ON FULLY DISCRETE SCHEMES FOR THE FERMI
PENCIL-BEAM EQUATION

MOHAMMAD ASADZADEH AND ALEXANDROS SOPASAKIS

ABSTRACT. We consider a Fermi pencil beam model in two space dimensions
(z,y), where z is aligned with the beam’s penetration direction and y to-
gether with the scaled angular variable 2, correspond to a bounded symmet-
ric, transversal cross section. We study some fully discrete numerical schemes
using the standard Galerkin and streamline diffusion finite element methods
for discretization of the transversal domain combined with backward Euler,
Crank-Nicolson and discontinuous Galerkin methods for discretization in the
penetration variable. We derive stability estimates for the semidiscrete prob-
lems and, assuming sufficiently smooth exact solution, we show optimal a priori
error estimates. Numerical examples presented in some canonical cases, with
data approximating Dirac § function, confirm the expected performance of the
combined schemes.

1. INTRODUCTION

The Fermi pencil beam equation is derived from the Fokker-Planck equation
through an asymptotic expansion. The Fokker-Planck equation itself is yet another
asymptotic limit of the linear Boltzmann equation, see [6]. The assumption of
forward-peaked scattering, in a transport process, comprises the back-bone of the
derivation of both equations.

We study some fully discrete schemes for the numerical solution of a pencil beam
model in two space dimensions. Introducing a scaled angular variable z, our model
problem would correspond to a, degenerate type, convection dominated convection-
diffusion problem in a slab of thickness L, z € I, := [0, L], with a symmetric cross
section I, := I, x I, := [—yo,Yo] X [—20, 20], for yo, 20 € R*. Thus the physical
domain, I, x I, , is now three dimensional and the corresponding Fermi equation is
modeling the penetration (in the direction of the z-axis) of narrowly focused pencil
beam particles incident at the transversal boundary of an isotropic slab at the point
(z,y,2) = (0,0,0). The forward-peakedness assumption would allow us to consider
bounded, convex transversal domain. For the isotropic background media we may
assume that all involved functions are symmetric, more precisely even functions, in
y and z.

In this setting, our model problem is thus formulated as follows: given the inci-
dent source intensity f at x = 0, find the current function u defined on the domain

1991 Mathematics Subject Classification. 65N15, 656N30, 35L80.

Key words and phrases. Fermi, Pencil beam, standard Galerkin, streamline diffusion, fully
discrete schemes.

The second author is also affiliated with Texas A&M University.

1



2 MOHAMMAD ASADZADEH AND ALEXANDROS SOPASAKIS

O := I, x I, satisfying the Fermi equation

Ug + 2Uy = E€U,,, In Q=1 x1I,,
uy(z,y,+20) =0, for (z,y) € I, x I,
(1.1) w(0,z,) = f(zy), forxz, €1,
u(z,z1) =0, onFﬁf:{(x,mL)GF::é)Q,ﬁ-B<O},

where z = tan(d), —7/2 < 0 < 7/2, corresponds to scaled angular variable,
z, = (y,2) and 2e = oy, (z,y). Here oy, (z,y) ~ 1/1, (I is the mean free path), the
transport cross section, is a positive small and decreasing function of (z,y) indicat-
ing energy deposit due to particle collisions. Finally 8= (1,2,0) and & := fa(z, z1)
is the outward unit normal to T at (z,z,) € T'. As we stated earlier this model prob-
lem corresponds to a convection dominated (¢ small) convection-diffusion problem
which can be interpreted as a time-dependent (with z corresponding to the time
variable) convection-diffusion problem of degenerate type (convection in y, diffusion
in 2).

For this type of equation the usual standard Galerkin scheme would converge
very slowly. Even for the non-degenerate convection dominated problems, having
hyperbolic nature, the standard finite element schemes would have poor conver-
gence behavior, of order O(h*) versus O(h*+1) for elliptic and parabolic problems
(assuming the exact solution in the Sobolev space H**1, and a quasi-uniform trian-
gulation, with mesh size h), see [9]. The idea of including artificial viscosity term,
e.g. by adding some amount of diffusion in the equation, is to improve this poor
behavior and speed up the convergence of standard finite elements for hyperbolic
type problems. Here, the streamline diffusion method would automatically add a
proper amount of extra viscosity term through a modified form of the test function.

Some related studies of the Fokker-Planck and Fermi pencil beam models can
be found in [2], [3] and [4]. In [2] a priori error estimates are derived for the
fully discrete problems using the streamline diffusion and discontinuous Galerkin
methods, while [3] is devoted to the a posteriori error estimates in the same setting.
Characteristic methods, based on the technique of exact transport + projection,
are considered in [4].

Below first we study the semidiscrete schemes where we discretize in the transver-
sal variable 2, =: (y, z), using the standard Galerkin (=SG) and streamline diffu-
sion (=SD) finite element methods with weakly imposed boundary conditions, and
derive some stability estimates. Further, for the SG-method, assuming the exact
solution being in the Sobolev space H¥*!, we also derive optimal a priori error
estimates of order O(h¥) in a L, based norm. While the corresponding conver-
gence rate for the SD finite element method is O(h*+'/2), as shown in [2]. Our
convergence results in the semidiscrete part are based on Galerkin orthogonality
and strong stability estimates derived for certain bilinear forms. These are the
usual approaches studied for the standard problems which we have extended to a
degenerate type equation.

