients ([12], see also [33]
for the fractional increments). If such nonstationary processes exhibit a scaling of type (3.5), then
the corresponding parameter can be estimated by the same procedure as before.
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Suppose now X is self-similar with Hurst parameter H, but not necessarily long range dependent.
Using (3.3) above, it may be seen that then, also in cases with infinite variance, the wavelet method
gives an estimator of H, when taking logarithms makes moments finite. In particular, for a stable
Lévy motion, the method estimates H = 1/«. This is discussed in detail in [2]. Thus, as already
pointed out, an estimated value of 8 which is clearly different from 0.5 does not necessarily indicate
LRD — it could also be caused by heavy tails. This comment also applies to, for example, the R/S
statistic. See [78].

3.8. Inferring the parameters of the infinite source Poisson model from aggregated
data. Assume that a trace of cumulative traffic has been observed during a time interval [0, 7]
in a situation which is well described by the infinite node Poisson model with 1 < a < 2 and at
a high aggregation level (i.e. with AT F(T) large). Further, recall the notation from Section 2.5
and suppose the regularly varying factor in (1.1) is (at least approximately, and over the range of
interest) equal to a constant, L.

By Proposition 1, the observed cumulative traffic then is approximately distributed as an ex-
pectation term u(T) = AuT added to a centered fBm with H = (3 — «)/2 and variance 0?(T) =
AT3-°[(4—a)(2—a) "' (3—a)~!. From the observations it is possible to find estimates ji(T'), H, 5%(T)
of u(T), H,o?(T) as described above. This immediately leads to the estimate

&=3-2MH.
Knowledge of the traffic rates alone does not contain enough information to make it possible to
untangle A, u and L. We hence assume that we have more detailed information or experience from
other data sets which allows a reasonable guess ji of the value of y. The remaining parameters may
then be estimated as
A= (T)/(iT)
and
L=&*MA'T G914 -a)"'2-a)3 - a).

If we instead assume that the data are at a low aggregation level, then the trace of the cu-
mulative traffic is approximately distributed as the same mean term (7)) = AuT as above, plus
(At/L)Y/*X, := v(t) X 4. From the observations we obtain estimates ji(T'), &, 5(T), of u(T), o, v(T).
Proceeding in the same way as before this leads to the estimators

A= (T)/(@T)
and
L =4\t 1

3.9. Simulation methods. As discussed in the introduction, an important use of traffic models is
to produce simulated traces, and such traces are also useful for testing estimation methods. For each
of the three main models, stable noise, fBn, and the infinite source Poisson noise, simulated traces
and the wavelet regression estimator for estimating the Hurst parameter are shown, in Figures
3.1-3.3.

Since stable noise simply consists of i.i.d. stable variables, simulation is straightforward. We
used the built in simulator in the program package Splus. The parameter values were chosen as the
estimated values for the UCB 10s traffic rate trace, cf. Section 4.3.2 below. The maximum likelihood
estimates which were obtained from the simulated trace were & = 1.49 £ .09, ﬁ = 1.00 £ .00,6 =
90, 000 =+ 600, 6= 446,000 + 1, 100, in reasonable agreement with the true parameters (given in the
caption to Figure 3.1). It may be noted that the wavelet estimate of the Hurst parameter (Figure
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3.1) is close to 1/a = 0.66 and hence is well away from 1/2 although the variables are independent,
rather than long-range dependent, c.f. the discussion at the end of Section 2.1.

The best available method to simulate fBn is imbedding in a circulant process. The method
is described in [86], and we used software which is made available by G. Chan at http://www.
maths.unsw.EDU.AU/ grace/.

The infinite source Poisson model was simply simulated by building up traces from i.i.d. exponen-
tial starts of file transfers, and i.i.d. transfer times. For the present purpose of model evaluation and
illustration, we only used the simplest possible transfer time distributions, i.e. Pareto distributed
variables with parameters roughly adjusted to match the measured traces. For use of simulation
to aid in design, a more sophisticated choice would be desirable, at the very least means should
be adjusted to have correct values (c.f. Section 3.8). For the purposes of Section 4, we call the
resulting trace simM/G/oo.

6106
I

#1006
I

2108

o 05 1 15 2 25
x10

FIGURE 3.1. Synthetic trace from stable noise (o« = 1.52,8 = 1,0 = 86,000,6 =
438,000) used as the traffic rate: left) the traffic rate, middle) qq-plot against fitted
stable distribution, and right) wavelet regression estimation of the Hurst parameter,

H = .60 + .06.

0 1000 2000 3000 4000

4 2 3 B 5 6 7 8 B 10
Octave |

FIGURE 3.2. Synthetic trace from fBn, H = .8, used as the traffic rate: left) the
traffic rate, and right) wavelet regression estimation of Hurst parameter, H = .81 +
.01.

