HOPF ALGEBRA ACTIONS OF CENTRALIZERS ON
SEPARABLE EXTENSIONS

LARS KADISON AND DMITRI NIKSHYCH

ABSTRACT. Suppose k is a field and N C M is a separable Frobenius extension
of k-algebras with trivial centralizer Cps(N) and N a direct summand in M
as N-bimodules. We assume the existence of a Markov trace. Let M; :=
End(Mpy) and My := End(M;)p be the successive endomorphism rings in
a Jones tower N C M C M; C M>. We define a depth 2 condition on this
tower by simply requiring that a basis of A := Cpy, (V) freely generates M
as an M-module and a basis of B := Cy, (M) freely generates M2 as an Mji-
module. We then prove that A and B have involutive strongly separable Hopf
algebra structures dual to one another. As our main result, we prove that M;
is a B-module algebra with subalgebra M of invariants and Ms is the smash
product M1#B. This paper then extends results of Szymanski [S] for finite
index, irreducible subfactors of depth 2 by different proofs. We relate our main
result and a converse to a non-commutative analogue of the classical theorem:
a finite field extension is Galois if and only if it is separable and normal.

1. INTRODUCTION

In this paper we extend the results of Szymarski on Hopf *-algebra actions
and finite index subfactors [S] to the algebraic set-up in [K1] for subalgebra pairs
with a Pimsner-Popa orthonormal basis and Markov trace. To this set-up we add
conditions of irreducibility and depth 2 on the centralizers and work over a field
k of arbitrary characteristic. We replace all arguments based on positivity, star
operations or functional analysis with algebraic ones. We prove in Section 4:

Theorem 1.1 (=Theorem 4.4). The Jones tower M C M; C M, over a separable
Markov extension N C M of depth 2 has centralizers A = Cypr,(N) and B =

Cu, (M) that are involutive semisimple Hopf algebras dual to one another, with an
action of B on My such that My is a smash product: Ms = M,#B.

There are a couple of reasons why this result is interesting. First, it extends [S]
to other cases of irreducible finite Watatani index pairs of C'*-algebras with a finite
trace. In particular, it can be applied to inclusions of simple AF-algebras (inductive
limits of finite dimensional C*-algebras).

Secondly, the theorem above is the difficult part of a non-commutative analogue
of the classical theorem in field theory:

Theorem 1.2. A finite field extension E/F is Galois if and only if it is separable
and normal.
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From a modern point of view, the right non-commutative generalization of Galois
extension is the Hopf-Galois extension [M]. Recall that if H is a finite dimensional
Hopf k-algebra with counit ¢ and comultiplication A(h) = h(1)®h(2), its dual H* is a
Hopf algebra as well. Then we have the following dual notions of algebra extension:
M/N is aright H*-comodule algebra extension with coaction M — M ® H, denoted
by p(a) = a(q) ® a1), and N = {b € M|p(b) = b® 1} if and only if M/N is a left
H-module algebra extension with action of H on M given by h>a = a()(a), h)
and N = {be M|VYh € H, h>b=e(h)b}.

Recall on the one hand that M/N is an H*-Galois extension if it is a right
H*-comodule algebra such that the Galois map 8 : M Qn M — M ® H* given
by a®a' — aa’(o) ® a’(l) is bijective. Now it has been known for some time that
Hopf-Galois extensions are separable Frobenius extensions if H is cosemisimple (cf.
[KT, K2]). To this we add a Markov trace and a bimodule projection onto N under
certain conditions on M and H, and note in Section 2 that

Theorem 1.3. Under the conditions on M and H given in Theorem 2.14, a right
H*-Galois extension M /N with trivial centralizer is a separable Markov extension
of depth 2.

Recall on the other hand that given a left H-module algebra M, there is the
smash product M#H with subalgebras M = M#1, H = 1#H and commutation
relations ah = (h(1)>a)h(g) foralla € M,h € H. If N again denotes the subalgebra
of invariants, then there is a natural algebra homomorphism of the smash product
into the right endomorphism ring, ¥ : M#H — End(My) given by m#h —
m(h>-). We will then use the basic result:

Proposition 1.4 ([KT, U]). An H-module algebra extension M/N is H*-Galois

if and only if M#H = End(My) via ¥, and My is a finitely generated projective
module.

From this and Theorem 1.1 we conclude that a separable Markov extension
M; /M of depth 2 is A-Galois (Corollary 4.6). This result and Theorem 1.3 then
constitute a non-commutative analogue to the classical Theorem 1.2. At the end
of Section 4, we make two proposals for further work on extending our results.