As for the fully discrete problem: because of the structure of the equation here
the penetrating variable z is interpreted as a time variable and therefore appropri-
ately treated by the time discretization techniques such as: discontinuous Galerkin,
backward Euler or Crank-Nicolson methods.

One of the basic applications of the Fermi pencil beam models is in the dose
calculations of radiative cancer therapy, see [8]. Our computational results, in
concrete examples, are useful in investigating the credibility of different numerical
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algorithms proposed in this context. We present fast and efficient deterministic
schemes competitive with the commonly used stochastic algorithms (with the ad-
ditional advantage of having more reliably justified convergence rates than those in
the stochastic approaches).

An outline of this paper is as follows: we start by presenting the semidiscrete
approximation by the standard Galerkin finite element method in Section 2, prove
a stability result for this type of discretization in Subsection 2.1 and derive the error
estimates in Subsection 2.2. The corresponding investigations using the streamline
diffusion approximation are presented in Section 3. Section 4 is devoted to fully
discrete algorithms. Numerical simulations, for some relevant examples, together
with the study of the behavior of either discretization algorithms are introduced
in Section 5. Finally in Section 6 we comment on our results and outline a future
work. Throughout the paper C will denote an absolute constant unless otherwise
explicitly stated.

2. THE STANDARD GALERKIN METHOD

In this section we have a discretization in z; = (y,2) using the finite element
approximation based on a quasi-uniform triangulation of the rectangular domain
I, =TI, x I, with a mesh size h. To this approach we let 8 = (z,0) and define the
inflow (outflow) boundary as

(2.1) I, = {z, €T:=0I, :n(z1) B <0(>0)},

where n(z ) is the outward unit normal to the boundary I" at z; € I'. Now we use

the notation v(-) := Z%(-) and introduce a discrete, finite dimensional, function

space Vi3 C Hj(IL) with,
(2.2) Hy(I)={ve H'(I.) :v:(+2) =0, and v=0 on I';},

such that, Vv € Hy(I.) N H"(I.),

(2.3) inf |lv—xll; <Ch* |v|la, j=0,1and 1<a<r,
XEVh,s
where for positive integer s, || - ||, denotes the Ly-based Sobolev norm of functions

with all their partial derivatives of order < s, in Ls, see Adams [1]. An example
of such V}, g is a set of sufficiently smooth piecewise polynomials P(z ) of degree
< r, satisfying the boundary conditions given in (2.2).

Now the objective is to find up € V}, g, such that

(2.4) { (h,z, X)L + (2Unyy, X)L + (EURz, X2)1L =0, VX € Vig,
' up(0,71) = frn(zL),

where f}, is a finite element approximation of f and the mesh size h is related to €
according to:
h?<e<h.
1
Here, (u,v); = fIL uw(x)v(zy) dey and ||lul|p,r,) = (w,u)?. To distinguish, we

use the following inner products notations: (-,-), and (-, -)q, where Q = [0, L] x I, =
I, x I, for integration over I, and I, x I, respectively.
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2.1. Stability. In this part we prove a stability lemma in both inner products,
(-,-)1 and (-, -)q, to guarantee the control of the discrete solution by the data. For
simplicity we introduce the triple norm,

1

(25) ol =5 [, @) dr+ 20
B

where 3 = (1, 8) and [t =T\T; =[0,L] xTfU{{L} x I.}.
Lemma 2.1. For up € Vj g, satisfying (2.4) we have that,

(26) sup ||Uh(.’E, ')”LQ(IJ_) < ||f||L2(IJ_)7

z€l,

1
(2.7) llunlly = 2 lun 0, Miarey-

Proof. We let x = uy, in first equation, in (2.4) to obtain,

1d
2 da

Using integration by parts, in y, we may write

(2un gy un) L =o / = (uho0) v () =

2
(2.8) ||Uh||L2(IL) + (2un,y, un)L + lle*/ uh,Z“Lz(IJ_) =0.

2
1 %0 2 2 1 0 2 2
=5 [ Ak~ wicwlldz+ 5 [ slud o) - ui(-)ldz
0 —Z0
1
=5 [y ar,
Ts
which, inserting in (2.8), gives that,
1d 1
Q9 gl + 5 [ B d e ) =0
B

Using (2.9) we shall obtain stability estimates for the semidiscrete problem, dis-
cretized by the SG-method (the corresponding continuous variational formulation
would lead to similar stability estimates for the continuous problem). Now, since

fr+ B)ui dT' > 0, by (2.9), dz”uh”Lz(IJ_) <0, ie, [lunll, (1. 18 decreasing in z
and hence,
(2.10) llun(@, Meayy < Wfllpayy, Vo €0, L]

This gives the first statement of Lemma 2.1. Further, integrating (2.9) over = €
[0, L] we get,

1
e +3 [ / B3 dT + [l un 2|0y = 3 1m0, e, -

Observe that the first two terms above amount to 3 [+ (n - B)u? dT, so that we

obtain the second assertion of the Lemma and the proof is complete. O
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Remark 2.1. Below we derive the corresponding pointwise version of Lemma, 2.1:
Let us consider z' € [0, L], integrating (2.9) over (0,z'), the procedure leading to
the proof of the second assertion of the Lemma 2.1, would give,