4. DATA ANALYSIS

4.1. Overview. This section contains the statistical analysis of the traces which were briefly in-
troduced in Section 1. The plan is as follows: Tables 1 and 2 summarize the results. The traces



INFINITE SOURCE 25

o o0 700 5000 5000 Quaniles of Standard Normal

6
Octave |

FIGURE 3.3. SimM /G /oo, Synthetic trace from the infinite source Poisson model,
Poisson intensity 8, @ = 1.2 used as the traffic rate: left) traffic rate (resolution 1
second), middle) qgplot against normal distribution, and right) wavelet regression
estimation of Hurst parameter,

Data set v (=1/e) H H* H, MTF(T) Gauss stable dep
simM/G /oo —13+.03 .90+.01 .90 .88 8 good bad str/long
BUburst 10s -36+.13 89+.02 .67+.01 .73 .09 med good str/long
BUburst 1s A7 +.03 81+.01 .67+£.01 .87 .07 med bad nonstat
UCB 10s .05 £+ .18 b8 +.03  .62+.01 .65 16 bad good indep
UCB syn 10s —60+.14 95+.07 .624+.01 1.36 16 good bad str/long
Munich lo TX .09 £.04 .89+ .01 - .86 - bad bad str/long
Munich lo RX —-.03£.05 .97+.01 - .85 - bad bad nonstat
Munich hi .1s A7+£.12 1.02+.03 - .66 - bad bad med/int
Munich hi .01s  .10£.03  .1.03 £.04 - .56 - bad bad sm/long
Ericsson —47+.09 88+.02 .86+.08 1.21 .5 bad bad nonstat
Eri syn 1s —31+.12 148+.02 .86+.08 1.51 .5 medium medium str/long

TABLE 1. Traffic rates: summary of statistical analysis. Whenever possible, numer-
ical results are given as point estimate £+ “standard deviation”. Abbreviations are
explained in Section 4.1.

are then discussed one by one in separate subsections. This includes a more detailed description of
the data, some further discussion of special issues for the separate traces, and conclusions trace by
trace.

Table 1 contains results for the traffic rate measurements. The left most column contains the
shape parameter 7 (related to the tail index a by a = 1/7) estimated by maximum likelihood
using a generalized Pareto model (Subsection 3.3). Standard deviations are calculated assuming
independence. In all cases the top 5% of the observations were used, and the fit to a Generalized
Pareto distribution, as judged by QQ-plots was good (except Eri syn 1s). It might be worth recalling
that a value of y close to zero means light tails, that the variance is finite for v < 1/2, and that
the important case with finite mean and infinite variance (1 < o < 2) corresponds to y € [1/2,1).

After this comes the Hurst exponent H with standard deviation, estimated by the wavelet method
with the Daubechies wavelet and the number of vanishing moments and jmin, jmax chosen to give
good fit to the regression on scales (Subsection 3.6). We also calculated the Hurst exponent from
the tails of the file sizes as H* = (3 — «)/2 with a = 1/ taken from the file size column in Table
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Data set intens exp dep time dep file size dep rate dep

BUburst .14 no nonstat .60+.02 tiny/sh .69 +.13 tiny/sh 1.01 £.14 tiny/sh

UCB 6.72  yes tiny/long .57+ .02 tiny/int .52+.02 tiny/sh .79 +.04 tiny/sh

Ericsson 1.39 no sm/sh 78 £.16 tiny/sh 1.15+.18 sm/sh - sm/sh
TABLE 2. Starts of transfers and file sizes: summary of statistical analysis. The
columns “time”, “file size” and “ rate”, show the shape parameter v (=1/a) for the
transfer times, file sizes, and transfer rates. Numerical results are given as point
estimate + “standard deviation”. Abbreviations explained in Section 4.1.

2 and with standard deviations obtained by the delta method. The following column shows the
Holder parameter H,, estimated by the quadratic variation method (Subsection 3.7). The next
column shows an estimate of AT'F(T) obtained by using A from Table 2, with T as 1 second for
“BUburst 1s” and T as 10 seconds for “BUburst 10s” and “UCB 10s”, etc, and F(T) estimated by
#(observations > T') /#observations (except for simM/G /oo where parameters were known).

The next two columns contain subjective judgements of the fit of the marginal distributions to
a Gaussian and a stable distribution. The family of stable distributions is quite rich, and even in
the cases which are labelled “bad” in the “stable” column of the table, the visual discrepancies in
the QQ-plot between histograms and fitted densities were small. In all cases the tail estimates of
« in column 2 were larger than those in the mle fitted stable distribution. It may be noted that
the Pareto behaviour of stable distributions in some cases is only apparent far out in the tail. We
have not investigated this further.