2. SEPARABLE MARKOV EXTENSIONS OF DEPTH 2 WITH TRIVIAL CENTRALIZER

In this paper k denotes a field. Let M and N be associative unital k-algebras
with N a unital subalgebra of M. We refer to N C M or M/N as an algebra
extension. We note the endomorphism algebra extension End(My)/M obtained
from m — A\, for each m € M, where A, is left multiplication by m € M, a right
N-module endomorphism of M. We next define several types of algebra extensions
that make up the extensions in the title.

The algebra extension M /N will be called irreducible if the centralizer subalgebra
of N in M is trivial: i.e., Cp(N) = k1. Since the centers Z(M) and Z(N) both lie
in Cpr(N), these are trivial as well. If £ denotes End(My) and M°P denotes the
opposite algebra of M, we note that (Vm € M)

(1) Ce(M) =A{f € &|mf(z) = (fm)(z) = f(mz)} = End(sr Mn) = Cp(N)*.

Whence the endomorphism algebra extension is irreducible too.



HOPF ALGEBRA ACTIONS OF CENTRALIZERS ON SEPARABLE EXTENSIONS 3

Frobenius extensions. M/N is said to be a Frobenius extension if the nat-
ural right N-module My is finitely generated projective and there is the fol-
lowing bimodule isomorphism of M with its (algebra extension) dual: yMjys =
~yHom(Mpy, Ny)ur [K]. This definition is equivalent to the condition that M /N has
a bimodule homomorphism F : yMy — nyNn, called a Frobenius homomorphism,
and elements in M, {z;}?_,, {y:}",, called dual bases, such that the equations

n

(2) Z E(mz;)y; =m = Zm,E(ylm)

i=1

hold for every m € M [K].! In particular, Frobenius extension may be defined equiv-
alently in terms of the natural left module y M instead. The Hattori-Stallings rank
of the projective modules My or yM are both given by >, E(y;x;) in N/[N,N]
[K1]. It is not hard to check that the index [M : N|g := Y ,x;y;i € Z(M) (use
equations 2) does not depend on E, and E(1) € Z(N).

If My is free, M/N is called a free Frobenius extension [K]. By choosing dual
bases {z;}, {fi} for My such that f;(x;) = d;;, we arrive at orthogonal dual bases
{z:}, {vi}, which satisfy E(y;z;) = 6;;. Conversely, with E, z; and y; satisfying
this equation, it is clear that M /N is free Frobenius.

Separability. Throughout this paper we consider M ® y M with its natural M-M-
bimodule structure. M/N is said to be a separable extension if the multiplication
epimorphism p : M @ y M — M has a right inverse as M-M-bimodule homomor-
phisms. This is clearly equivalent to the existence of an element e € M ® vy M such
that me = em and p(e) = 1, called a separability element: separable extensions are
precisely the algebra extensions with trivial relative Hochschild cohomology groups
in degree one or more.

If N = klpr, M/N is a separable extension iff M is a separable k-algebra; i.e. a
finite dimensional, semisimple k-algebra with matrix blocks over division algebras
D; where Z(D;) is a finite separable (field) extension of k. If k is algebraically
closed, each D; = k and M is isomorphic to a direct product of matrix blocks of
order n; over k.

A k-algebra M is said to be strongly separable if M has a symmetric separability
element e (necessarily unique); i.e., 7(e) = e where 7 is the twist map on M ®; M.
An equivalent condition is that M has a trace t : M — k (i.e., t{(mn) = t(nm) for all
m,n € M) and elements z1,... ,&n,Y1,--- ,Yn such that >, t(mz;)y; = m for all
m € M and ), z;y; = 1pr. A third equivalent condition is that M has an invertible
Hattori-Stalling rank over its center (cf. [K1]). It follows that the characteristic of
k does not divide the orders n; of the matrix blocks (i.e., n;1; # 0); for a separable
k-algebra M, this is also a sufficient condition for strong separability in case k is
algebraically closed.

Separable Markov extensions. We are now ready to define the main object of
investigation in this paper.

YFor if {z;}, {fi} is a projective base for My and E is the image of 1, then there is y;
Ey; = f; such that Y, ; Fy; = idp. The other equation follows. Conversely, My is explicitly
finitely generated projective, while z — Ez is bijective.
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Definition 2.1. A k-algebra extension N C M is called a separable Markov exten-
sion® if M/N is an irreducible Frobenius extension with Frobenius homomorphism
E: M — N, dual bases {z;}, {y;} and trace T : N — k such that

1. E(1) #0,

2. Y ziy #0,
3. T1)=1xand Top:=T o E: M — k is a trace on M.

Remark 2.2. T is called a Markov trace [GHJ]. Since M/N is irreducible, the
centers of M and N are trivial, so E(1) = plg for some nonzero u € k. Then
%E, 1x;,y; is a new Frobenius homomorphism with dual bases for M/N. With no
loss of generality then, we assume that

®3) E(1) =1.

