VARIOUS CONSTRUCTIONS OF TAYLOR'’S
FUNCTIONAL CALCULUS FOR COMMUTING
OPERATORS

MATS ANDERSSON

ABSTRACT. We discuss various constructions of Taylor’s functional
calculus for a tuple of commuting operators on a Banach space,
and study their mutual relations. In particular, we provide a sim-
ple explicit link between the cohomological construction based on
the Dolbeault complex, and the construction by means of the re-
solvent mapping (by abstract Cauchy-Fantappie-Leray formulas).
The main idea is to introduce a kind of abstract weighted integral
formulas. We also study the behaviour of the resolvent mapping
under analytic mappings.

1. INTRODUCTION

Let aq,...,a, be an n-tuple of commuting operators on a Banach
space X. For any polynomial or entire function f(a) one can define
an operator f(a) on X, simply by replacing each z by a in the Taylor
expansion for f(z). One then gets an algebra homomorphism

(1.1) 0(C") = L(X), ¢+ o(a),

a functional calculus, where £(X) denotes the space of bounded op-
erators on X. In order to find extensions of this functional calculus,
one is led to the notion of joint spectrum. The relevant definition of
spectrum of the n-tuple a was found by Taylor 1970, [16], and runs as
follows. Let ej,...,e, be a basis (global frame) for a trivial bundle
E — C" and let AE be the exterior algebra of E. If 6,_, denotes
interior multiplication by the operator-valued section

2T Zi — a;)er
J 77%j
J

to the dual bundle (e} denoting the dual basis), then we get a complex
(1.2) 0 ANE, X+ A'E, X+ - -« A'"E, X+ 0

for each z € C". The Taylor spectrum o(a) of the n-tuple a is, by
definition, the set of all z € C" such that (1.2) is not exact. It turns
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out that the spectrum is a compact nonempty (unless X = {0}) subset
of C". The main result, due to Taylor, is

Theorem 1.1 (Taylor). Let a be an n-tuple of commuting operators
on the Banach space X. There is a continuous homomorphism from
O(o(a)) into L(X) that extends the functional calculus O(C*) — X.
The image f(a) of f € O(c(a)) commutes with each b € L(X) that
commutes with each a;. If f = (f1,..., fn) is an analytic mapping,

[i € O(o(a)), and f(a) = (fi(a),..., fa(a)), then o(f(a)) = f(o(a)).

It was proved by Putinar in [13] that furthermore the superposition
property go f(a) = g(f(a)) holds. Moreover, he proved in [14] that any
two extensions of the functional calculus, which fulfill the properties
stated in Theorem 1.1, coincide.

In the case of one single operator, the extension of the functional cal-
culus from entire functions can be made by Cauchy’s integral formula,

(1.3) éd(a)x = /ap dw,—qx, ¢€OU), ze€X,

where o(a) C D cC U, and w,_,x = (2mi)~' (2 — a)"'zdz. One thus
expresses the function ¢(z) as a superposition of simple rational func-
tions, for each of which it is clear how to replace z by a.

Taylor’s first construction of the multidimensional functional calcu-
lus, [17]|, was based on Cauchy-Weyl formulas. These are generaliza-
tions of Cauchy’s product formula, and they were the most commonly
used formulas for representing holomorphic functions of several vari-
ables at that time. Somewhat later Taylor made a construction of the
functional calculus by homological methods, [18]. This approach has
proved to be very useful for further results, such as the superposition
property, the uniqueness mentioned above, and others, see [10]. It fol-
lows from the uniqueness result that the two mentioned constructions
give the same functional calculus.

From the beginning of the 70’s and on the Cauchy-Weyl formulas
have been outclassed by Cauchy-Fantappie-Leray formulas in pluri-
complex function theory. In [3] (and [4]) we made a construction of
the functional calculus, based on such formulas, and proved the basic
functorial properties. In [7] we even proved the superposition property
along the same lines. The motivation for this approach is twofold. To
begin with we think that it is more comprehensive, as the operator
¢(a), acting on z € X, is defined, just as in one variable, by an integral
formula like (1.3), where w, .z is a Dolbeault cohomology class that
is represented by a d-closed (n,n — 1)-form in U \ o(a). We will refer
the mapping x — w,_,z as the resolvent mapping. Furthermore, if D
contains a Stein neighborhood of the spectrum, then the formulas ob-
tained are nothing but usual Cauchy-Fantappie-Leray representation
formulas for holomorphic functions where z is replaced by a, and this
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is a natural starting point for possible extensions, in various situations,
to a nonholomorphic functional calculus, following the work of Dynkin
[9] in the one-variable case. For some results in this direction, see [15].
For the case of real spectrum, see also [8] and |[6].

The first aim of this note is to reveal explicit connections between
various constructions of the functional calculus. To begin with we de-
scribe a (co)homological construction of the functional calculus, based
on Dolbeault cohomology rather than Cech cohomology as in [18] and
[10]. We then recall the construction in [3] and provide an explicit link
between these two constructions. The crucial point here is to find a fac-
torization of the mapping Ay : O(U, X) — X, obtained by integration
of the resolvent, over a certain cohomology space that is isomorphic to
X. Whereas the mapping Ay boils down to Cauchy-Fantappie-Leray
formulas in concrete realizations, the extended mapping in a similar
way corresponds to weighted representation formulas for holomorphic
functions. This link provides a concrete realization of the homologi-
cal construction, and it also sheds new light on the construction from
[3]. We also include a discussion of the relation to Taylor’s original
constructions with Cech cohomology (Section 4).

In Section 5 we prove the wellknown functorial properties of the
functional calculus by means of the resolvent mapping. The basic ideas
come from [3], [4], [7], and [15], but the presentation is new and we also
provide several completely new arguments.

In Section 6 we present new results about the behaviour of the re-
solvent mapping under analytic mappings. In particular, we show that
the resolvent is coordinate invariant.

Throughout this paper X is a Banach space and e is the unit element
in L(X). Moreover, if a is a commuting tuple in £(X), then (a)’ is the
commutant, i.e., the subalgebra of L£(X) consisting of all operators
that commute with each a;, and (a)"” is the bicommutant, i.e., the
commutant of (a)'.
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2. CONSTRUCTION BY MEANS OF DOLBEAULT COHOMOLOGY

First notice that any continuous algebra homomorphism ®: O(U) —
L(X), U open subset of C", gives rise to a unique continuous O(U)-
module structure O(U) x X — X on X, defined by (¢, z) — ®(¢)z.
Conversely, any continuous O(U)-module structure on X is obtained
in this way from the homomorhism &, defined by letting ®(#)z be the
image of (¢, z) for ¢ € O(U) and = € X. Let us assume from now
on that we have a fixed tuple a4,...,a, of commuting operators on
our Banach space X. We then have the functional calculus (1.1), and
extending to a functional calculus as in Theorem 1.1 thus amounts to
extending the given O(C")-module structure of X to a O(U)-module
structure. To begin with, we have a mapping

(2.1) A: OC, X) — X,

defined by f(z) = Y caz® — f(a) = D cqa®, co € X. One readily
checks that (¢f)(a) = ¢(a)f(a) if € O(C") and f € O(C", X), so
A is a O(C")-module homomorphism. Furthermore, A commutes with
b € (a) and Az = z. One can define A by means of integral formulas
instead of power series, see Remark 6.