The last column classifies the dependence in the traffic rate measurements. The entries are based
on the estimated correlation function of the log traffic rates, using the standard 95% asymptotic
confidence limits. Two scales are used. The first one is “str” if of the first 200 correlations at
least 50 are > .1, “med” if between 20 and 50 are > .1, “sm” if less that 20 are > .1, and “tiny”
means that all correlations are < .1. For the second scale “long” means that the area where most
correlations are significantly different from 0 extend more than 200 lags, “int” that this area lasts
for between 50 and 200 lags, and “sh” that the it is shorter than 50 lags. It should be noted that
for different data sets, “lags” may correspond to rather different amounts of real time. The entry
“indep” means the traffic rates were judged to be compatible with independence.

Finally, an entry “” means that the estimate was not available.

Table 2 only contains the data sets which contained information about individual file transfers.
In the first column, the intensity A of starts of transfers is estimated as the total number of transfers
divided by total time in seconds, and in the next the fit of the interarrival times to an exponential
distribution as checked by qg-plots is given. In the remaining columns, the shape parameter v is
estimated and dependence is checked in the same way as for Table 4.1. The column marked “time”
refers to the download time of a file and “filesize” refers to the size of the downloaded file. In the
column marked rate, we computed the transmission rate as

(file size) /(time to download the file)
and then estimated the shape parameter y. The parameter 7 for the rate in the Ericsson trace

could not be reasonably estimated; see the data description below.

4.2. The BU traces.
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4.2.1. Data description. This data contains four components and are described and analyzed in [17]
and [20]. Below we describe the BU and the derived BUburst traces, which were obtained from the
posted data. Both contain times of requests, file sizes, transfer rates and transfer times, before and
after “burstification” for a period of approximately 28,000 seconds (8 hours and 20 min) with the
most intense traffic in the February 1995 part of the trace. The construction of the traffic rate data
sets BUburst 1s and BUburst 10s is explained below. The calculation of traffic rates assumes that
the transmission rate did not change during the transmission of a file, and hence the constructed
traffic rates deviate from the real ones.

The traffic was generated from two rooms of users during the period October 1994 to February
1995. The statistical characteristics of data vary considerably from one month to the next. We
have only used data from the room containing 32 work-stations used by undergraduates, with all
the cache-file requests removed. This trace is the most complete among the public domain data
sets we are aware of. It was recorded at a time when Mosaic was the most common browser. Unlike
Netscape, the source code of Mosaic is publicly available and could be altered for measurements
purposes. A followup study by a BU team is reported in [9].

The data consists of the record of all the individual sessions generated by the different users. A
session is a succession of URL requests (http, ftp, gopher, ... ) made by one user from logging in
until logout. Every request corresponds to a line in the session file which contains the following
information: machine number, starting time of the request (in micro-seconds since January 1, 1970),
URL of the requested document, size of the document (in bytes) and transfer time. The cache-files,
that is files already stored on the user disk, are marked with a zero transmission time and file size.

The BUburst data resulted from the need to distinguish between file requests made by humans
and machine generated requests. Typically a human initiated request, e.g. for a web page, made
triggers a cascade of file transfers, and hence very small intervals between file transfers usually
are machine generated. If we think of users as being sources in the infinite source Poisson model,
we must correct for this cascading. Hence we lumped together requests which arrived less than
.5 seconds apart into a single “request” which we will refer to as a “burst”. The selection of the
“threshold” .5 seconds was based on a close look at the data. The size of the burst is then the
sum of the sizes of the files lumped together, and the duration is from the beginning of the first
file transmission in the burst to the termination of the last file transmission in it. BUburst 1s
and 10s are obtained from the BUburst data by calculating traffic rates at 1s and 10s resolutions
respectively. A typical session before and after creating the bursts is presented below. The 100682
initial requests resulted in 56516 bursts, out of which the period we studied contains 4161.

[ BU [ BUburst |
Begin URL File Transfer | Begin File transfer
download size time download size time
43817.159177 "http://cs-www.bu.edu/” 2069 2.994023 | 43817.159177 4591 4.903682
43820.586374  "http://cs-www.bu.edu/lib/pics/bu-logo.gif” 1805  0.551812
43821.538385  "http://cs-www.bu.edu/lib/pics/bu-label.gif” 7 0.524474
43835.427403  "http://cs-www.bu.edu/courses/Home.htm]” 3382 0.510081 | 43835.427403 3382 0.948917
43836.36075 ”http://cs-www.bu.edu/lib/pics/bu-logo.gif” 0 0.0
43836.37632 ”http://cs-www.bu.edu/lib/pics/bu-label.gif” 0 0.0
43842.134286  "http://cs-www.bu.edu/students/grads/tahir/CS111/” 1065 0.404507 | 43842.134286 1065 0.404507
43846.456855 "http://cs-www.bu.edu/students/grads/tahir/CS111/hw6.ps” 32246 0.498012 | 43846.456855 32246 0.498012