1 I 1
eu) 5[ @B e = 50w,
Ea"”l
where I‘ng, =TF x[0,2Tu{{z'} x I} and Q' = [0,2'] x I,. Now since the right
hand sides in (2.7) and (2.11) are identical and || - ||L2(Q,) <|- ||%2(Q),(Q' cQ),
thus
(2.12) [ @puzars [ e dar,
rt rf

E 2!
or equivalently,

/ / BYu2dT + lun(L, )2, < / / BYu2dT + llun(z’ N, -

Evidently we also have for ' € [0, L],

(2.13) / /F+ B)uj dT >/ /F+ B)u} dr,

thus,
(214) ”uh(La ')”Lz(IJ_) < ”uh(mla')”Lz(IJ_)a Vz' € [OaL]

Generalizing (2.14), we have that the Ly(I) )-norm of the finite element solution is
decreasing in x, which also implies the first assertion of Lemma 2.1.
Below we state the continuous version of Lemma, 2.1:

Corollary 2.2. The solution u of problem (1.1) satisfies the stability relations,

(2.15) SUp [[u(@, Moy < I llzae),

(2.16) el

To proceed we introduce the bilinear form, A : Hy(I,) x Hy(IL), defined by

1
§||f||ig(1l)-

(2.17) A(u,v) = (ug,v) 1 + (2uy,v) 1, VYu,v€ Hy(I)).
Let now @ € V}, g be an auxiliary projection of the solution u into V}, g, defined by
(2.18) Alu —i,x) =0, Vx € Vyp.

The usual Ly-projection of u into V3 g, being orthogonal, would satisfy (2.18).

2.2. Convergence. In this part we state and prove our main result: Theorem 2.3,
or the convergence rate of the SG-method for the semidiscrete problem with weakly
imposed boundary conditions.

Theorem 2.3 (error estimate in the triple norm). Assume that u and up satisfy
(1.1) and (2.4), respectively. Let w € H"(), r > 1, then there is a constant C
such that,

(2.19) lfur = ullg < CH™2|[u],.
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Proof. By adding first equation in (2.4) and (2.18) we get, using (1.1), that
((up — @)z, x) L + (2(un — "N")y;X)L + (e(un — @)z, x2) L
= — (ug, X)L — (2uy, X)L — (Euz, Xz) 1 + (e(u —8) 5, x2) L
=0+ (e(u — @)z, Xz)L-

Let now x = up, — @, then using the same argument as in the stability estimates we
may write,

1d 1

3l = g [ e B un = 0 A+ M2 un = ),
B

1 . 1 -
< §||51/2(Uh —@):lZ,01,) + §||€1/2(u — )27, 1)
or equivalently,

d =112 ~\2 1/2 =\ (12
g lun = allzy ) +/F;(n-ﬂ)(wz —@)* dU+|e"? (un — @): 7,1,

< M2 (u - ﬁ)z”%Z(u)-
Now integrating over = € [0, L], implies that
I (un = @)(Ly M)+ /r+\r (- B)(un — @) dT + [|e"/* (un — @).[|7 ,(q)
AL
<l (w = @)2l[7,0) + l(wn = @0, )7,z )»

where I'y, = {{L} x I}, further u,(0,-) € Vi and @(0,-) € Vi 3 are both ap-
proximating the initial data f, which by the uniqueness of the Ly-projection would
mean that up(0,-) = @(0,-) = fr. Thus recalling the definition of the || - [|; norm
we have

lfun —@ll3 < lle"/?(u — )13, (q)-

Writing up, — u = (up, — @) + (4 — u), the desired result follows from the following
interpolation estimate: [l

Proposition 2.4. Let h? < e(x,y) < h, then there is a constant C such that,

(2.20) llu—alllz < CR"2|lull,.

Proof. The proof is based on classical interpolation error estimates, see [7] and [9]:
Let u € H"(£2), them there exists an interpolant @ € V}, g, of w and interpolation
constants C7 and Cs such that

lu—dll, < Cih"*|lull, s=0,1
lu—alz < Coh™2|lully,

1/2
lols = (/F+ so%ﬁ-B)dr) .

B

where
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Now recalling the definition of || - || ; we have,
_ 1 . e
=13 = Sl — a3 + 1€/ — ) 0

1 5 .
< §|U - u|f§ + ||51/2||iw(9)||(u —@):[|7,)

1 . .
< §|U - U|25 + ( sup 5) llu = @l )

z X1y
1
< SCRRT a2 + CReh® 2 Jul
< R jull,

where in the last step we used & := supe < h and C' = max(C7,C3/2). Letting
now C' = C'/? the proof is complete. O

Remark 2.2. Using the trace estimate and through embeddings between Sobolev
and Besov spaces, we have for any fixed and small g9 > 0, the embedding relation
Ly(89) C HY/2=%0(Q). Therefore the triple norm |- ||| is equivalent to a H*/2=<0
norm. Now recalling, the Besov space notations for fractional derivatives, see also
Bergh and Lofstrom [5], Theorem 2.3 states that:

(2.21) llellyjz < CR™'2ull,,

where e = u — up. Another way of seeing this is through Poincare inequality, see
[2]. Hence, the Lo-error estimate for the standard finite element would be:

Proposition 2.5. For u € H"(Q), satisfying (1.1) and with uy, being the solution
of (2.4), there is a constant C = (Q, f) such that

(2.22) lu = unllzo@) < CR™ Hlull,.