Let us identify E with the bundle 7" of (1, 0)-covectors; then §,_,
means interior multiplication with the operator valued vector field
2mi Y (2 — a;)(0/0z;). Let &,4(V, X) denote the space of X-valued
(p, ¢)-forms in the open set V' C C", and let O,(V, X) be the subspace
of holomorphic (p, 0)-forms. Clearly §,_, induces continuous mappings
Epa(V, X) = E,_1,4(V, X), that anticommutes with 0, so we get a com-
plex

(2.2) 04 Eng(V, X) €2 £,,(V, X) &2 - .
for each ¢, and the complex
(2.3) 0 OV, X) €2 0,(V, X) &= ... .

It is wellknown, see, e.g., [10], that (2.2) is exact if V' C C" \ o(a);
in fact V = C" \ o(a) is the largest open set such that (2.2) is exact.
(Moreover, (2.3) is exact if V is a Stein open subset of C" \ o(a), see
Lemma 4.2 below).

Lemma 2.1. The mapping (2.1) induces an O(C")-linear isomorphism
o(C, X)

Im (O, (C*, X) — O(C*, X))

Proof. If 0,_4u(z) = f(z), then it is clear that f(a) = 0. Conversely,

for any entire f there is u(z, w) € A'O(C* x C*, X) such that f(z) —

f(w) =6, wu(z,w). Replacing w by a we get that §, ,u(z,a) = f(2)
if f(a) = 0. O

~ X.
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Remark 1. One can prove, see [10], that if V' is a Stein open set that
contains o(a) then (2.3) is exact at each level but £ = 0 and the
cokernel there is X. However, we only need the special case contained
in Lemma 2.1. See also Remark 3. 0

For any V and ¢/ > 0 we have the X-valued Dolbeault complex

(2.4) 0 = E00(V, X) - £01(V, X) -,

and the kernel of & o(V, X) — £,1(V, X) is Oy(V, X).

Lemma 2.2. IfV C C" is pseudoconver, then the complex
0= OV, X) = Ep(V, X) = &1 (V. X) =

15 ezact.

This follows from the exactness of the usual scalar-valued Dolbeault
complex, see [10]. Except for Section 4 we will only use the lemma for
V = C", in which case it can be proved simply by a weighted integral
formula.

Since 09, , = —0, 40, we get for each open set V' C C" a double
complex

LHEV) = Een(V, X)
for £ < 0,k > 0. This gives rise to the total complex

P2ma3 pm(yy Smey? gty ey

where L™(V) = @®pp—mL (V). All these sums are finite; such a
double complex is said to have bounded diagonals. We will also consider
the cohomology of the total complex. A class in H™(L(V)) is thus
defined by an X-valued (6, , — 0)-closed form v = Y v, in V, where
ve has bidegree (¢,¢ + m), and two such forms v and v’ define the
same class if and only if there is an X-valued form w in V such that
(8,—q — O)w = v — v'. There is a natural O(V)-module structure on
H™(L(V)), and the inclusion O(V, X) — L£°(V) induces a O(V)-linear
mapping O(V, X) — HO(L(V)).

We will use of the following standard result from homological algebra.
Lemma 2.3. Let £, k > 0, be a double complex with bounded diag-
onals.

(i)  If LY has ezact rows (columns), then L* is ezact.
(i) If L% has exact columns except at k =0 and

A" = Ker (L4 — L),

then ... At - A — ... is a complex and there are canonical iso-
morphisms H™(A®*) ~ H™(L).
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Proposition 2.4. There is a O(C")-linear isomorphism
T: H(L(C")) ~ X,

such that the class defined by the constant function z € X in H°(L(C"))
1s mapped to x.

Proof. In view of Lemma 2.2, the double complex £5%(C") has exact
columns except at k = 0, and the kernels there are A* = O ,(C*, X).
By Lemma 2.3 (ii) therefore the canonical mapping

o(C", X)

Im (O;(C*, X) —» O(C, X))
induced by the O(C")-linear mapping O(C", X) — H°(L(C")) actually
is an isomorphism. Combining with Lemma 2.1 we get the desired
conclusion. O

Notice that we have natural mappings H™(L(C")) — H™(L(U))
induced by the restriction mapping £(C", X) — £(U, X).

— H(L(C"))

Proposition 2.5. Suppose that U D o(a). Then the natural mappings
H™(L(C")) — H™(L(U))
are O(C")-linear isomorphisms.

Proof. Let W = C" \ 0(a) and consider the short sequence of double
complexes

(2.5) 0-LC") > LU) LW) > LUNW) =0,

where the first map is the one induced by the restriction mappings
En—1k(C*, X) = Enp(U, X) and &, (C*, X) = En—rx(W, X), re-
spectively, and the second one is (f, g) — f —g. We claim that this se-
quence is exact. In fact, the first mapping is injective since f € & ,(C")
is zero if it vanishes on both ¥V and W, and the second map is surjective
since & x(C", X) is a module over £(C") which contains cutoff func-
tions. By standard homological algebra, the serpent’s lemma, we thus
obtain a long exact sequence (of locally convex spaces; the ranges of
the operators are not necessarily closed)

(2.6) — H™'(LUNW))— H™(L(C")) =

— H™"(LU)® LW)) - H"(LUNW)) —
Since W and UNW are contained in C*\o(a), L(W) and L(UNW) have
exact rows, and therefore, by Lemma 2.3 (i), H*(L(W)) = H*(L(U N

W)) = 0 for all k. It now follows from (2.6) that H*(L(C")) ~
HE(L(U)). 0

Combining Propositions 2.4 and 2.5 we obtain a O(C")-linear iso-
morphism

(2.7) Ty: HY(LU)) ~ X
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that maps the class of = to z. Since Ty is O(C")-linear, the O(U)-
module structure on H°(L(U)) gives rise to a O(U)-module structure
on X that extends the original O(C")-module structure. By the initial
discussion above, we thus have obtained an extension of the functional
calculus from O(C") to O(U). One readily checks that each involved
mapping commutes with the action of any b € (a)’. Moreover, it is
not hard to show, by similar arguments, that this construction of the
extension to O(U) commutes with restrictions O(U) — O(U'), if U D
U’ D o(a), but we skip the argument since this fact anyway will be a
consequence of the concrete realizations of the extensions that we shall

consider in the next section.

Remark 2. Summing up, if ¢ € O(U) and = € X, then the element
¢(a)z is obtained according to the sequence of mappings,
¢x € O(U,X) — H°(L(U)) ~ H(L(C")) ~
N o(C", X) ~ X
~ Im(Oy(C", X) - O(C*, X))

O

Remark 8. If V' = C", then the complex (2.3) provides a resolution of
the O(C")-module X, cf., Lemma 2.1 and Remark 1. Furthermore,
each O(C")-module Ok(C", X) is topologically free, i.e., of the form
O(C")®E), for some topological vector space E. If we have another
complex, consisting of topologically free O(C")-modules, that gives a
resolution of X, then one can construct the extension to a O(U)-module
structure of X exactly as above, and any two such extensions will coin-
cide. This follows by homological algebra for topological vector spaces,
see [10]. For instance, one can use the Koszul complex with respect
to another set of global coordinates; this case is studied explicitly in
Section 6. O

3. CONSTRUCTION BY MEANS OF THE RESOLVENT MAPPING

Again a is an n-tuple of commuting operators on X, and U is an open
neighborhood of o(a). Let Hg’nfl(U \ o(a), X) denote the Dolbeault
cohomology group of bidegree (n,n—1), i.e., the quotient of the spaces
of O-closed and d-exact X-valued (n,n — 1)-forms in U \ o(a). Notice
that Hg’"fl(U \ o(a), X) has a natural O(U)-module structure. The
construction in [3] was based on the continuous O(U)-linear mapping

(3.1) W, —: OWU,X) = HY" U\ 0(a), X), [ w, of,

which we will refer to as the resolvent mapping, and we shall now recall
its definition. Since the double complex L£(U \ o(a)) has exact rows,
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H™(L(U \ o(a))) = 0 for all m, according to Lemma 2.3 (i) (or by a
simple direct argument). Therefore, given f € O(U, X), we can find
u € L7YU \ o(a)) such that (§, , — 0)u = f in U \ o(a). Identifying
bidegrees this means that

(3.2) Opeqliy = @, Oy_qprr = Oug, k> 1.