4.2.2. The number of logged-on work-stations. Due to the diurnal cycle (strongly visible because
of the small number of users), the traffic is highly non-stationary, see Figure 4.1 which shows the
number of active sessions. The periods with 0 logged-on stations typically occur during nights and
week-ends.
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FIGURE 4.1. BUburst: left) Number of active sessions versus time (in seconds),
January 1995. right) Detail of the left plot showing one day.

4.2.3. Discussion. The interarrival times for the BU and BUburst traces over the entire month were
clearly not exponentially distributed. For BUburst there was some indication of exponential-like
behavior for small interarrival times, but the distribution was heavy tailed as revealed by a QQ-plot
(see Section 3.3) yielding the estimate & = 1.54, cf Figure 4.2. In view of the low aggregation level
this is not surprising.

For the BUburst trace the transmission times, file sizes, and transfer rates had heavy tails with
4 > .5 The tails of the transmission rates dominated the tails of the transmission times and file
sizes, in contrast to our expectations.

The BUburst 1s and BUburst 10s traffic rate data sets have rather light-tailed marginal distri-
butions. However, the distributions still look much more stable than normal. Since the traffic rates
are quite dependent (or non-stationary), they cannot be well modelled by a stable Lévy noise.

The Hurst and Holder estimates were rather similar, while the Hurst estimate derived from the
fBm model and the 4 for the transfer times was smaller.

We selected a short period with high traffic. Realistic models should include the variation in the
number of logged on workstations.

An extensive statistical analysis of these data has been carried out by the authors of the trace
([15]). In particular they present similar estimates for tails and traffic rates and explain the dis-
crepancy with the theory through the low traffic level.

From Figure 4.2 one sees that the left tail (near 0) of the inter-arrival times looks like an
exponential or Weibull tail while the right tail looks Pareto. The autocorrelations of the inter-
arrival times seem significant but rather small. Figures 4.3 and 4.4 show the marginal distributions
of the traffic rates and the Hurst parameter estimations. For heavy tailed data it is difficult to plot
an informative histogram so we show the histogram of the log of the data.

Finally, this data set is rather old on the timescale of the internet evolution, and in particular
the parameter values obtained from it may be rather different from current ones.

4.3. The UCB traces.

4.3.1. Data description. The UCB data is an 18 day trace of the home IP HTTP traffic processed
by UC Berkeley during November 1996. It consists of all the internet connections through the
server of the university established by individual dial-up users. The traces together with a detailed
description of them is available at http://ita.ee.lbl.gov /html/contrib/UCB.home-IP-HTTP.html.
The data content is similar to the BU traces (initiation time of a file transfer, file size, transfer
times of a request, IP address of client). We have not attempted to burstify the UCB data, as
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FIGURE 4.2. BUburst. Inter-arrival times of bursts: left) qg-plot against exponen-
tial distribution, middle) Pareto fit for the 400 largest values (last 10 %), (o = 1.54),
right) autocorrelation function.
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FIGURE 4.3. BUburst 10s. Traffic rates: left) trace, middle) histogram of log
traffic rates; right) wavelet regression estimation of the Hurst parameter.
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FIGURE 4.4. BUburst 1s. Traffic rates: left) trace, middle) histogram of log traffic
rates; right) wavelet regression estimation of the Hurst parameter.

we did with the BU data. However, a much larger number of users are included and the traffic
rate is higher. Due to the non-stationarity and the diurnal cycle, we chose to restrict the analysis
to several hours of peak traffic on a weekday, i.e. the period 5-8 p.m. on Thursday November 7.
This part of the trace consists of about 80,000 requests. We would like to emphasize the need to
carefully select the period for analysis, since some network outages occurred during the recording
of the trace. E.g. one outage can be observed on November 6, from 5 pm to 8 pm.
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As for the BU data, the actual traffic rates were not available and we again constructed ap-
proximate traffic rates by assuming constant (but different from transmission to transmission)
transmission times.

4.3.2. Discussion. An exponential distribution fits the inter-arrival times fairly well. While rather
many of the of the estimated correlations for the log interarrival times are significantly different
from zero, they are quite small (and perhaps caused by a small nonstationarity) and independent
interarrival times seems a reasonable approximation (Figure 4.6).