It follows that M = N @ Ker E as N-N-bimodules and E? = FE when FE is viewed
in Endy(M). Also

(4) > miyi =2y
i

for some nonzero \ € k. It follows that )\Zi z; ® y; is a separability element and
M/N is separable. The data E,z;,y; for a separable Markov extension, satisfying
Equations 3 and 2, is uniquely determined.

We note that [M : N]g = A~! is the trace of the Hattori-Stallings rank,

A= TO(Z. Tiyi) = TO(Z. Yiti) = T(Z E(yzi)).

The basic construction. The basic construction begins with the following endo-
morphism ring theorem, whose proof we sketch here for the sake of completeness:

Theorem 2.3 (Cf. [K1, K2]). £/M is a separable Markov extension of index A~ 1.

Proof. For a Frobenius extension M/N, we have £ =2 M ®n M by sending f —
> f(zi) ® y; with inverse m ® n — Ay, E), in the notation above. We denote
M, ;= M ®n M, and note that the multiplication on M; induced by composition
of endomorphisms is given by the E-multiplication:

(5) (m1 ® ma)(ms ® ma) = m1E(mams) ® my.

The unity element is 1; := ). z; ® y; in the notation above. It is not hard to see
that Eps := Ay, where u is the multiplication mapping M; — M, is a normalized
Frobenius homomorphism, and {A'z; ® 1}, {1 ® y;} are dual bases satisfying
equations 3 and 4. Ty := Ty o Ep is a trace by [K2, 4.3]. O

We make note of the first Jones idempotent, e; :=1® 1 € M;, which cyclically
generates M as an M-M-bimodule: M; = {)_, z;e1y;| z;,y; € M}. In this paper, a
Frobenius homomorphism F satisfying E(1) = 1 is called a conditional ezpectation.
We describe M1, e1,Ty, Epr as the “basic construction” of N C M.

The Markov property. Observe that the trace 77 has the following useful Markov
property : Ti(me1) = ATp(m) for all m € M. Indeed, we have Ti(me;) = Tp o
En(mer) = To(mEum(e1)) = ATp(m).

2or an irreducible stongly separable extension with Markov trace [K1]



HOPF ALGEBRA ACTIONS OF CENTRALIZERS ON SEPARABLE EXTENSIONS 5

The Jones tower. The basic construction is repeated in order to produce the
Jones tower of k-algebras above V C M:

(6) NCMCM CM;,C---

In this paper we will only need to consider M;, which is the basic construction of
M C M;. As such it is given by

(7) My = M; @u M1 =M Qn M Qv M
with Ejs-multiplication, and conditional expectation Ejys, := Ay : My — M; given
by

mi; @ mo @ m3 +— )\mlE(mz) ® ms.
The second Jones idempotent is given by

ea=11®11 =Y 2 ®uz; yj,
4,J

and satisfies €2 = e in the Ejs-multiplication of M,. We denote the Markov traces
on M, M; and My by To =TE, T1 = ToEny, and Ty = T1 E)py, , respectively.

The braid-like relations. Note that 15 = >, A 7'z; ® 1 ® y; and En(ei41) =
Al where My denotes M. Then the following relations between e, ey are readily
computed in M; without the hypotheses of irreducibility or Markov trace:

Proposition 2.4.

€1€2€1 = )\81 12
€2€1€2 = }\82.
Proof. The proof may be found in [K1, Ch. 3]. O

A Tunnel Construction. Under special circumstances M is itself the basic con-
struction of IV with respect to a commutator subalgebra R. We prove such a result
below. This subsection will only be needed in the discussion at the end of this

paper.
Proposition 2.5. If M has an idempotent ey such that E(eg) = Al and M =

NegN, then N is a separable Markov extension over R := Cn({ep}), with M and
FE isomorphic to the basic construction.

Proof. First note that identities such as egn = n'ey (n,n’ € N) imply n = n' by
applying E. Then define Eg : N — R by

(8) eoEr(n) = egney,

whence it is easily shown that Eg is a well-defined R-bimodule projection.
Suppose 1y =Y, pieogi- Then A)". p;g; = 1. Then

eyn = Z €onpP;€oq; = €g Z ER(npi)Qia
i i

and it is now easy to see that N/R is a separable Frobenius extension with condi-
tional expectation Er. That T o Er = T follows from applying 7y to Equation 8,
whence Ty is a Markov trace.