In particular, u, is O-closed. If u' is another solution, then u — v’ is
(8, 4 — 0)-closed in U \ o(a), and therefore there is w € L72(U \ o(a))
such that (J, , — 0)w = u — u'. For bidegree reasons again it follows
that Ow, = u, — u}, and hence u,, defines a class in Hg’"_l(U \ o(a))
which we denote w,_,f.

Remark 4. It is worth to notice that any representative for the coho-
mology class w,_,f is u, for some solution to (0,_,—0)u = f (ifn > 1).
In fact, if u is such a solution in U \ ¢(a) and v, = u, + Ow,, where
wy, is any (n,n — 2)-form in U \ o(a), then u!, is the n-component of

' =u— (0,_q — 0)w, and (6,_, — O)u' = f. O

Proposition 3.1. The resolvent mapping w, , is continuous and O(U)-
linear, it commutes with each b € (a), and (zj — aj)w,of = 0.
Moreover, w,_, commutes with the restriction mappings O(U, X) —
O(U', X) and the induced mappings Hy (U \ o(a)) = Hp ' (U'\ o(a))
if U DU Do(a),

Proof. The continuity follows from the open mapping theorem for Frechet
spaces. Suppose that (6,_,—0)u = f. If € O(U), then (§,_,—0)pu =
¢f and hence ¢w,_,f = w,_.¢f. In the same way, bw,_,f = w,_.bf
if b € (a). If f(2) = d§,_qu1(z) for some holomorphic u;(z), then
(8,—a — 0)u; = f and hence w, _,f = 0. In particular, (2; — a;)w,_of =
w;—a(2j —a;) f = 0. The commutation with restrictions is obvious from
the construction. O

There is a natural mapping Hy" ' (U \ o(a),X) — X, obtained
by integrating the cohomology class over some boundary 9D, where
o(a) C D cC U. For each U D o(a) we thus have a mapping

(33) AUZ O(U, X) — X, AUf = u)z,af.

aD
Remark 5. Suppose that K is a compact subset of U that contains
o(a) and (8, — O)v = f in U\ K. Then, if (§,_, — 0)u = f in
U\ o(a), it follows that v, and u, are cohomologous in U\ K. Thus we

can compute Ay f by integrating v, over some appropriate boundary
oD. O

Ezample 1. Assume that we can find an (a)’-valued (1,0)-form s in
U\ K, K D o(a), such that §,_,s = e. Then u = >7sA (9s)*'f

solves (0,—, —O)u = fin U\ K, if f € O(U,X). Therefore, cf.,
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Remark 5, s A (0s)"~!f represents w, ,f in U \ K and hence, for an
appropriate D, we get the Cauchy-Fantappie-Leray type formula

Apf = sA(0s)" 1 f(2).
oD
For instance, if Z-a = Y Z;a;, then |z|?e — Z-a is invertible for z outside
some large ball, and so we can choose

s= (2’ —z-a) ' (2mi) 1Y Zdz

there. Since ¢s A (0ps)"+ = ¢"s A (0s)" ! if s is an operator-valued
(1,0)-form (with commuting coefficients so that sAs = 0; hence sAOs =
Os A s) and ¢ is a (operator-valued) function that commutes with s, it
follows that

s A (0s)" L = (|22e — 2 - a) |22 A (80)2|2)" .

If we choose D as a large ball with radius R, then for entire f we get
the formula

(34) Af = RM / (R’c — z-a) "f(2)do(2),

2mn |z|=R
where do is the surface measure. If f = z, then the integrand can
be expressed as a uniformly convergent power series, and it follows
that Af = x since all terms but the first one will vanish for symmetry
reasons. ]

Notice that formula (3.4) is just the Szegé integral “evaluated at a”.

Proposition 3.2. The mapping Ay is a continuous O(C")-linear ex-
tension of the mapping A in (2.1) that commutes with any operator
b € (a). Moreover, if f € OU,X) and U D U'" D o(a), then
Apf = Ay f. In particular, Acn = A and Ayx =z for x € X.

Proof. 1t follows from Proposition 3.1 that Ay is continuous, commut-
ing with b € (a)’, and with restrictions, and that Ay (z,;f) = Ap(a;f) =
a;Ayf. From Example 1 we have that Ayz = z for x € X. Thus
Ay(a®z) = a®x and hence Ay f = Af = f(a) for entire f(z), cf., the
definition of (2.1), by continuity. O

Remark 6. One can avoid the power series and define the mapping (2.1)
by letting Af = Ay f for entire X-valued f. To prove the homomor-
phism properties we must verify that

(3.5) A(of) = A(PAS).

We already know that (3.5) holds for polynomials ¢. Writing f(z) —
f(¢) = 6,_¢u(z, ¢), where u is holomorphic in both variables, for fixed
z we therefore get that f(z) — Af = 0, ,Au(z,-). Since Au(z,-) is
holomorphic, w, (f — Af) = 0; hence w, é(f — Af) = 0, which
implies (3.5). O
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The mapping Ay thus gives an extension of the functional calculus
O(C") — L(X) to alinear mapping O(U) — L(X) by defining ¢(a)x =
Ay (¢z). However, so far we do not know that ¢(a)y(a) = (¢9)(a) (for
this one needs the property (3.5) for Ay). In |3| the multiplicativity was
derived by from a formula for pairs of commuting tuples, cf., Section 5,
but here it will follow from the link to the homological approach. For
a nice argument based on a generalization of the resolvent equality to
the multivariable case, see [15].

The mapping Ay is factorized over H°(L(U)) via the natural map-
ping j: O(U, X) — H°(L(D)).

Proposition 3.3. Suppose that U D o(a). There is a mapping
By: H'(L(U)) —» X

such that .
ow,x) L HLU))
Wr—a 4 | By
Hy" U, X) — X

is commutative, i.e., Ay = By o j.

Proof. We first extend the definition of Ay from O(U, X) to the space
ZO(U) of all (§,_, — 0)-closed forms in LO(U). If f = fo+fi+-++ fa
is such a form, again using that H°(L(U \ o(a))) is vanishing, we can
solve (8,_, — 0)u = f in U \ o(a). We now define Ay f by

. A =
(3.6) vf aDu+/Df,

where D is any smoothly bounded domain such that U DD D D o(a).
For degree reasons only the components u, and f, come into play in
(3.6); in particular this definition coincides with the previous one if
f = fo is holomorphic. It follows from Stokes’ theorem that (3.6) is
independent of the particular choices of v and D.

It remains to check that Ay f only depends on the class of f in
H°(L(U)), and to this end it is enough to check that Ayf = 0 if
f = (8,—q — O)u for some u in U. However, then

Apf = aDun—/Dfn=/Damn—/Dfn=0,

by Stokes’ theorem. O

Thus we have two different extensions to O(U) of the functional
calculus, induced respectively by the mappings By and Ty, and it is
now easy to see that they actually coincide. In fact, we know that Ty
is invertible and that T; 'z is the class in H(L(U)) defined by the
constant function z. Moreover, in view of Proposition 3.3, By maps
this class to z, since Ayz = x. Therefore, By o T[jl: X — X is the
identity on X. Thus we have proved
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Theorem 3.4. The mappings Ty and By coincide for oll U D o(a).