The file size and transmission time distributions were close to the borderline between finite
variance and infinite variance while the transmission rate was considerably more heavy tailed. The
distribution of log transfer rate is clearly bi-modal (Figure 4.5, left), perhaps due to different modem
speeds. A natural consequence is that the distribution of log transfer times is also bi-modal (Figure
4.5, right). There seems to be no hope of finding simple parametric forms which accommodate
these distributions.

The UCB 10s traffic rates show a quite good fit to the stable Lévy noise model, actually the
qqg-plot and density estimates were quite similar to those for the simulated stable noise. The ML
estimates of the marginal parameters were a = 1.52 £ .02, 8 = 1.00 & .00, = 86000 £ 1200,6 =
438000 + 2300. The a estimate may be compared to the a-value 1/.57 = 1.75 of the tail of the
transfer times, and was quite different from the a of 1/.05=20 obtained for the traffic rate.

The stable Lévy motion model model fitted somewhat less well for traffic rates computed using
shorter time interval. This aspect of the data agrees with the analysis in Section 2.5, Proposition
1. However, the seemingly large value of NXT'F(T) in Table 1, perhaps indicates the difficulty of
interpreting the conditions AT F(T') — 0 or oo in Proposition 1. The effects of varying block size on
the marginal distribution of the traffic rates is illustrated in Figures 4.9. The distributional shape
is clearly different for different sizes of the time intervals and hence indicates a lack of distributional
self-similarity. Figure 4.10 shows the wavelet regression estimation of the Hurst parameters, which
were close to the independent increments Brownian motion value 0.5.

8000

4000

3000
4000 6000

2000

1000
2000

log transfer rate log file sizes

FIGURE 4.5. UCB Histograms of left) log transfer rates and right) log file sizes.

4.4. The Munich traces.

4.4.1. Data description. The Munich lo data set contains measurements of cell rates for both the
sending (TX) and receiving (RX) directions of an ATM link. The link, a Customer Service Switch
(GDC APEX 200) with a line speed of 155 Mbit/s, connects the Munich University network with
the German Scientific Broadband Network. The data, kindly provided to us by Helmuth Gogl, was
collected around the clock on Wednesday, November 12, 1997 (TX) and Wednesday, December 17,
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FIGURE 4.6. UCB inter-arrival times: left) qgplot against exponential distribution,
right) autocorrelation function of interarrival times.
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FIGURE 4.7. UCB 10s traffic rate: left) qgplot against estimated stable distribu-
tion, and right) density estimate and density of estimated stable distribution.
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FIGURE 4.8. UCRB traffic rates at different aggregation levels: left) 1 seconds, mid-
dle) 2 seconds, and right) 10 seconds.

1997 (RX) with a temporal resolution of 2 seconds, i.e. the total number of cells that passed the
ATM link every 2 seconds was recorded. The maximum bandwidth which was available was about
20 Mbit/s.

The traffic recorded was pure IP (mainly HTTP, FTP, and NNTP) data traffic, without any
audio/video components. A shorter sample covering the period between 10 a.m. until 1 p.m.
was selected for analysis. The shorter period was chosen to obtain a roughly stationary data set.
However, for the RX direction, the influence of the lunch hour is still clearly visible.



32 C.A. GUERIN, H. NYBERG, O. PERRIN, S. RESNICK, H. ROOTZEN, AND C. STARICA

1500

1000
2

traffic rate 10s
5410°5  10%6 15410 2*10%6 2.5410%6
2,

i

= /

8 10 12 14 0 5110%5 106 15106 2110% 25106 0 510°5 10%6 15110 2110% 2510%
log traffic rate 1s. traffic rate 1s traffc rate 1s

500
5710"5 1076 1.5710°6 2710  2.5%10%

0
[

FIGURE 4.9. UCB: traffic rate over time blocks of varying lengths: left) histogram
of log traffic rate for 1 second blocks (¥ = .43 + .06) middle) qgplot of log traffic
rate for 1 second blocks against 2 second blocks (% = .40 £ .08 for the 2 second
blocks), and right) qgplot of log traffic rate for 1 second blocks against 10 second
blocks (4 = .05 £ .17 for the 10 second blocks).
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FIGURE 4.10. UCB wavelet regression estimation of the Hurst exponent for traffic
rates over different time intervals: left) 1 second, H = 0.50 & .04; middle) 2 seconds,

H = 0.50 + .01; right) 10 seconds, H = 0.58 +.03.