The mapping N ® g N — M given by n ® n' — negn’ is shown to be an isomor-
phism. Finally, we see that E : M — N completes a commutative triangle with
the map A\p: N ®r N — N. O
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Finite depth and depth 2 conditions. We extend the notion of a depth known
in subfactor theory [GHJ] to Frobenius extensions.

Lemma 2.6. For all n > 1 in the Jones tower (6) the following conditions are
equivalent (we denote M1 = N and My =M ) :
(1) M,_1 is a free right M, _s-module with a basis in Cypy,_,(N) (respectively,
M, is a free right M, _1-module with a basis in Cpr, (M)).
(2) There exist orthogonal dual bases for Eyr, _, in Cpr,_, (N) (respectively, there
ezxist orthogonal dual bases for Epy, , in Cy, (M)).

Proof. We show that (i) implies (ii), the other implication being trivial. Denote by
{z;} and {w;} orthogonal dual bases in M,, ; for Eys, _,, where {2;} C Cpr,_, (N).
We compute that w; € Cyr,_, (IV):

Tw; = ZwEMnfz(wizj)wj = Z&ij:ij = ZEMniz('UJil'zj)w]' = w;x
J J J

for every ¢ € N. The second statement in the proposition is proven similarly with

dual bases {u;} in Cp, (M) and therefore {v;} in Car, (M). O

We say that a separable Markov extension M /N has a finite depth if the equiv-
alent conditions of Lemma 2.6 are satisfied for some n > 1. It is not hard to check
that in this case they also hold true for n+ 1 (and, hence, for all k£ > n). Indeed, if
{u;} and {v;} are as above, then {A\~'ujen11}, {€n+1v;} C On,,, (M) is a pair of
orthogonal dual bases for Ejs,. We then define the depth of a finite depth extension
M/N to be the smallest number n for which these conditions hold. In the trivial
case, an irreducible extension of depth 1 leads to M = N.

Let A and B denote the “second” centralizer algebras:

A= CMl(N) B := CM2(M)
The depth 2 conditions that we will use in this paper are then explicitly:
1. M, is a free right M-module with basis in A;
2. M, is a free right M;-module with basis in B.
It is easy to show that M; and M-, are also free as left M — and M;—modules,
respectively.
In what follows, we assume that M/N has depth 2 and denote {z;}, {w;} C A

orthogonal dual bases for Eys and {u;}, {v;} C B orthogonal dual bases for Ej;,
that exist by Lemma 2.6.

Proposition 2.7. A and B are strongly separable algebras.

Proof. For all a € A, we have ), Ep(az;)w; = a =) ; ziEum(w;a) where Ep(az;)
and Ejps(w;a) lie in Cpr(N) = klpys. {2} is linearly independent over M, whence
over k, so A, similarly B, is finite dimensional.

We note that Eps(a) = Ti(a)ly for every a € A, whence {\~1T1|a, Az;, w;} is
a separable base, whence A is strongly separable. Similarly, {\~'Ty|p, Au;,v;} is a
separable base for B. O

The lemma below is a first step to the main result M5 is a smash product of B and
M; (cf. Theorem 4.4).

Lemma 2.8. We have M1 =2 M ®y A as M-A-bimodules, and M> = My, Qi B as
M; -B-bimodules.
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Proof. We map w € M into ), Ey(wz;) ®w; € M® A, which has inverse mapping
m®a€ MQ® A into ma € M;.
The proof of the second statement is completely similar. O

We let C = Ciy,(N). Note that A C C and B C C. Of course Al N B = kls
since Cyr, (M) = k1;. We will now show the classical depth 2 property that C is
the basic construction of A or B over the trivial centralizer.

Lemma 2.9. C =2 A ® B via multiplication a ® b — ab.

Proof. If c € C, then }; Ep, (cu;) ® v; € A® B, which provides an inverse to the
first map above. O

Lemma 2.10. We have esA = e2C and Ae; = Cey as subsets of M. Also,
e1B = e1C and Be; = Ce; in Ms.

;b € My such that

eb=11®11 Y b @b =ex Y En(b;)b] € kes
J J

Proof. For each b € B we have b;

since Z]. EM(bj)b;- € Cu, (M) = k1. Then e2C = e2BA = e2A. The second
equality is proven similarly. The second statement is proven in the same way by
making use of e; A = Ae; = ke;. O

We place the Epr-multiplication on A® A, and the Ejy, -multiplication on B® B
below.

Proposition 2.11 (Depth 2 property). We have C = Ae; A and C =~ A ®; A as
rings. Also, C = Be;B and C = B ®;, B as rings.