Observe that in C = (£, f), the Q dependence is because of € = £(z,y), and the
reason for f dependence is the assumed identity up(0) := @(0).

3. THE STREAMLINE DIFFUSION METHOD

Proposition 2.5 gives the expected Lo-error estimate (2.22) for the standard
finite element method for hyperbolic type problems: an optimal convergence rate
of order O(h™~!) when the exact solution u € H"(2). The corresponding rate
for both elliptic and parabolic problems is of order O(h"). Usually, the modified
Petrov-Galerkin method is used to improve this poor behavior of the SG-method
for hyperbolic pde’s. In the Petrov-Galerkin method the test and trial function
spaces are different. Below this modification is suitably introduced in the streamline
diffusion setting. A draw-back in problem (1.1) is that the hyperbolic nature yields
to a bilinear form A(u,v) which is not coercive ( or V - elliptic), in the sense that
a relation of the type

A(v,v) > C(r, IJ-)“U”%P(Q)a Vv e HLIJ(IJ-)a

simply fails to be valid. The streamline diffusion test functions having the form v+
dvg would, automatically add an extra diffusion term, §(vg,vg), to the variational
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formulation which combined with (v, —ev,,) = (ev;,v,) term would give a, non-
degenerate, fully diffusive equation, (x is interpreted as a time variable), with a
diffusion term of order O(g), if § > ¢. In the final discretized version, § ~ h.

Below we derive stability estimates for the continuous problem based on the SD
variational formulation. The corresponding discrete version is then similar to that
of the previous section and easily followed. For the proof of convergence rates for
the SD-method we refer to [2].

Despite the common final form the mathematical treatment in streamline diffu-
sion has no connection with the physically motivated add of artificial viscosity, as
is customary in study of some fluid problems. Here the modified test function has
the form: v + dvg with § > €,8 = (2,0),v5 = 8-V, v and V, = (9/0y,0/0z),
and v satisfying the boundary conditions in (1.1). Then multiplying the differential
equation in (1.1) by v + dvg and integrating over I, yields,

- (ug + ug — €Uz,v + 0vg) L = (Ug,v) L + 6(ug,vg) L + (ug,v) L
(3-1) +0(ug,vg) 1L + (euz,v;) 1 +6(euy, (vg):) L = 0.
To derive the basic stability estimate in this case, we let v = u in (3.1) to obtain,
3 gl s ua) + 5 [ (- gpurar
T r

(3-2) 2 Jry

+8llugllL + [l ?usllL + d(eus, (ug)z) 1 = 0.
The inner product in the last term can be written as,

(Euza (zuy)z)J_ =(5u27 Zuyz)J_ + (Euzauy)J_

1d / 9 ) 1/ 9
=—— ezu, dydz ) — - eyzuy, dy dz + (uz, uy) 1 -
2 dy ( I, Y 2 I, Yy ( y)J-

Now since ¢ is independent of z the integrands above are odd functions in z and
therefore their integrals over the symmetric interval I, are identically zero, this is
the basic consequence of assuming the symmetry condition (u is even in y and z),
otherwise we had to keep these terms. Hence (3.2) can be written as:

1d 1

3l + 8tz un) + 5 [ (- pruar
(3.3) v 3

+ 8lluglt + 2w 2+ b(eus, uy) 1 = 0.

Now we multiply the differential equation in (1.1) by du,, integrate over I, and
perform an integration by parts to get,

(3.4) Sllug|? + 6(uz,ug) L + d(euz, ugs) L = 0.

Note that,

_ld
2dz Jp,

Adding (3.3) and (3.4) and using (3.5) we have,

1d 1
Ll 6l + usll2 + / (0 B)a? dT + [l 2u |2
2 dl’ F?—)—

1
(3.5) (EUzyUgzz) L eu? dr, — 5/ gqu? dx) .
Iy

2
(3.6)

6 d 9 ) 9 _
+0(euz, uy) L + 2ds |, eus de — 2/1L gpu; dzy = 0.
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We shall also use the following trivial inequality,
3.7 <1 12, n2 o Ly, g2
(3.7) (s )1 < Sl 2ual 2+ Sl 2y 12

Now we need to make an additional symmetry assumption on the propagation of u
on the transversal plane viz,

(3-8) et uyll L ~ lle?us|l .

Observe that € = 30y,(z,y) ~ 1/1, where the mean free path [ is an increasing
function of z and y, (the justification of this phenomenon lies on the fact that we
have a model starting with dense collisions which gradually, towards the penetration
direction x, transfers to a particle distribution with rarefied character on leaving
the physical domain). Thus € is decreasing and £, < 0, hence

(3.9) / exuldry <O0.

I,

Inserting (3.7-3.9) in (3.6) we get,

1d 1

+0]|uz +ugld + (1= 0)lle'u.l|1 <.