The Munich hi data set was recorded at the same ATM link, but with a much higher time
resolution. Tt contains 1690729 inter-arrival times of ATM cells from all traffic in the TX direction
over a period of approximatively 137 seconds with a resolution of 1 micro-second. The measurement
was done on Tuesday, December 23, 1997 starting at 14:48:15 and ending at 14:50:33. A mean
utilisation of 5.062 MBit /s (11938 cells/s) was recorded, which corresponds to about 25% utilisation.
A detailed description of the data is given in [30]

4.4.2. Discussion. All four Munich traces come from the same server, and similar traffic situations.
The RX cells had typically passed through and been reassembled into frames in more routers than
the TX traces. The temporal resolution varied by a factor 200, from the high aggregation level of
2 seconds down to a low one of .01 second. The different kinds of traffic, HTTP, FTP, and NNTP,
had rather different characteristics, as exhibited in figures in [30].

The traffic rate traces have similar light tails with -y close to zero. The distributions are neither
normal nor stable, with heavier tails than for normals but not as heavy as for a stable distribution;
cf. Table 1 and Figures 4.11 — 4.14. In fact, lognormal QQ-plots showed rather good fit. The
marginal distributions had different shapes for the different traces.

There is a clear and strong long range dependence, which persists over a wide range of scales as
seen by autocorrelation functions and wavelet regression plots and also by the fact that for all four
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traces the estimates of the Hurst exponent are close to the same value, .95. In addition, the Munich
lo RX trace was clearly nonstationary. However, based on theoretical considerations and numerical
experiments, this is not expected to influence the Hurst and Holder estimates significantly.

The Holder exponents throughout are smaller than the Hurst ones, and decrease from values of
around .85 corresponding to strong local dependence for the high aggregation levels down to .56
which is close to independent increments for the .01 second trace.

In the fBm model, the Hurst and Holder exponents are the same. Here, this is clearly not the
case. One explanation could be that although the tails of the marginal distributions are lighter
than Pareto, they still are rather heavy, which may inflate the Hurst exponents (recall that the
ii.d. stable variables considered in this paper have Hurst exponents > 1/2). However, what is
not explained by the infinite source Poisson model is that the data seem more independent on a
finer time resolution. A possible explanation of this discrepancy is the slow variation of A due to a
varying number of users.

An extensive analysis of these data at the cell level, and after collection into “bursts”, is made
in [30, 31]. Both on the cell and the burst level, estimated Hurst exponents were smaller than our
estimates — since this analysis concerned short time distances it is in agreement with the finding
that the Holder exponents were smaller than the Hurst ones. An expected result was that the
lengths of very short interarrival times between cells (< 10us) were not exponential, but had a
discrete distribution determined by the system clock frequency.
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FIGURE 4.11. Munich lo, RX: left) trace, middle) histogram of log traffic rate,
and right) wavelet regression estimation of the Hurst exponent.
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FIGURE 4.12. Munich lo, TX: left) trace, middle) histogram of log traffic rate,
and right) wavelet regression estimation of the Hurst exponent.
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FIGURE 4.13. Munich hi .1 s: left) trace, middle) histogram of log traffic rate,
and right) wavelet regression estimation of the Hurst exponent.
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FIGURE 4.14. Munich hi .01s: left) trace, middle) histogram of log traffic rate,
and right) wavelet regression estimation of the Hurst exponent.

4.5. The Ericsson trace.

4.5.1. Data description. The Ericsson trace consist of time stamps of starts and completions of the
TCP connections that correspond to HTTP file transfers to and from a corporate WWW server
which holds home pages and information primarily directed to about 2000 company users. In
addition, people at other Ericsson companies around the world have access to the server. The
recording was started Thursday Oct 15, 1998, at 15:20 and was ended Friday Oct 16 at 15:49. The
information extracted from the data gives the times of connection starts, connection durations,
number of bytes transferred (from server to user as well as the opposite direction), and client
identification for each connection. Approximately 2% of the connections resulted in missing data
for server-to-client transfers. The reason was that the connection was abnormally terminated and
the number of bytes transferred could not be obtained from the data saved in the trace. The data
set is quite nonstationary, and hence a more stationary subset covering 2000 seconds was chosen
for analysis. As for the BU and UCB traces approximate traffic rates were constructed from the
data described above.

For unexplained reasons the measurement system erroneously added 30 milliseconds to about
18% of the transfer times.

4.5.2. Discussion. There were both stationarity and measurement problems with this data set, but
it was also the most recent one. It had the most heavytailed transfer times and file sizes. However,
the transfer rates were lighttailed — this may have been particularly influenced by the measurement
errors, and we have hence not included the estimated value in Table 2. The interarrival times were
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FIGURE 4.15. Ericsson traffic rates: left) trace, middle) histogram of log traffic
rate, and right) wavelet regression estimation of Hurst exponent.

close to independent, but their distribution had heavier than exponential tails, as expected for this
relatively low aggregation level.
The two Hurst estimates were similar, while the Holder estimate was in the differentiable region.
The traffic rates were lightailed and the wavelet regression showed good agreement with the fBm
model, but the marginal distributions were clearly nonnormal.