As an obvious corollary we get

Corollary 3.5. The mapping By: H*(L(U)) — X is an O(C")-linear
1somorphism.

Remark 7. The corollary contains a new piece of information about
the mapping By. Let us point out directly how this implies the multi-
plicativity for the induced functional calculus. Since ¢(a)z = By(¢z)
by definition, and ¢(a)xr = By(¢p(a)z), we have that By(é(a)z —
¢x) = 0, and since By is an isomorphism it follows that ¢(a)z — ¢x is
zero in HY(L(U)). Since By is O(U)-linear, we therefore have that
By (yé(a)x — ppx) = 0, which precisely means that ¢(a)p(a)r =
(v¢)(a).

More explicitly, there is a form w € £~1(U) such that (§,_, —0)w =
¢(a)r — ¢x, and this, in turn, means that the Dolbeault cohomology
class w, 4(¢(a) —¢)x in U\ o(a) is the restriction, i.e., the image under
the natural mapping Hg’"_l(U) — Hg’"_l(U \ o(a)), of the class in U
defined by w,. Thus

/;D wzfaw(,b(a)x - /[)D wzfaw¢x:
which means that ¥ (a)d(a)r = (V¢)(a)z. O

The observation used in the last argument is worth to point out
separately.

Proposition 3.6. If f € O(U, X), then Ayf =0 if and only if w, of
in U\ o(a) is the image of a cohomology class in U.

Remark 8. Let f € O(U, X) and let x be a be a cutoff function in U
that is 1 in a neighborhood of o(a). If (§, o — d)u = f in U \ o(a),
then g = xf — Ox A u defines a class in H°(L(U)). In fact, the same
class as f, since (8,_, — 0)(1 — x)u = f — g in U. Hence, Ay f = Ayg
and by (3.6) therefore

(37) Apf = _/5X ANw, of.

Of course, one can obtain (3.7) directly from (3.3) by Stokes’ theorem.
]

Let us conclude this section by short discussion about the resolvent.
By definition a representing form u,, for the resolvent class w, ,x is
obtained, in a neighborhood of 0D, where D D o(a), by successively
solving the equations (3.2). In the case when D is a ball, we have seen
that this can be done in a very concrete way. Let us consider some
other situations. If $ € O(U), U D D D o(a), and we can find an (a)'-
valued (1, 0)-form s in some neighborhood of 0D such that 6,_,s = e,
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then, cf., Example 1,

¢(a) = - (2)s A (9s)" .

For instance, such a representation is possible if ¢ is holomorphic in a
neighborhood of a Stein compact K that contains o(a). In fact, then for
each z outside K one can solve ) ;(z; — w;)v;(w) = 1 holomorphically
in a neighborhood of K and then, by the functional calculus, s =
>_;vj(@)dz; is in (a)" and §,_,s = e. It is easy to extend s to a smooth
solution in a neighborhood of the given point z, and by a partition of
unity we obtain a global solution in the complement of K.

Suppose now that K D o(a) and that there are linear homotopy
operators hy: £, 0 — Ept1,0 such that hé,_, + ,_,h = Id outside K if
K is Stein as above, one can take h just as the wedge product with s.
Then h(0h)" 'z is a representing form for the class w, o7, and so we
get the representation formula

(3.8) d(a)x = oh(0h)" 'z, ¢ € O(D).

oD
For instance, if X is a Hilbert space one can define hf pointwise in
C" \ o(a) as the minimal solution to 6,_,u = f if J,_,f = 0 and
hf = 0if f is orthogonal to Ker§, ,. In the Hilbert space case therefore
formulas like (3.8) always exist.

The complement of the set where such linear homotopy operators
exist pointwise, is called the split spectrum. It is known to be strictly
larger than o(a) in some cases, see [12|. Thus in general, close to the
spectrum, we can only define a representative for w,_,z by relying on
the existence of solutions to (3.2).

Remark 9. Let us now point out how the mapping By is related to
weighted representation formulas. Let X = C so that a is just a fixed
point in C*. We claim that if f € £°(U) is §,_, — O-closed, then By f,
or rather By|[f], is equal to fy(a). Let v € L71(U \ {a}) be a solution
to (6, —0)v = 1in U \ {a} and let f = ¢g, where ¢ € O(U) and
go(a) = 1. Since (6,_ —0)(vA f) = f in U\ {a}, and by the definition
of By f, we get the formula

(3.9) o0) = | o)+ /D Sdn.

All explicit weighted representation formulas we know of are special
instances of this formula, see [5]. If ¢ = 1 (3.9) is reduced to the
(abstract) Cauchy-Fantappie-Leray formula.

To see the claim, notice that one can choose v above that is integrable
over U and such that (6, , — 0)v = 1 — [a] in the current sense, where
[a] denotes the (n,n)-current point evaluation at a. Moreover we may

assume that fy(a) = 0. Therefore, (6,_o —0)(v A f) = f — fola)[a] = f
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in the current sense and hence it follows from Stokes’ theorem that
BUf =0.

With the same choice of v, and an arbitrary smooth function ¢ we
have that (§,_, — 0)(¢ + b Av) A g = 0¢p A[a] A g = 0 for bidegree
reasons, and hence we get the more general formula

b(a) = aDas(vAg)n—/Dach(vAg>n+/D¢gn.

For details, and generalizations of these formulas, see [5]. O

4. CECH COHOMOLOGY AND TAYLOR’S ORIGINAL CONSTRUCTIONS

The constructions in [17] and [18], as well as in [10], are made by
means of Cech resolutions of @. In this section we recall these con-
structions and show explicitly that they lead to the same functional
calculus as we have considered in previous sections.

Let V be an open set in C* and V = {V4, V4, ... } alocally finite open
cover of V, and let C¥(V) denote the space of k-cochains with values in
the sheaf O of X-valued holomorphic (£,0)-forms. Let €, €2,... be a
nonsense basis and consider formally the exterior algebra generated by
this basis and dz;. An element f € CF(V) is represented as a formal
sum f = Zm:kﬂ fr Ner, where fr € O,(Vi, X), Vi=V,,n...0Vy,
and €; = €7, A...Aeg,. The coboundary operator p: CF(V) — C; (V)
is defined by pf = > €; A f, and for each fixed £ we thus get a complex

(4.1) — CE(V) = CFTH(V) —

We have a natural injective mapping Op(V, X) — CF(V), defined by
f = 32, flv;€j, which is precisely the kernel of p: C7(V) — Cy (V). IfV
is a Stein cover, i.e., each set V} is V pseudoconvex, then by Lemma 2.2
each set V; therefore has vanishing O)-cohomology, and by standard
arguments it then follows that the cohomology groups of the complex
(4.1), I:Ik((’)f, V), are isomorphic to the cohomology groups Hg’k(V, X)
of the Dolbeault complex &£ 4(V, X). In fact, these isomorphisms are
realized by mappings like 774%: C¥(V) — &4 (V, X) that are described
below. In particular, we have

Lemma 4.1. IfV is a Stein cover of the pseudoconver open set V C
C", then the complex

0— OV, X) = C{(V) = C; (V) = C;(V) —
18 exact.

The mapping 6,_, extends naturally to a mapping C},, (V) — C§(V),
and 0,_,p = —pd,_,.
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Lemma 4.2. If V C C" \ o(a) is pseudoconvez, then the complex
0+ OV, X) « O1(V, X) + Oy(V, X) ¢,
induced by ,_,, is exact.

This is proved in [16] and [17]. It follows easily from the exactness
of the X-valued Dolbeault complex in V| i.e., Lemma 2.2. Given our
open cover V we define the double complex M (V)% = C* (V).