Thus for sufficiently small § ~ 1/ << 1, (§ < 1 would suffice)

d
(3.11) Ll + 5/ cu do.) <0
dx I,
and hence, (||u||2L +4 [ euldx J_) is strictly decreasing in x. As a consequence of
this, we have Vz' € [0, L],
llu(e', Ty cr,y + Sl uz(@’, )T, r,y < N0 )17,y + 0lle 2wz (0,17, (1, )
and in particular we have the first stability estimate for the continuous SD-method:

(312)  lu(Ly )Moz, + 0lle Pua (Lo MZyrny < Ml acrsy + Sl FollTa i, )-
Integrating (3.10) over z' € [0, L] we also get the second stability estimate:

Lemma 3.1. Assuming (3.8) and with § < 1 we have the stability estimate

(313)  Julld + dllus +usl ey < C (1 Racry) + 0l 2Ll 0, ) -

Remark 3.1: Observe that in deriving (3.13) from (3.10) we get the J-terms
o[, eui(L,zy) dey = 8|l /2u, (L, -)||2L2(Il) and (1 — 6)”51/2“2||2L2(Imxn) adding

up to ~ ||51/2u2||%2(9), which is included in |||u|||2~ Further,

1 1 ~
3.14 - dl’ = - B)u’ dT,
(314 Sl + /‘/ O zﬁﬁnmu
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which is also included in |||u|||% Thus the assertion of Lemma 3.1, is simply,

1 .
Sl + sl oy e sl oy + 5 [ (- By ar

e
< C (IfBary) + 0l Ll 1))

where C' ~ 2(11——5) ~ ﬁ < 1, for h < 1/2. Comparing this estimate with the

continuous counterpart of the second assertion, i.e. (2.7), of Lemma 2.1 we get,

(3.15) llue + ullna@) < Clle” fallagr,)-
Using the equation this yields,

(3.16) llewzzllLo ) < C_'||f:‘1/2fz||1:2(h)-

The estimate (3.16) states that if € = O(1) then the solution is regularized in the
sense that f € H\I/E(I 1) implies u € H2(Q). However, this is obviously affected by
small ¢ values and, in particular, is distorted when & = Loy-(z,y) — 0.

Remark 3.2. The discrete version is now obtained by replacing u by a suitable wuy,,
having the desired approximation properties, see [2]. The corresponding semidis-
crete convergence analysis would improve the results of Section 2 (Theorem 2.3 and
Propositions 2.4 and 2.5) by O(h!/2). We emphasise that, the general convergence
studies for the SD-method shows that the suitable so called compatibility relations
are § ~ h and € ~ h%. Here, to be concise we skip deriving these convergence rates
and refer the reader to [2] for further details.

4. THE FULLY DISCRETE PROBLEM

In this section, we derive the algorithms corresponding to the standard Galerkin
and streamline diffusion methods for I, combined with discontinuous Galerkin,
backward-Euler and Cranck-Nicolson methods for the penetration interval I,.

The approximation techniques in Sections 2 and 3 are designed for discretizations
in the transversal variable z, = (y,2). Of course we could include the penetration
variable z, in this procedure as an additional space variable, as it is (see the analysis
in [2]) where full discretizations are made in all three variables using both streamline
diffusion and discontinuous Galerkin methods. However, to efficiently determine the
beam intensity at different cross section discretizations in the penetration variable
x, needs separate and special attention. To this approach we treat the penetration
variable x as being a time variable in similar time dependent equations. Thus, in
extending our semidiscrete algorithms to a higher dimensional case containing also
discretizations in z, we consider the time discretization schemes for I,,, such as the
discontinuous Galerkin, presented in [2], and backward Euler and Cranck-Nicolson
schemes which are briefly introduced in the combined algorithms below:

We split the continuous SD variational formulation (3.1) according to:

(41)  a(u,v) = (uz,v)L +0(ug,vg)L + (euz,v:) L + 6(eus, (vg):) L
(4.2) blu,v) = d(u,vg)1L + (u,v)1,

and rewrite the problem (3.1) as finding a solution v € H é (IL) of,
(4.3) b(u,v) + a(u,v) =0, VYve Hy(IL).
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We subsequently use the finite dimensional subspace, V}, g of H /1, (I.) and represent
the discrete solution w, by a separation of variables viz:

(4.4) -'L' Y, 2 Zgz d)z Y,z

where M ~ 1/h. Now we let, v = ¢; for j = 1,..., M, and insert (4.4) into the
semidiscrete counterpart of (3.1) to obtain,

(4.5) Zs ¢,,¢J+Z¢ a($i, ¢j) = j=1,...,M.

i=1

In the matrix form (4.5) may be represented by, BE (z) + A¢(z) = 0, where, B =
(bi’j) with b; ; = b(¢i, (25]) and A = (ai,j) with a;; = a(di, (Z')J) It is easy to verify
that for small § the matrix B, being positive definite, is invertible and therefore we
can reformulate (4.5) as

(4.6) £'(x) + A¢(z) =0,

where A = B~ A.

The equations above can easily be implemented for usual finite element test
functions (streamlines with § = 0). In this manner our algorithm can be easily
used to compare the SG and SD methods.

Now a fully discrete scheme is obtained by also discretizing (4.6) in the z di-
rection. Below we combine both SG and SD-methods, for discretization in z,
with the most common time discretization techniques applied to our z variable.
To achieve the most general results on the number of scheme combinations for the
z discretization we extract them from Pade approximations of the general form,

Ut = E,, U™ for n > 0, where E,, = r,,(A). Here, r,(z) = "’“’Eg with,

I W 5 et ) AN
(4.7) v () = JZ:;)(M+V)!].(V—]). 2y
R N (R A )L
“9) G = G-

)

For instance 791(z) = 1 — & corresponds to forward Euler, r19(z) = 1/(1 + z) to
backward Euler whereas r;; to Crank-Nicolson scheme. Some of these for instance
can be seen in full below,

up-Up! .
(4.9) (hkih) + AUp

n _ yrn—1 - n n—1
(4.10) (%) + A (%) = 0, Crank Nicolson.