4.6. The synthetic UCB and Ericsson traces.

4.6.1. Data description. The UCB syn 10s and Eri syn 1s traces were constructed from the same
segments of the UCB and Ericsson data sets which were used in the analysis of work rates in
Sections 4.5 and 4.3. The new traces were constructed as follows: File transfers started and ended
as they did in the real trace, but the transfers were changed to make transfer rates equal to one.
From the resulting “data sets” we then calculated 10 and 1 second traffic rates, respectively to
obtain the “UCB syn 10s” and “Eri syn 1s” traces.

The infinite source Poisson model assumes that transfer rates are constant, and we hence thought
it interesting to compare a situation where this indeed was the case with the real traces where the
transfer rates had a heavy tailed distribution.
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FIGURE 4.16. UCB syn 10s traffic rates: left) trace, middle) qgplot vs normal
variable, right) wavelet regression estimation of the Hurst parameter.

4.6.2. Discussion. The UCB syn 10s traffic rate conformed with a fBm in except that the Holder
estimate was in the differentiable region, H, > 1. For the Eri syn 1s the marginal distribution were
close to normal except for a few observations in the tails. The Hurst and Holder estimates were
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FIGURE 4.17. Eri syn 1s traffic rates left) trace, middle) histogram, right) regres-
sion estimation of the Hurst parameter.
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FIGURE 4.18. Plot of transfer times against transfer rates for left) the BUburst
trace, middle) the UCB trace, and right) and the Ericsson trace.

both close to 1.5. We believe this is a consequence of non-stationarities in the data, which clearly
show up in Figures 4.15 and 4.17. Both synthetic traces were very different from the real ones.

As shown in Figure 4.18, large values of transfer times and transfer rates were fairly independent;
the scatter plot of transfer times vs transfer rates hugs the two axes which shows that either the
two quantities are independent or if dependent, their joint distribution is multivariate regularly
varying satisfying a condition of asymptotic independence [65, page 290ft].

4.7. Summary and conclusions. We have provided a summary in Section 2 of the description
and properties of a fairly flexible model which we have called the infinite source Poisson model. This
model predicts that on large time scales (i.e. as T — 00), traffic will have certain properties and we
catalogued these properties according to whether the regular variation index a of the connection
length distribution F' satisfied (i) o < 1, (ii) 1 < e < 2 or (iii) @ > 2. We also surveyed in Section
3 statistical methods for estimating model parameters in order that we could diagnose whether our
model provided a good fit to four data sets.

Our assessment of the statistical methods selected is that they were convenient to apply and aided
understanding of the data. However, we have downplayed difficulties in estimating tail parameters
such as a or y. Such estimates are sensitive to either the choice of threshold or choice of number
of upper order statistics as has been amply documented; see, for example, [28, 69, 66]. Similar
choices have to be made in the estimation of Hurst parameters. More development is needed to
provide reliable confidence intervals for estimates, especially of long range dependence parameters
and Holder exponents. Better understanding of the estimation of Holder exponents would be useful
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as well as a clearer understanding of the relationship between treatments using the second order
definition (2.2) and the pathwise treatments in, for example, [72].

Global statistical properties such as heavy tails and long range dependence were amply in evi-
dence in our data as expected and as predicted by the model. Transfer times, file sizes and transfer
rates were consistently heavy tailed, usually with 1 < a < 2. (See Table 2.) Traffic rates frequently
displayed evidence of long-range dependence as shown in Table 1. However, the estimated marginal
distributions of traffic rates changed markedly with aggregation level for all of the traces (see, for
example, Figure 4.9) and thus we conclude that none of the traffic rates was fully distributionally
self-similar. Either the model does not adequately fit the data or considered time scales are too
small for the asymptotic behavior discussed in Section 2.2 to hold.

The scaling behavior of the actual traffic rate traces as summarized by the wavelet estimator
of the Hurst parameter was compatible both with the fBn model and with the stable noise model
(see the column for H in Table 1). The fBn and stable noise model are the asymptotic limits
given in Section 2.1 when 1 < o < 2. However, all measured marginal distributions were far from
normal, and hence the fBn model does not fit the data. The stable distributions are much more
flexible and generally fitted the data better. In one case, the UCB 10s traffic rates, the stable
noise model provided a good description of the trace (Figure 4.7). However, generally speaking,
estimates of a given in Table 1 (remember o = 1/7) using the maximum likelihood estimation
in the generalized Pareto distribution model produced lighter tails than using Nolan’s maximum
likelihood estimators ([62]) to fit stable distributions directly to the data, so there is doubt that
the stable model adequately fits the tails of the data.