Now, let U be a fixed neighborhood of o(a), let U be a locally finite
Stein open cover of U, and let W a locally finite Stein open cover
of W = C"\ o(a). We may assume as well that the union & U W
is locally finite (if necessary we can decrease U a little). Moreover,
we can arrange so that the indices of the cover U run over the even
natural numbers and the indices of W over the odd ones. Then &/ UW
is a cover of C", with indices running over the the natural numbers.
We are going to copy the construction in Section 2 but it appears a
little but different, since the Mayer-Vietoris step will be included in the
setup. The O(C")-linear mappings r%¢: M4 (U U W) — MY (U) are
surjective and hence we can define the complex K** so that

0— K% - MY (U UW) = M WU) =0

is a short exact sequence of double complexes. This means that a
section to KCO* is like >, frer, where at least one index I; is odd for
each I. Therefore, K has exact rows by Lemma 4.2, so H™(K) = 0 for
all m according to Lemma 2.3. By the serpent’s lemma we get the long
exact sequence

— H™(K) > H"(MUUW)) —
— H™(M(U)) = H™(K) —,
and thus we have in particular the O(C")-linear isomorphisms
(4.2) H'MUUW)) ~ H'(M(U)).

induced by the mappings r%. Notice that the class in HO(M(UUW))
defined by the constant function z € X, is mapped to the corresponding
class in H(M(U)). On the other hand, since C" is pseudoconvex,
Lemma 4.1 implies that the complex M(U U W) has exact columns
except at £k = 0, and that the kernels are A_,O(C", X), so again by
Lemma 2.3 we get a O(C")-linear isomorphism

(4.3) X ~ HOMUUW)).

Again notice that the class in H°(M (U UW)) defined by the constant
function z is mapped to x by this isomorphism. As before, we can com-
bine the isomorphisms (4.2) and (4.3) to an O(C")-linear isomorphism
X ~ HY(M(U)). Since H*(M(U)) has an O(U)-module structure,
that extends its O(C")-module structure, we obtain an extension of
the O(C")-module structure of X to an O(U)-module structure. We
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shall now see that this O(U)-module structure on X is the same as
the one defined in Section 2. To this end we shall define an explicit
O(U)-module isomorphism H°(M(U)) ~ H°(L(U)), where L5 (U) is
the double complex from Section 2.

Let ¢; be a partition of unity subordinate the cover U, and let €]
denote the formal dual basis of €¢;. For any cochain f with values in
the sheaf EX of X-valued (p,q)-forms, we can define ®f as interior
multlphcatlon by Z ¢j€;, and as usual we have the relation

(4.4) p® +dp=1.
Let 9@ denote interior multiplication with Y d¢;e;. Then 9(®f) =
(0®)f — ®Of. We define 76F: M5 () — L4*(U), by
T f = (=1)'®(02)" f.

Notice that if f € O(U, X) and f is its image in € M%(lf), then
700f = f.
Proposition 4.3. We have the relations
(4.5) or = 7p, 0z—aT = T0,_q, T$ = ¢,
where ¢ means multiplication by the function ¢ € O(U).
Proof. Tt is clear that 7 commutes with ¢ € O(U). We claim that
(4.6) pO® = 0®p.
In fact, u = p®u + ®pu and so Ou = —pdPu + pPOu + 0P pu + ®pdu,
and in view of (4.4) we get (4.6).

Now suppose f has degree (¢, k). Then

0Tf = 0,a(—1)'®(0®)F f = (—1)' ®(09)*5,_o f = 79,

since § f has degree (£ + 1, k). Furthermore,

mof = (—1)'®(0®) ' pf = (—1)'®p(d) " =
= (=1)%(0®)" ™ = 0(=1)*®(0®)* = orf.
O

The proposition means that 7: M(U) — L(U) is a O(U)-linear mor-
phism of double complexes (chain mapping), and hence that 7 induces
an O(U)-linear homomorphism

(4.7) F: HHMWU)) — H(L(U)).

The class in H*(M(U)) defined by f € O(U, X) is mapped to the
corresponding class in H°(L(U)) since 7f = f as noted above. In
particular, the constant function x is mapped to z. Since both spaces in
(4.7) are isomorphic to X, such that the classes of z are mapped to z, we
conclude that 7 actually is an O(U)-linear isomorphism. Therefore the
two constructions of the O(U)-module structure of X are isomorphic.
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Finally let us describe Taylor’s original construction by means of
Cauchy-Weyl formulas. Choose a Stein cover V of V. = U \ o(a).
Given a function f € O(U, X) we consider it as an element in M°())
and solve the equation (§ — p)u = f, which is possible by virtue of
Lemma 4.2. Then u,, is a Cech cocycle of degree n — 1 of holomorphic
(n, 0)-forms, and if v’ is another solution to (§ — p)u = f, then there is
a solution to (6§ — p)w = u—', and so pw, = u, —ul,. Thus we obtain a
well-defined Cech cohomology class &, o f in H n=1(OX,V), and one can
prove an analogue to Proposition 3.1 for the mapping @, ,: O(U, X) —
H™'(OX,V). The analog Ay f of Ayf is obtained by taking the ab-
stract Cauchy-Weyl integral of the cohomology class @, ,f. This can
be done by integrating its canonical image in Hg’”fl(V) over an appro-
priate boundary 0. However, the image is obtained by a mapping like
T above, but for the cover V instead of U. If (§, , — p)u = f, then by
Proposition 4.3, (§, ,—0)7u = 7f = f and therefore 70, f = w, of,
which shows that Ay f = Ay f. This proves that this original construc-
tion of Taylor gives is equivalent to the other ones we have considered.

5. FUNCTORIAL PROPERTIES

Let a be an n-tuple and b an m-tuple of operators on X which all
commute. We let dzq, ... ,dz,,dw,...,dw, be a basis for the corre-
sponding Koszul complex, and let § = §, + d. It is quite easy to see
that the whole tuple (a, b) is nonsingular if a is (nonsingular here means
that the corresponding Koszul complex is exact). However, we can say
even more.

Lemma 5.1. Suppose that a is nonsingular. Let & be an X-valued
form of degree at most p in dw, and suppose that (6, + 05)€ = 0. Then
we can find a solution u to (0, + 6p)u = & such that u has degree at
most p in dw.

Proof. If p = 0 it is obviously true, since then we have that §,& = 0.
Now suppose it is proved for p — 1. Since §,0,€ = 04(0, + 05)€ = 0, we
can solve J,v = ¢ such that v has degree at most p — 1 in dw. Now,
0a(€ + V) = 0, + 0,0 = —5E + BE = 0 so we can solve J,u = & + v
with u of degree at most p in dw. Now v + dyu is (8, + dp)-closed and
has degree at most p — 1, so by the induction hypothesis we have n of
degree at most p — 1 such that (6, + )7 = v + dpu. Finally, we have

(0a + 0p) (u —n) =&. 0
As a consequence we have the inclusion
(5.1) o(a,b) C o(a) x o(b).

Remark 10. In particular it follows that the Taylor spectrum is bounded,
since this holds for each single operator. The fact that o(a) is closed
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in C" follows form the open mapping theorem (if a complex depending
on a continuous parameter is exact at some point, then it is also exact
in a small neighborhood, see [16]). O

Proposition 5.2. Let a and b be commuting, and let m be the natural
projection w: C* x C™ — C*. Then w(o(a,b)) = o(a).