Other such choices will easily provide comparisons for alternative methods.

0, backward Euler,

5. NUMERICAL EXAMPLES

To justify the theoretical estimates of Sections 2 and 3 we present some numerical
examples testing the convergence rates of both the SG and SD. To this approach
we combine SG and SD methods with three different cases of discretizations in
I,: namely backward Euler, Crank Nicolson and discontinuous Galerkin. The
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implementations are performed over five different initial conditions: cone, cylinder,
Maxwellian, hyperbolic and modified Dirac, all approximating our data: the Dirac
¢ function.

We split the problem into two steps. First we discretize the two dimensional
I, = I, x I, domain by means of piecewise linear approximations ¢G(1), and
establish a mesh there in order to obtain a semidiscrete solution and then we apply
one of the three schemes, backward Euler, Crank-Nicolson or discontinuous Galerkin
to step advance in the z direction. Of course one can easily implement higher order
elements if so desired. Our cG(1) basis functions have the form, ¢; = a1y +asz+as.

Notice that, in some special cases (for instance, for e = £(z), see [8]) the closed
form exact solution of (1.1) is given by,

2 2

(5.1) w(z,y,2) = %6,4[3<y/m> 30/ (ko)

This allows us to draw some limited comparisons in terms of the actual error.
In addition to being an extremely limited case, the reason for not being able to
take full advantage of knowing the exact solution (5.1) is the fact that it displays
strong singularities near the origin. Obviously the final solution depends on initial
conditions and therefore it is not correct to compare (5.1) with the solutions we
obtain numerically since the underlying initial conditions were not the same to
start with. For instance we can not numerically provide an initial data of the
form of a Dirac § function. We instead use our five different types of computable
initial conditions, each approximating the Dirac § function (in the L; sense), for
comparison purposes. The reason for using all these different examples is exactly
that dependence of the solution on initial conditions. We want to see how the initial
conditions can affect our estimates on convergence established in Sections 2 and 3.
In the results that follow we show the convergence rates (and hopefully speedup)
in obtaining the same solution from the same initial condition under both SG and
SD discretizations.

In the tables that follow we display errors: the comparisons (differences) be-
tween solutions obtained from all the initial conditions used under both types of
finite elements. We particularly calculate the Ly, Lo, L, and Lo, (defined below),
norms of the difference for each such approximate solution and its highest order
approximation found (through the finest mesh used). The L, which is based on
edge midpoints (instead of node) evaluations. This norm is defined as,

1/2

3
62 lollz, = {53l Y (o) ]

Ti

where 7; are the triangles in the mesh and Cj denote the midpoints of the edges of
Ti-

The calculations are performed on an Origin 2000 supercomputer with varying
number of processors used at each running occasion. A total of almost 200 super-
computer hours were used for all the necessary computations. The finest mesh used
(for at least some of the examples) for our domain Q has a step size of h = .025
in the y and z variables and step size k = .0005 in the x variable. This creates a
total of 6561000 nodes (in three dimensions) and in particular 6561 (= 81 x 81)
nodes (in two dimensions) for each ’exact’ solution which will be used to calculate
the norms with solutions due to lesser number of nodes. The values in the tables
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are provided for € = .05 and § = .05. These calculations are performed under all
five types of considered initial conditions under each case of finite elements, under
all three types of time increment methods and finally under 3 different mesh sizes.
This gives a total of, 5 x 2 x 3 x 3 = 90 different solution evaluations. The ’exact’
solution for these comparisons which has a step size of h = .1 in the y and z axes,
is denoted by u*. We let e; = u* — Uy, where U}, denotes the approximate solution
for a mesh with step size h on the (y, z) space. All solutions are provided for z = 1
and therefore the norms are calculated at this value of z.

Some of the initial conditions used in calculating the values in the tables can be
seen in Figure 1. In Figure 2 the approximate solution is displayed for a Dirac type
of initial condition in the finest mesh used.

Dirac Initial Condition Maxwell Initial Condition

0
z axes -1 -1 y axes z axes -1 -1 y axes
Cylinder Initial Condition Cone Initial Condition

0.1

RO

FIGURE 1. Some of the initial conditions used.
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The approximate solution of Fermi Pencil Beam Eq.

y axes

FIGURE 2. An example of a solution. The Dirac initial condition
is used with € = .002, h = .025 and k£ = .0005.