Proof. Clearly Ae;A C C. Conversely, if ¢ € C, then ¢ = }_; Er, (cu;)vj. But
> U ®U; = At 3 ; Zi€2 @ eow; by the endomorphism ring theorem and the fact
that both are dual bases to Eps,. Then ¢ = A1 > i B (czied)eqw; € AexA as
desired.

Since eawes = Ep(w)es for every w € My, we obtain the Ejpr-multiplication on
AesA. Then C = AesA = AQu A= ARy Asince ANM = OM(N) = klar.

For the second statement, we observe:

C = AezA = A6261€2A Q C’elC = BelB,
while the opposite inclusion is immediate. The ring isomorphism follows from the
identity:
9) eice; = e1Epr, (c)

for all ¢ € C, since BN N1y C Z(N) = k1. For there are a;,b; € A such that
c =) ,aiesb; , and n,n' : A — k such that, for all a € A, e;a = ein(a) while
ae; = n'(a)e; by irreducibility. Then we easily compute that n = ’. Then:

eice; = Zelaiegbiel:Zn(ai)n(bi)elegel
i i

}\Zelaibi = elEMl (c) O

k2

In Section 3 it will be apparent that 7 is the counit € on A.
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Corollary 2.12. If n = #{u;} = #{v;}, then C = M, (k) where the characteristic
of k does not divide n.

Proof. Since B is a Frobenius algebra with Frobenius homomorphism FEjy, , it fol-
lows from the isomorphism, Endg(B) & B ® B that

(10) C = Endy(B) = M, (k).
We have char k [/n since the index A~! = n1; # 0. O

Since we can use A in place of B to conclude that C = Endy(A) in the proof
above, we see that dimy A = dimy B. We now compute the (unique) trace-
preserving conditional expectation of C' onto B, a lemma we will need in Section 3.

Lemma 2.13. The map Ep : C — B defined by Eg(c) = 3 ; Em(Em, (cu;))v; for
all ¢c € C is a conditional ezpectation and satisfies T o Eg = T|¢.

Proof. We first note that Ep is the identity on B, since Epy (bu;) € k11, whence
Eg(b) = >, Em(11)Enm, (buj)v; = b. Since the Markov trace 7> = Tp o Em o Enry
and En(Em, (cuj)) € k1 for all ¢ € C, we have:

EB(belb') = Z Tg(belb'uj)vj = ZTl (61EM1 (b'u]-b))vj
J J
= A Ea, (bb'uj)v; = Abt/
J

It follows from Proposition 2.11 that Ep is a B-B-bimodule homomorphism. Since
¢ = >2; Ewmy(cuj)vj and Ep(c) = 3, To(cu;)vj, it follows that T>(Eg(c)) = Ta(c)
forallce C.

That Ep is a Frobenius homomorphism follows from [GHJ, Lemma 2.6.1], if we
show it is faithful: i.e., Eg(Cc) = 0 implies ¢ = 0. But this follows from T3 |c being

faithful, since C = M,,(k) and chark fn. O
The Pimsner-Popa identities. We note that:

A leiEy(erz) = ex Vre M

A leyEnr (e2y) = ey Vy € M.

Proof. Let x =), m; ®m) where m;,m; € M;. Then eaz = ez Y, Epr(m;)m], and
Ew, (e2z) = XY, Epr(m;)m) from which one of the equations follows. The other
equation is similarly shown, as are the opposite Pimsner-Popa identities.

When Galois extensions are separable Markov. The following theorem is a
converse to our main theorem in 4.6. Let H be a finite dimensional, involutive,
semisimple and cosemisimple Hopf algebra.

Theorem 2.14 (Cf. [K2], 3.2 ). Suppose M is a k-algebra with normalized trace T
and left H-module algebra with subalgebra of invariants N. If M/N is an irreducible

right H*-Galois extension, then M/N is a separable Markov extension of depth 2
with End(My) = M#H.

Proof. Since H is finite dimensional (co)semisimple, H is (co)unimodular and there
are integrals f € [,. and ¢t € [, such that f(t) = f(S(t)) = 1&, €(t) = 1 and

f(1) # 0. Moreover, g — (t — g) gives a Frobenius isomorphism 6 : H* — H,
where t < f = f(t(1))t(2) = 1m, since f integral in H* means z - f = f(z)1x for
every ¢ € H.
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IfB: My M — M ® H* is the Galois isomorphism, given by m @ m'
mm’(o) ®m'(1), then ¢ = (idas ® 8) o B is the isomorphism M @ y M = M#H given
by

m®em' = mmig) @ (t —m(y)) = m(my),ta))mp) @ty
= m(t(l) . m') ® i) = mtm’.