Sketch of proof. From (5.1) it follows that 7(o(a,b)) C o(a), so it is
enough to prove the converse inclusion. Assume for simplicity that
0 ¢ m(o(a,b)), and let £ be a §,-closed X-valued form in dz. Then it is
also (0, + dy_p)-closed for each w € C™, and so we can find a smooth
solution u(w) to (6, + dy_p)u(w) = &. Since the Dolbeault complex is
exact in C™ we can assume that u(w) is holomorphic. Then d,u(b) = £.
Thus 0 ¢ o(a). O

Let a and b be commuting tuples of lengths n and m, respectively,
let 2, = (C" \ o(a)) x C™ and Q, = C* x (C™ \ o(b)). We say that a
form « (in both z and w) has degree (&, ¢) if it has degree k in dz and
¢ in dw, disregarding degrees in dz and dw. As before, o denotes the
component of degree k in dz, dw. We say that « has total degree /¢ if the
difference between barred and unbarred degrees for each component is
L.

Lemma 5.3. Let & a smooth form in V x V' C Q, of degree at most
p in dw, and suppose that (6,_q + 0w_p — 0)¢ = 0. Then there is a
solution to (6,_q + 6w_p — O)u = & of degree at most p in dw. If & has
total degree £, then we may assume that u has total degree £ — 1.

Proof. There is a smooth solution to d,_,a = fin V x V' if 3 is smooth
and 0,_,0 = 0; see [10]. Following (the proof of) Lemma 5.1 we can
then successively solve

(5,2—(1 + 5w—b)u1,* = 50’*, (5,2—(1 + 5w—b)uk+1,* = 5uk’*

so that each u** has degree at most p in dw. Finally we take u =
ub* U™, [

For x € X shall define a cohomology class
(52) Ww—b A Wz—al

in Q, N Q. First we solve (0,_q — 0)u = z in Q, and (Jy_p — O)v =
in €, so that u and v has degrees (x,0) and (0, x), respectively, and
total degree —1. Now (6, + d—p — 0)(u — v) = 0 in Q, N and in
view of Lemma 5.3 we can therefore find a solution to

(5.3) (0req+0pp—0)c=u—v

of total degree —2. It follows that dc, m = 0. We let ¢, p, define the
cohomology class (5.2). Suppose that we had other choices v/, v and
c’. Then there are o and 3 of degrees (*,0) and (0, x), respectively,
such that (§,—, — 0)a = u — v’ and (0y—p — 0) = v — v'. Then
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(8, a+6w p—0)(c—c —a+3) = 0so we can solve (6, o+, 5—0)E =
(c—c —a+ ) in Q, N Q. For degree reasons again it follows that
O&im = Cnim — C, +m» and thus (5.2) is indeed welldefined. From the
definition it is clear that w,_p Aw,_& = —W,_q Awyw_pr. Moreover, we
have

Proposition 5.4. Let x be a cutoff function such that {x,1— x} is a
partition of unity subordinate the cover {Qq, U} of C**™\o(a)xo(b) =
Qo N Qy. Then B
aX AN Wy—p N\ Wy—gk = Ww—b,z—al

as cohomology classes in C*™™ \ o(a) x o(b).
Proof. By the notation above we have that

(630 +0wb—0)(xu+ (1= x)v+0xAc)=x
in C**™ \ o(a) x o(b), and hence the (4 m)-component of (xu+ (1 —
X)U +O0x A c) represents Wy _p ,—q- U
Proposition 5.5. Let G be holomorphic in a neighborhood U of o(a) X

o(b), and let ¢(z) and ¥(w) be cutoff functions such that ¢ @ v has
compact support in U and is 1 in a neighborhood of o(a) x o(b). Then

(5.4) G(a,b)x = /G(z, w)OY(w) A 0p(2) A Wy s AW, (.

Moreover, if G = g1 ® go, then
(5.5) G(a,b) = g2(b)g1(a).

Proof. Let a be a form in Q, N €, that represents wy, s A w,_,z. By
the definition of G(a,b)z, cf., (3.7), and Proposition 5.4 we have that

(5.6) G(a,b)x = —/ /Gg(qﬁ ® ) A Ox A a.

Now

B=G0s@VAX—¢@WA(1-X)ANa
is a welldefined compactly supported form in C**™. Hence the integral
of OB vanishes, and this yields the equality between the right hand
sides of (5.4) and (5.6).

Let u and v be as before and let (6, 5 — 0)€ = uy, in Q4 N €, such
that £ has degree (n,*). Then, for fixed z, &, represents wy,_pun(2).
We claim that furthermore &,.,, represents w, » A w,_,z. In fact,
U—0— 0, o6 — (0w p— 0)Eis (8, ¢ + 6uw_p — O)-closed and has degree
at most n — 1 in dz, so according to Lemma 5.3 there is a solution ¢
0 (6,—a + 0pp — 0) =u — v — 0,_o& — (8y_p — O)E of degree at most
n—1indz. If ¢ = £+ ¢, therefore ¢, = &, 1m- Moreover, ¢ solves
(5.3), S0 Cpim represents (5.2), and hence the claim follows. By (5.4)
we therefore have that

G(a,b)z = / / 01(2)g2() 3 (w) A BS(2) A Frim
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but since f, 1., represents wy, pun,(2), after evaluating the inner integral
we get

- [ 92)86() A ga(byu(2)
which is equal to go(b)g1(a)z. O

Remark 11. In the same way one can define w,,_, A w,_,f for any f €
OU, X)ifU D o(a)xo(b) and Proposition 5.4 holds (in U\o(a) x o (b))
for f instead of z. Also (5.4) has a natural counterpart. Morover, if
G(z,w) = g2(w)g1(z) where g, € O(U’) and ¢, € O(U", X), then (5.5)
still holds. For the proof, first solve (6,_, — )u = g;. One can assume
then that u is independent of w. Therefore, gou, is holomorphic in w
for fixed z, and one can proceed as before. O

Proposition 5.6. IfT: C; — C} is linear and b = Ta, then

(5.7) To(a) =o(Ta),
and for g € O(o(Ta)) we have
(5-8) 9(b) = (T"g)(a).

Proof. Since T'(z — a) = w — b, for any X-valued form in dw at the
point w = T’z we have that

(5.9) §yaT*E = T*6py_yf.

If T is an isomorphism it follows that z — a is singular if and only of

w —b is, and hence (5.7) follows. Moreover, if (d,,—, —0)v = z it follows
that (0,_, — 0)T*v = T*x = x, and hence

(5.10) Wy = T wy_px,

which implies (5.8).

If T is the projection (z,w) +— 2z, then (5.7) is just Proposition 5.2
and if g € O(o(a)), then (T7g)(a,b) = g ® 1(a,b) = g(a) = g(T'(a,b))
according to (5.5).

If T is the injection z — (z,0), then T'(a) = (a,0) and hence
o(T(a)) C 0(a)x {0} =T(c(a)). Because of Proposition 5.2, the inclu-
sion is actually an equality. If s = (277) " '0|w|?/|w|?, then s A (9s)™*
represents w,,, and hence s A (9s)™ ! A u, represents wy, A w,_ox if u,
represents w, ,z. Thus, by (5.4),

9(Ta) = //g(z, w)0p A O A sA(0s)™ " Au, =
= —/g(z,O)agb Aun =T*g(a).

Since any linear mapping is a composition of these types, the proposi-
tion is proved. O
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Proposition 5.7. Suppose that ay,... ,a,,b1,... ,b,,cC1,...,Cp are com-
muting operators, and that f is holomorphic in a neighborhood of o(a)U
o(b). If € is an X -valued form such that (8o — 6.)& = 0, then one can
solve (0p—q — 6c)u = (f(a) — f(b))E.