Galerkin elements

Backward Euler

Cone Cylinder Dirac Hyperbolic | Maxwellian
€1n— Cop €1non €1nCop €1n— €op €in~an
Ly | 4.429—2.937 | 6.057—4.930 | 27.92—10.28 | 1.828—.911 | 4.343—2.679
Ly | 3.446—2.074 | 4.766—3.485 | 26.79—8.44 | 1.556—.627 | 3.330—1.845
Lo | 4.766—3.135 | 6.620—5.306 | 48.69—16.99 | 2.245—.904 | 4.073—2.636
L, 1.152—.471 | 1.533—.797 | 13.63—1.806 | .648—.139 | 1.233—.425
Streamline Diffusion elements
Cone Cylinder Dirac Hyperbolic | Maxwellian
€in—Ch €in—C3h €in—C3h €in— €p €in €
Ly | 4.414—2.873 | 5.661—4.753 | 27.75—9.676 | 1.846—.951 | 4.208—2.612
Lo | 3.207—2.037 | 4.412—3.407 | 27.16—8.522 | 1.516—.641 | 3.221—1.799
goo 4.332—2.877 | 6.006—4.941 | 50.93—15.22 | 2.081—.839 | 4.189—2.460
Ly | 1.104—457 | 1.461—770 | 13.33—1.801 | .637—.149 | 1.187—.413
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Galerkin elements

Crank-Nicolson

Cone Cylinder Dirac Hyperbolic | Maxwellian
€ih— €3 | €1 €3p €1h— €3 €ih— €3p €1h— €3
Ly | .442—295 | .604—.495 | 27.99—10.32 | .183—.091 | .454—.257
Ly | .345—.209 | .478—.351 | 26.93—8.473 | .156—.063 | .356—.180
I:oo 478—.315 | .664—.532 | 49.12—17.27 | .225—.091 | .469—.270
Lo |.115—.047 | .153—.080 | 13.73—1.814 | .065—.014 | .122—.041
Streamline Diffusion elements
Cone Cylinder Dirac Hyperbolic | Maxwellian
€ih— €5n | €1 €3y €1h— € €1 €y €1h— €
Ly | .415—.288 | .566—.477 | 27.80—9.697 | .185—.095 | .426—.254
Ly | .321—.204 | .441—.341 | 27.33—8.527 | .152—.064 | .332—.178
Lo | .434—.286 | .602—.492 | 51.50—15.24 | .208—.084 | .426—.245
Ly, |.110—.045| .146—.077 | 13.44—1.806 | .063—.015 | .117—.040
Discontinuous Galerkin
Galerkin elements
Cone Cylinder Dirac Hyperbolic | Maxwellian
€ih— €3 | €15y €1h— €3 €ih— €3 €1h— €3
Iy 420—.311 | .581—.584 | 29.75—11.56 | .202—.088 | .428—.275
Ly | .303—.237 | .428—.413 | 29.04—9.809 | .161—.061 | .309—.200
Lo, | .404—.498 | .552—.835 | 52.54—21.13 | .224—.089 | .429—.417
Ly |.110—.051 | .146—.091 | 13.40—2.065 | .064—.012 | .117—.043
Streamline Diffusion elements
Cone Cylinder Dirac Hyperbolic | Maxwellian
€ih— €3 | €1n— €3p €1h— €3n €1 €3 €1h— €3n
14 428—.264 | .590—.488 | 30.19—10.51 | .188—.090 | .437—.247
Ly |.296—.220 | .411—.377 | 29.24—10.17 | .152—.067 | .304—.193
I:OO .401—.455 | .554—.774 | 53.34—19.71 | .221—.100 | .428—.382
Lo |.110—.049 | .145—.087 | 13.28—2.068 | .063—.014 | .117—.042

15

In the tables we see the convergence of each scheme as the step size is reduced.
More importantly however we detect a slight improvement over using SD from SG
in terms of the consistent decrease in the respective errors. Depending on the initial
condition used the rates of this decay vary.

In figures studies on two of initial data (Dirac and Maxwellian) are presented
in some detail, while the remaining cases (because of space limitations) are shown
rather briefly. More specifically in Figures 3-6 we consider Dirac and Maxwellian

studies and look at slices of the domain ) and the differences between the ’exact’
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Dirac initial cond.(h = .2) Differences between finite elements used. (Sol. vs. nodes)
1 T T T

—— Galerkin elements
— — Streamline Diff.

Backward Euler

Crank-Nicolson

Discontinuous Galerkin

1 2 3 4 5 6 7 8 9 10 11

FIGURE 3. Galerkin vs. Streamline elements for Dirac initial con-
dition at h = .2 for the slice, -1 <y <1 at z = —.9.

and approximate solutions over all three cases of time discretization schemes, thus
providing us a ’local’ picture of the variation depicted in the tables. Further we
provide a fuller view of this variation, for all considered initial data cases, over the
whole domain in Figures 7- 11. For each initial data in these figures we explore
the effects of the SG and SD solutions ONLY under the case of backward Euler
time discretization where particular emphasis is given on plotting the cumulative
Ly error of the schemes. The computational parameters that are used depend on
the theoretical results presented in Sections 2 and 3. For instance € must be chosen
to be small and given such a choice we take h% ~ ¢, also § ~ h. Specifically Figures
7-11 were produced for values of € = .005 and h = .1 which also determines the
finest mesh used for our ’exact’ solution. The value of ¢ is taken as 6 = h/2 for
these examples. It is clear that many other similar values can easily be implemented
and can also display, with varying rates of convergence, the expected theoretical
estimates. The time increment was chosen as k = h2.