Now define E : M — N by E(m) =t-m, where t -m € N since h- (t-m) =
(ht) - m = e(h)t - m. Note that E is an N-N-bimodule map and E(1) = ¢(¢)1 = 1.

Denote 87 1(1Q f) = >, zi®y; € M ®N M. Since (id®0)(1® f) = 1#1, which
is sent by 9 to idas, it follows that ) . z;Ey; = idy and that E is a Frobenius
homomorphism with dual bases {z;}, {y;} [KT].

The homomorphism ¢ : M#H — End(My), m#h — (m' — m(h-m')) is an
isomorphism by [KT, 1.7] with inverse given by g — >°. g(x;)ty;.

By counitarity of the H*-comodule M, then p: M ® y M — M factors through
B and the map M ® H* — M given by m® g — mg(1). Then Y . z;y; = f(1a)lm,
whence the k-index [M : N]g is A™' = f(1g).

We check that T'|x o E is a trace:

T(t- (mm')) = T((tay - m)(te) -m')) = T((ta) - m')(te) - m)) = T(t- (m'm)),

by the formula t(5) ®t(1) = t(1) ® (S?¢(2))b [R, p. 595], where S? = id by assumption
and b =1 is the distinguished group-like in H, trivial by counimodularity.

It is not hard to compute that Cprpm(N) = Cy(IN)#H which is H since M/N
is irreducible. Since M#H is free over M with basis in H, we see that the first half
of the depth 2 condition is satisfied.

The second half of depth 2: we note that M#H is a right H-Galois extension of
M, where the coaction M#H — (M+#H) ® H is given by m#h — m#th(1) ® h(a).
One may compute the inverse of the Galois map to be given by f~!(m#h ® h') =
th(h’(l)) ® h’(2). Then My =2 MAHH#H*. O

3. HOPF ALGEBRA STRUCTURES ON CENTRALIZERS

A duality form. As in Section 2, welet N C M C M; C Ms C --- be the Jones
tower constructed from a separable (irreducible) Markov extension N C M of depth
2, T denote the Markov trace on My and its subalgebras, e; € M;, es € M3 be the
first two Jones idempotents of the tower, and A=! = [M : N]| be the index.

Proposition 3.1 (Cf. [S], Proposition 10). The bilinear form,
{a, b) = A72T(aeze,b), a€ A be B,
is non-degenerate on A ® B.

Proof. If (a, B = 0 for some a € A, then for all z € Cpr,(N) we have T(aeze1z) =
0, since e;B = €1Cu,(N) (depth 2 property). Taking z = eza’ (a’ € A) and
using Lemma 2.10, the braid-like relation between Jones idempotents, and Markov
property of T' we have

T(aa') = A"'T(aeze;(eza’)) = 0 for all ' € A,

therefore a = 0. Similarly, one proves that ( A, b) = 0 implies b = 0. O
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Observe that since k is a field the Proposition above shows that the map b —
Epr, (e2e1b) is a linear isomorphism between B and A. Indeed, Epr, (eze1d) = 0
implies that for all @ € A one has

T'(aeze1b) = T'(aEwm, (e2e1b)) = 0,

whence b = 0 by nondegeneracy.

A coalgebra structure. Using the above duality form we introduce a coalgebra
structure on B.

Definition 3.2. The coalgebra structure on B has comultiplication B — B ® B,
b b(1) ® b(z) given by

(11) (a1, by ){az, b)) = (aiaz, b)

for all a;, a2 € A, b € B, and counit ¢ : B — k given by (Vb € B)
(12) e(b) = (1, b).

Proposition 3.3. We note that: (for all b,c € B)

(13) e(b) = A1 T (ead),

(14) A =101,

(15) e(be) = e(b)e(c).

Proof. Using the Pimsner-Popa identities and the Markov property we compute:

e(b) = A 2T (ege1b) = A 3T (Eyy, (bes)eser) = A T (esd),

(ay,1){(ag,1) 4T (a1e0e1)T (azezer)
2T(a161) (aze1) = Asz(alEM(azel)el)
1T(a1a261) (aiag, 1),
2T (egb)T(eac) = A\ 2T (ea Epr, (e2b)c)

AT (egbc) = e(be),
for all a;,az € A, b,c € B, since Cpyr(N) = Cpr, (M) = k1, so that the restriction
of Epy (resp. Epr, ) on A (resp. B) coincides with 7. O

>4>4>’>4

e(b)e(c) =

The antipode of B. Recall that the map b — Ej, (e2€1d) is a linear isomorphism
between B and A. But considering the Jones tower N° C M°P C M{? C Mj?
of the opposite algebras, we conclude that the map b — Ejr, (bejes) is a linear
isomorphism as well. This lets us define a linear map S : B — B, called the
antipode, as follows.