An overall impression is that the infinite source Poisson model struggles to adequately describe
our data. The assumption of constant transfer rates in the model is at the center of the problem.
This is clearly shown by the UCB syn and Eri syn traces where the real transfer rates were changed
to a fixed rate (=1). In particular, the UCB trace conformed fairly well with the limiting fBm
model in the properties studied by us (Table 1 and Section 4.6). This was in complete contrast to
the actual measured traces which had widely varying transfer rates and were quite far from being
a fBm (Sections 4.3 and 4.5). Examining file transfer rates in, for example, the BU data shows
that such rates should more realistically be modelled as random with a heavy tailed distribution.
Furthermore, file transfer rates seem to be only asymptotically independent of file transfer times
(Figure 4.18). However, implementaions of TCP which include features designed to make bandwidth
sharing more equitable may make these effects less pronounced.

Another difficulty in the model is identifying Poisson time points from the data. This is impos-
sible with certain data sets such as the Munich data and difficult with the BU data. A common
paradigm is that activities initiated by humans is well modelled by Poisson processes. This was
in agreement with our analyses of the UCB data (Table 2 and Figure 4.6). However this simple
paradigm has to be informed by the non-stationarity of most collected data and by the fact that a
Poisson process model is only expected (and observed) when activities initiated by many humans
are aggregated. Furthermore, many types of web based activity are initiated by machine and can-
not be expected to follow the Poisson process except perhaps at extremely high agreggation levels.
A possible refinement of the infinite source Poisson model is a Poisson cluster model where activ-
ity triggered by humans is modelled by Poisson cluster initiations and machine triggered actions
are the cluster points associated to the Poisson cluster starts. Another alternative is the Markov
modulated Poisson process or Markovian arrival process.

Here are some additional final comments.

e All the traces had very clear diurnal and weekly variations and trends. An informal technique
which is widely used is to select a subset of the data for analysis which is visually stationary.
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An often used heuristic rule is to not consider data over time intervals greater than 4 hours. In
situations where data is often copious, this waste of data may not be serious but thought needs
to be given to models which incorporate the non-stationarity explicitly. If data subset selection
is used, the choice of subset should be determined by stationary situations of particular
interest; for example the desire to model times of peak load.

It is important to know which time scale is of interest. We were able to detect behavioral
differences over time scales in the range 0.01s—10s. Also, at very fine resolutions of the order
of microseconds, protocols and clock frequencies are very influential as was seen in the Munich
high resolution data. Pareto behavior of tails of transfer times is not apparent until times
exceed tens of seconds and therefore correlation behavior of the cumulative input will not
match those of the limiting models for lags of smaller order. Hence, one should not expect
limiting approximations to be applicable at resolutions finer than tens of seconds.

Without added refinements, the infinite source Poisson model is clearly not capable of de-
scribing behavior on very fine time scales. Fine time scale behavior is presumably affected by
the passage through many protocol layers and control mechanisms such as TCP and thought
to modelling the effect of such controls is urgently needed. For some results in this direction
using the concept of multifractals see [72, 73]. Investigating such a refinement of the model is
a long term goal.

Models should be quite different for high and low numbers of users or active nodes. For
relatively low numbers of active nodes, say up to several hundred users, rather detailed models
are needed. These should incorporate at least the varying number of active users, the activity
levels of the users, the specific kinds of tasks of interest, and machine generated bursts of
transfers of several files caused by one user request. In addition it is likely that models and
approximations should be rather different at high and low utilization levels; that is when
traffic rates constitute a high percentage of the maximum rate allowed by a link.

In situations with superposition of a large number of users (thousands or more) the as-

sumptions of the infinite source Poisson model gave a good description of user behavior during
stationary periods. In fact the asymptotic fractional Brownian motion described well the sim-
plified version of the traffic obtained by enforcing the assumption of constant transfer rates,
for the UCB data, as discussed in Section 4.6 above.
For our data, fBm was inappropriate for modelling the real traffic rates with varying transfer
rates. When the transfer rates were artificially set to be constant, in particular for the UCB
syn trace, there was good fit. It is clear that also at coarse resolutions actual network traffic
is strongly influenced by flow control mechanisms such as TCP, server behavior, congestion,
caching strategies and other factors. To obtain useful and realistic models, these factors cannot
be ignored. Since much of the network traffic passes through a large and varying number of
routers and switches, simplistic modelling of the behavior of the queue in one router is unlikely
to achieve acceptable levels of realism. To find realistic and useful models for highly loaded
systems serving large number of users which are subject to flow control, protocol modifications
and congestion is an urgent area for further modelling research. The urgency is emphasized
by the rapidly changing nature of the internet.
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