In Figure 7 we see the improvement due to SD over SG for a Dirac type of initial
condition. In particular we see that the error of using SD is reduced by 1/5 over the
error of SG. This behavior is maintained for a Maxwellian type of initial condition
as can be seen in Figure 8. Here the error for using SD is reduced approximately by
1/6 over using SG. Similar such results are displayed in Figures 9-11. For instance
for a cone type of initial condition and a value of € = .04 (for variety purposes), we
observe a 1/6 improvement of the error due to SD over SG.
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Dirac initial cond.(h = .1) Differences between finite elements used. (Sol. vs. nodes)
0.15 T T T

—— Galerkin elements
— — Streamline Diff. i

o
=
T

0.05

Backward Euler

-0.05
0

0.15

0.1

0.05

Crank-Nicolson

-0.05
0

0.05

Discontinuous Galerkin
o
T

-0.05 ‘ ‘ ‘ ‘
0 5 10 15 20 25

FIGURE 4. Galerkin vs. Streamline elements for Dirac initial con-
dition at h = .1 for the slice, -1 <y <1 at z = —.9.

6. CONCLUSIONS

We have shown stability and convergence estimates for SG and SD methods.
Subsequent simple numerical examples were carried out to further illustrate the
results under different cases of initial conditions. In theory the SD converges by
a factor of h"~'/2 (compared with SG which converges with a factor of h"~') for
functions in H"(2). Our examples correspond to r = 1, since we use linear basis
functions. For such simple examples it is virtually impossible to calculate the exact
estimates as required for instance in Proposition 2.4, since the || - ||| norm is not

easily computable. Therefore, tables are constructed for L,, p = 1, 2, oo and L,
norms whereas in the figures we compared the simpler L; norms of the errors for
the SD and SG schemes.

The theoretical estimates (Sections 2 and 3) are much harder to detect numer-
ically in our experiments since, as we previously remarked, we are not using the
exact solution of the Fermi equation but only an approximation of it in the finest
mesh we can produce and subsequently calculate the errors from it. Also we do not
directly evaluate the || - |5 but only an L; norm. However even under these cir-
cumstances the speed up of SD over SG is evident and as we have shown it depends
on the type of initial data used, as expected.

In summary we have considered a simplest possible degenerate type equation.
Our objective is to extend the approximation techniques for the non-degenerate
equations to a degenerate case. In a forthcoming paper we shall extend our studies
to a more realistic, three dimensional, model problem.
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Maxwell initial cond.(h = .2) Differences between finite elements used. (Sol. vs. nodes)
0.02

T I T
—— Galerkin elements
— — Streamline Diff.

0.01f

Backward Euler

—0.01 I I I I I I I I I
1

0.02

0.01

Crank-Nicolson

|
o
o
=

=
[&]

=
o

Discontinuous Galerkin
(62

FIGURE 5. Galerkin vs. Streamline elements for Maxwell initial
condition at h = .2 for the slice, -1 <y <1 at z = —.9.
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FIGURE 7. L; cumulative error vs nodes for SG and SD for Dirac.
The solutions at x = 1 are found for h = .2.
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x 10~ Maxwell initial cond.(h = .1) Differences between finite elements used. (Sol. vs. nodes)
; T T T
—— Galerkin elements
— — Streamline Diff.
| | | |
(6] 5 10 15 20 25
x107°
25
| | | |
(] 5 10 15 20 25
FIGURE 6. Galerkin vs. Streamline elements for Maxwell initial
condition at h = .1 for the slice, -1 <y <1 at z=—.9.
Dirac initial cond. Galerkin "exact" — appr. sol. vs. nodes
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Maxwell initial cond. Galerkin "exact" — appr. sol. vs. nodes
0.1 T T T T T
a —— Galerkin "exact"
8 — — Galerkin appr.
g
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Maxwell initial cond. Streamline "exact" — appr. sol. vs. nodes
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Maxwell initial cond. Error differences vs. nodes
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FIGURE 8. L; cumulative error vs nodes for SG and SD for
Maxwell. The solutions at © = 1 are found for h = .2.
Hyperbolic initial cond. Galerkin "exact" — appr. sol. vs. nodes
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FIGURE 9. L; cumulative error vs nodes for SG and SD for hy-
perbolic. The solutions at = 1 are found for h = .2.
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Cylinder initial cond. Galerkin "exact" — appr. sol. vs. nodes
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Cylinder initial cond. Streamline "exact" — appr. sol. vs. nodes
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FIGURE 10. L; cumulative error vs nodes for SG and SD for cylin-
der. The solutions at = 1 are found for h = .2.
Cone initial cond. Galerkin "exact" — appr. sol. vs. nodes
1.5 T T T T T
a —— Galerkin "exact"
8 — — Galerkin appr.
5 1 R
o
]
£
4 [ -
T 0.5
8
0 l IS }/\ 1 /\ . l l
(o] 20 40 60 80 100 120 140
Cone initial cond. Streamline "exact" — appr. sol. vs. nodes
w15 ‘ ‘ ‘ : —
S —— Streamline "exact"
k=] — — Streamline appr.
© 1F i
9]
[}
£
E 05 i
3
ﬁ 0 l A A 1 /\ do l l
(o] 20 40 60 80 100 120 140
Cone initial cond. Error differences vs. nodes
0.8 T T T T T
—— Galerkin diff.
0.6 — — Streamline diff. i
2]
04 B
L
0.2 B
0 s
(o] 20 40 60 80 100 120 140

FIGURE 11. L; cumulative error vs nodes for SG and SD for cone
data. The solutions at = 1 are found for h = .2.