Definition 3.4. For every b € B define S(b) € B to be the unique element such
that
T (beieza) = T(aeze15(b)), for alla € A,
or, equivalently,
Er, (berez) = Epr, (e2e15(b)).
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Remark 3.5. Note that S is bijective and that the above condition implies
(16) Eyr, (bzes) = Eyy, (e225(b)), for all z € M;.

Indeed, B commutes with M and any z € M; can be written as x = Ei T;e1Y;
with z;,y; € M, so that

.E]u1 (b.’L'ez) = 27; fL'iEMl (beleg)yi = Ei :171'.E1\41 (ezels(b))yi = E’]\/[1 (ewa(b))

A and B are Hopf algebras. To prove that B is Hopf algebra, it remains to
show that A is a homomorphism and that S satisfies the antipode axioms. The
next proposition is also the key ingredient for an action of B on M; which makes
M5 a smash product.

Proposition 3.6. For all b € B and y € M; we have
yb = A "b2) Enr, (e29b(1))-

Proof. First, let us show that the above equality holds true in the special case
y = e;. Let Ep be the unique T-preserving conditional expectation from C to B
given by Eg(c) = X; T(cu;)v; as in Proposition 2.13.

We claim that for any ¢ € C we have ¢ =0 if (a, Eg(ca’)) =0 for all a,a’ € A.
For if ¢ € B this follows from non-degeneracy of the duality form; if c = a € A
this follows from Eg(a) = T(a)l and noting that T is a faithful trace on A (cf.
Proposition 2.7). We put the two facts together with C = BA to prove the claim.

Then using the Pimsner-Popa identity for C = Be; B, we establish the proposi-
tion for y = e;:

(a, Eg(eiba’)) = A 2T(aeze1Ep(e1ba’))

A 1T (a'aeze b) = A d'a, b),
A" a, by )T (e2e1b(1ya’)

= Xa, by )(d, bay) =X a'a, b).

Next, arguing as in Remark 3.5 we write y = ¥; m;ein; with m;,n; € M, whence

(a, A b2 Ep(Eu, (e2e1b(1y)a’) )

yb = ¥; mye1bn; = /\_12i mib(Q)EMl (egelb(l))ni = b(z)EMl (egyb(l)). O
Corollary 3.7. For all b € B and z,y € M; we have:
B, (e2zyb) = A~ Epy, (e22b(2)) B, (€2yb(1))-

Proof. The result follows from multiplying the identity from Proposition 3.6 by esx
on the left and taking Ejs, from both sides. O

Although the antipode axiom (cf. Prop. 3.11) implies that S is a coalgebra anti-
homomorphism, we will have to establish these two properties of S in the reverse
order, as stepping stones to Propositions 3.10 and 3.11.

Lemma 3.8. S is a coalgebra anti-automorphism.
Proof. For all a,a’ € A and b € B we have by Corollary 3.7
(ad', S(b)) = X 2T(beiesaa’) = A73T(e1e2Enr, (e2aa’b))
= A *T(e1eaEm, (e2ab2)) Eu, (e2a'b(1)))
= A %T(e1ezEn, (e2ab(2)))T (e1e2Enr, (e2a'b(1)))
= (a,8(b))(a',S(bw)),
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where we use the fact that a — A=2T(eje2a) = A~'T'(e1a) is the counit homomor-
phism from A to k, as in Proposition 3.3. Thus, A(S(b)) = S(b2)) ® S(b1)). O

Corollary 3.9. For all b € B and x,y € M; we have :

Eyr, (bzyes) = )\_IE'Ml (b(ryzea) Enr, (beayyez)

Proof. We obtain this formula by replacing b with S(b) in Proposition 3.6 and using
Equation 16 as well as Lemma 3.8. (I

Proposition 3.10. A is an algebra homomorphism.

Proof. By Corollary 3.9 we have, for all a1,as € A and b,c € B :

(a1a2, bc) = (A 'En,(carages), b)
= (A ?Eum,(cayaie2) Eng (c(2)a2e2), b)
= (A 'Eum,(cayaies),bay (AT B (c(z)aze2), bea) )
= (a1, bayeq) )(az, b)cee) ),
whence A(bc) = A(b)A(c). O

Proposition 3.11. For all b € B we have §(b(1))b(2) = €(b)1 = b1)S(b(2))-
Proof. Using Corollary 3.9 and the definition of the antipode we have

(a, S(b1))bay) = A Y Ea(bayaes), S(bay))
= AT (En (bzyaes)eaEar, (2615 (b))
= AT (En, (bayere2) B, (bayaes))
= A 72T(beraez) = A" 2T(e1a)T(bez) = (a, 1e(b) ),

Va € A, b € B. The second identity follows similarly from Corollary 3.7. O

Theorem 3.12. (B, A, ¢, S) is an involutive strongly separable Hopf algebra.