Since f(a), f(b) and dp_, — d. commute, it is clear that f(a) and
f(b) induce mappings on each homology group H™((b — a,c), X ). The
theorem states that f(a) — f(b) acts as the zero operator on H™((b —
a,c),X).

Proof. First assume that there are no c¢; at all. Let £ be a d,_,-closed
X-valued form in dw of degree p and let [£] denote its homology class.
We claim that if u is a solution to

(5.11) (0o-a 4 Ob-a — D)u =&,

of total degree —p—1 with respect to dz, dw, then [f(a)£] is represented
by

(512) f(z)un,p,

oD
where u™P is the component of degree n in dz and p in dw. First no-
tice that d,_,u™? = Ou™P~1; therefore (5.12) is d,_q-closed by Stokes’
theorem (the integral over dD of f8,u™? ! vanishes since it has bide-
gree (n,n — 2) in dz). Moreover, Ou™? = &,_,u™P*! and therefore, the
homology class of (5.12) is independent of the choice of 0D, again by
Stokes’ theorem (notice that fJ,u™? has bidegree (n,n — 1) in dz).
Moreover, if v is another solution to (5.11), then (8, 4+ & o — 0)a =
u — v for some « (of total degree —p — 2), and hence u™P — v™P =
0a™P + §,_,a™P*1. This means that the homology class of (5.12) is
independent of the solution u to (5.11).

Let us now choose a solution to (6,_, — 0)v = & of degree p in dw.
Then clearly v™P represents the cohomology class w,_, A &, and hence
f(a)€ is obtained by integrating f(z)v™® over dD. The form 6, ,v has
degree p — 1 in dw and

(5z—a, + 5b—a - 5)6b—av = _5b—a§ = 0,
so by Lemma 5.3 we can find a solution to
(5zfa + 5()70. - g)vl = _5bfav
of degree at most p—1 in dw. Hence v+’ solves (5.11) and (v+v")™P =
v™P_and so the claim follows.

Now, let u be a solution to (5.11) and let 7" be the linear mapping
(z,w) — (2 +w,w). Then (2,0) — (2,0) and (b,a —b) — (a,a —b). If
v = T*u, then by (5.9),

(5sz + 5(,,,1 — 5)?} = T*(52,a + 5bfa — 5)u = T*é- = f
Thus, [f(b)¢] is represented by the integral of f(z)v™P. However, it is
easy to verify that v™? = «™P and hence [f(b)¢] = [f(a)&].
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The case with ¢ now follows by applying the result already proved to
a' = (a,c), b = (b,0), and f'(z,() = f(2), and using that f'(a’) = f(a)
and f'(b') = f(b), cf., (5.5). O

Theorem 5.8 (Spectral mapping and the superposition property). Let
f="(f1,---, fm) be holomorphic in a neighborhood of o(a). Then

(5.13) o(f(a)) = f(o(a)).
If furthermore g is holomorphic in a neighborhood of o(f(a)), then

go fla) =g(f(a)).

Proof. The first aim is to prove the inclusion

(5.14) a(a, f(a)) C{(z,w); w=f(2)}.

Let (z,w) be a fixed point outside the graph, i.e., such that w # f(z)
(in view of Lemma 5.1 we may assume that z € o(a)). Moreover, let
¢ be a fixed X-valued form such that (6,—4 + duw—f(e))¢ = 0. From
Theorem 5.7, with ¢ = a, b = 2, and ¢ = w — f(a) we get forms u;
such that

(02—a + Ow—r@))u; = (f(2) — fi(@))§, j=1,...,m.

Now,
m

v=f(2) —w| > (fi(z) —w;)(u; — dw; A €)
1
is a welldefined X-valued form, and (6,_q + 6w—f(a))v = §. Thus (2, w)
is a point outside o(a, f(a)) by definition, and hence (5.14) is settled.
From (5.14) and Proposition 5.2 it follows that

o(a, f(a)) = {(z f(2); z € o(a)},
and taking the projection onto C}', using Proposition 5.2 again, we get
(5.13). The superposition property can now be obtained by means of

Propositions 5.4 and 5.5, but we omit the arguments and refer to p. 3
in [7]. O

Suppose we have a given O(C")-module structure on X. Let z be
global coordinates on C" and let a be the tuple connected with z. If w =
¥(2) is another choice of global coordinates, then b = 1(a) is the tuple
connected with w, and it follows from the spectral mapping theorem
that o(b) = o(a). Hence the spectrum o of the given O(C")-module
structure is invariantly defined. Moreover, because of the superposition
property, the extension to a O(c)-module structure is also independent
of the choice of coordinates.

Remark 12. In the previous conclusion, C* can be replaced by any
Stein manifold Q. Thus, if we have given an O(2)-module structure
on X, then one can define, in an invariant way, the spectrum o of
this structure, and furthermore there is a canonical extension to an
O(o)-module structure of X, see [10]. O
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6. BEHAVIOUR OF THE RESOLVENT UNDER ANALYTIC MAPPINGS

Let a be a commuting tuple, let ¢: 2 — Q' be a biholomorphism in a
neighborhood Q2 of o(a), and let b = 1)(a). The superposition property
holds even when the outer function is X-valued (with the same proof),
and hence we have for f € O(o(b), X) that

(6.1) /a () = S (0) = £0) =

- / wy-pf(w) = ¥ (Ww-bf)-
a%(D) oD

Thus w,_,9* f and ¥* (wy—sf) have the same integral for all f € O(a(b), X).
If Q is pseudoconvex we can say even more.

Theorem 6.1. Suppose that 2 is a pseudoconver neighborhood of o(a)
and ¥: Q — Q' is a biholomorphic mapping, w = ¥ (z), and b = (a).

If o(a) C U C Q, then w,—o(¢V*f) = ¥ (ww—sf) in U \ o(a) for f €
OWWU),X) ifn > 1. If n =1 then the difference of the holomorphic
forms w, (V*f) and Y*(wy_uf) has a holomorphic extension over the
spectrum.

The theorem can be rephrased in the following way: Suppose we have
a given O(C")-module structure on X, and let © be a pseudoconvex
neighborhood of the spectrum o. If z and w are holomorphic coordi-
nates in 2, then the cohomology classes w, of and wy_pf in U \ o(a)
coincide if n > 1. If n = 1 then the difference has a holomorphic
extension over the spectrum.

Proof. Since (2 is pseudoconvex, Hefer’s theorem yields functions H;x(z, () €
O(Q x Q) such that

Z ik (2, €) (2k — ) = ¥5(2) — 5(C).
Therefore, hjk(Z) = Hx(z, a) satisfy
(6.2) Z hik(2)(zx — ax) = w; — b;.
For each z we define : mapping a*(z): T,y ® X = T; ® X by
o (dwjlw) Zhﬂc Jdzk|z; o (dwjlw) = ¥ (dwjlw)-

Then, §,_,(a*dw,|,,) = w; — b;. Therefore,
(63) 5zfaa*§ = a’*dwfbg

if £ is an X-valued 1-form (if £ is a (0, 1)-form, then both sides van-
ish) and hence (6.3) follows for general X-valued forms by induction.
Moreover, 0 commutes with o, and therefore

(6.4) (6,—0 — D)a* = & (6p_p — D).
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Now, suppose that f € O, X) and v € L7\ (b)) solves (6, p —
O)v = f. Then (0, o — O)a*v = o*f = Y*f. Thus Gy pf = vy, is a
representative for the class w,,_;f and
&z—aw*f = (a*v)n =a'v, = a’*ajw—b.f
is a representative for w,_,¥*f. So far we have only used that v is a
holomorphic mapping. Now assume that ¢/ is a biholomorphism and let
¢ =v~1 On (0, g)-forms, o* = 9* and hence ¢** is the identity. Since
Ww—pf has full degree in dw it follows that ¢*a*W,_pf = g(w)ww_sf,
where
09

g(w) = det %(w) det(hji o p(w)).
From (6.2) we have that

dw; = Zhjk(z) +0(z — a),

where O(z — a) means holomorphic terms that vanish if z = a. There-
fore,

0
a—f(z) = det(hi(2)) + O(z — a),
and thus det(0w/0z)(a) = det(hji)(a). Moreover, from the superpo-
sition property (Theorem 5.8) we get that ¢(b) = a and that e =
det(Ow/0z)(a) det(0z/0w)(b); therefore, g(b) = e. Thus

&w—bf - Cb*&z—aw*f = h(w)&w—bfa

where (h(w) = 1 — g(w) and) h(b) = 0. By a simple argument, cf.,
the proof of Proposition 3.1, it follows that hw,_pf = wy_phf. Since
€2 is pseudoconvex we can find a holomorphic solution to d,_¢u(w, §) =
h(w)—h(€). Therefore, 8, yu(w,b) = h(w), and hence (8, »—0)u(w,b)f =
h(w)f in U = 4(U). If n > 1 this means that w,,_shf = 0 (since then
the n-component of a solution in U’ \ ¢ is zero), and if n = 1 it means
that (w — b)~'h(w)f is holomorphic in U’. From this Theorem 6.1
follows. 0

The adjoint a(2): T, — Ty, of a* satisfies that

@Y (2= a;)(0/0z)]. =Y _(w; — b;)(0/0w;)| (),

and this immediately implies (6.3) (formally).

det

Remark 13. 1f Q is an arbitrary neighborhood of ¢(a) it might be the
case that w, ,¥*f — ¥*(wy_sf) is at least the image of a Dolbeault
cohomology class in €2 but we have no proof. O

Remark 14. Assume that Q D o(a) is pseudoconvex and let a and
w = 1(z) be holomorphic coordinates in Q. Let £, , be the double
complex from Section 2 and let £, j, be the corresponding complex
with respect to d,_,. From the proof of Theorem 6.1 above it follows
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that o*: L, (U) = L, 4(U) is a morphism for each U C 2, and hence
it induces a mapping

(6.5) & HY(Ly—p(U)) = HY(L,_o (V).

However, if U D o(a), then both these spaces are O(f)-linearly iso-
morphic to X (by the same proof as for 2 = C" in Section 2) and the
class of a function f € O(U, X) in H°(L,,_4(U)) is mapped to the class
of fin H*(L,_,(U)). It follows that (6.5) is an isomorphism and that
the induced O(U)-module structures on X coincide; cf., Remark 3. O

Recall that if ¢p: Q@ — C* is a proper mapping and w is (p, ¢)-form,
then the push-forward v,w is the (m —n+ p, m —n+ p)-current in C™
defined by the relation

(6.6) /w £ A puw = / WEAw,

for test forms ¢ of bidegree (n — p,n — ¢). Since v, commutes with 9,
it induces a mapping on Dolbeault cohomology (for currents).

So far we have only discussed smooth representatives of the Dol-
beault cohomology class w, of in U \ o(a). We say that an X-valued
current u, in U \ o(a) represents w, .f if there is a smooth represen-
tative v, in U \ o(a) and a current w such that Ow = u, — v,. It is
clear then that f(a) can be computed by the formula (3.7) with the
representative u,, for w, ,f.

Let U be a neighborhood of ¢(a) and let ¢: U — U’ be a proper
holomorphic mapping, and let b = (a). By the spectral mapping
property o(a) is mapped to the compact subset o(b) of U’. If further-
more 1 is injective, then it follows that also ¢: U \ o(a) — U’ \ 0(b) is
proper, and hence v, maps w,_,z to a cohomology class in U’ \ o(b).
One can then ask whether this class coincides with wy,_p in U’ \ o(b).

Proposition 6.2. IfT: C} — C is an injective linear mapping, then
T*wz—ax = Wy—Tal-

Proof. If T is invertible, then T, = (T~')*, so this case follows from
(5.10). Since the pushforward is functorial, it is enough to check the
case when T is the natural inclusion C* 3 z — (2,0) € C* x C™. Let
W,_qx be a fixed representative of the class w, ,x in Q\ o(a) and let
[w = 0] denote the (m, m)-current of integration over the submanifold
w = 0. It is easily checked that

T Wy qx = —[w = 0] A W,_q.

Let x be a function in 2 x C™ \ o(a,0) which is 1 in Q \ o(a) when
w = 0 and 0 for z € o(a) when w # 0. Moreover, let w, be a locally
integrable solution to 0,w, = [w = 0] in CI?, which is smooth outside
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w = 0. Now,

(6.7) —[w=0]AW,_qz = —x[w = 0] A W,_¥ = —XOWyy A Wp_oT =
= —0(XWuw A Dy o) + OX A Dy AW, o

Observe that xw, AW,_.z is welldefined in (2 x C™)\ o(a,0), and that
the last term in (6.7) defines w, 4,2 according to Proposition 5.4.
Hence T,w,_,z defines the cohomology class w,_q . O

Theorem 6.3. Assume that w = 1(2) is a holomorphic mapping in a
pseudoconver neighborhood 2 of o(a), b =1 (a), and n > 1.

(i) If 1 is a biholomorphism, then Y,w, & = Wy -

(1)) IfY(z) = (z,9%(z)), then ¥: Q — Q x C™ is proper and injective,
and

(6.8) UV, o =Wy quwbT, =€ X.

Proof. Part (i) is just a reformulation of Theorem 6.1. The mapping
U(z) = (z,%(z)) is the composition of the mappings z — (z,0) and the
biholomorphic mapping G: 2 x C™ — Q x C™ defined by G(z,w) =
(2,%(2) —w). Hence part (ii) follows from part (i) and Proposition 6.2.

U

FEzample 2. From Theorem 6.3 one can get (back) the superposition
property (in the pseudoconvex case). In fact, let g(w) be holomorphic
in a neighborhood of o((a)), and let x be a cutoff function which is
1 in a neighborhood of o(a, v (a)). Then if G(z,w) = g(w) we have by
(5.5) that

9(6(@))e = Gla,¥(@)s = = [ OXN st =

—— [0r XA (W Gor iz = g v(aa,

since U*y is a cutoff function with support in €2 which is 1 in a neigh-
borhood of o(a) and ¥*G(z) = g o ¥(z). O

Ezxample 3. Again let g be holomorphic in a neighborhood U’ of o (1(a)).
Then
a = (g(w) = 9(¥(2))w;—aw-y(a)®

is a welldefined cohomology class in U x U’ \ o(a, v (a)) if U = =1 (U").
Actually this class is zero, since it is the image under ®, of a class (in
U\ o(a)), and G(z,w) = g(w) — g(¢(2)) vanishes on the image of W.

If % is defined in an arbitrary, not necessarily pseudoconvex, neigh-
borhood © of o(a), then at least the class  has a O-closed extension
over o(a,?(a)) (i.e., « is the image of a class in a neighborhood of
o(a,¥(a)).) In fact, if G(z,w) = g o(2) — g(w) and b = 9(a), then
G(a: b) =g¢° ¢ © 7-‘-1(a,b) —gc° 7T2(G,,b) =4go° @D(a) - g(b) =0 by the
superposition property. The claim now follows from Proposition 3.6.
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Conversely, the fact that « is the image of a class over the spectrum
immediately implies that g(b) = g o ¥(a) in view of (5.5). O
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