Proof. Follows from Propositions 3.3, 3.10, 3.11, and 2.7. That $? = id follows
from the computation:

T(aezerb) = M\ 'T(Epr (baez)ezer)

AT (B, (e2aS(b))ezer)

A" T (exEpy, (e2aS(b))er)
T(S(b)ereaa) = T(aeze; S*(b)),

using Remark 3.5 and the Markov property of T'. O

Remark 3.13. The non-degenerate duality form of Proposition 3.1 makes A the
Hopf algebra dual to B.

Note that ez is an integral in B, since (a,e2b) = (a, ez )e(b) = (a,bez) by the
Pimsner-Popa identity. Similarly, e; is an integral in A.
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4. ACTION AND SMASH PRODUCT

In this section we define a canonical action of B on M; making it a B-module
algebra. We then describe M as its subalgebra of invariants and M> as the smash
product (or crossed product) algebra of B and M;.

Proposition 4.1 (Cf. [S], Proposition 17). The map >: BQ M; — M :
(17) bz = A" Ey, (bzey)
defines a left B-module algebra structure on Mj.

Proof. The above map defines a left B-module structure on M;, since 1>z =
A1Ey;, (ze2) = z and

b (c> ) = A 2Enr, (bEw, (czea)ez) = A~ Eny, (bezes) = (be) > .
Next, Corollary 3.9 implies that b > zy = (b1) > z)(b2) > y). Finally, b>1 =
A" Epr, (bea) = A7 T (bea)1 = e(b)1. O

Note that B> A = A. We next show that the action of B on A yields a coaction
A — A® A (when dualized) which is identical with the comultiplication on A.

Proposition 4.2. The natural inclusion ¢ : A < M; is a total integral.

Proof. Since ¢(1) = 1, we need only show that ¢ is a right A-comodule morphism
[D]. Denoting the coaction My — M; ® A (which is the dual of Action 17) by
w — W) ® w(1), we have w(g)(w(1),b) = b>w for every b € B. Since each a(g) € 4
by the depth 2 condition, it suffices to check that a(g) ® a(1) = a1) ® a(a):

(a@),d)(a@),b) = (a,bb') = A>T (aeze1bb’)
= AT3T(Ejp (Vaes)ezerb) = (A" Eypy, (b aes),b)
= (ag),b)(an,d ). O
Proposition 4.3. MZ = M, i.e., M is the subalgebra of invariants of M;.

Proof. If € M; is such that b>z = e(b)x for all b € B, then Eyf, (bzez) = Ae(b)z.
Letting b = e; we obtain Ejr(z) = A"1Eyy, (e2ze2) = e(e2)z = z, therefore z € M.
Conversely, if £ € M, then x commutes with e; and

bz = A" Eyy (beax) = AL E)y, (bez)z = e(b)z,
therefore MZ = M. O

Note from the proof that es >z = Epr(z), i.e., the conditional expectation Ejy
is action on M; by the integral e; in B.

Theorem 4.4 (Cf. [S], Theorem 20). The map 0 : z#b — zb defines an algebra
isomorphism between the smash product algebra My1#B and M.

Proof. The bijectivity of 6 follows from Lemma 2.8.

To see that 6 is a homomorphism it suffices to note that by = (b(1) > y)b(a) for
allb € B and y € M;. Indeed, using Propositions 3.6, 3.11 and the Pimsner-Popa
identity we have:

(by>y)bay = A En(bayye)bea)
)\_2b(3)EM1 (t’ng}M1 (b(l)yeg)b(g))
)\_lb(g)EMl (egyS(b(l))b(z)) = by. O
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From this and Lemma 2.9, we conclude that:
Corollary 4.5. C = A#B.
Corollary 4.6. M;/M is an A-Galois extension.

Proof. Dual to the left B-module algebra M; defined above is a right A-comodule
algebra M; with the same subalgebra of coinvariants M, since B* = A. By the

theorem and the endomorphism ring theorem, M;#B S S End}, (M) is
given by the natural map z#b — x(bp> -) since if b = ), a;eza; for a;,a; € A, then
for all y € My,

z(bry) = A" Z za; B, (e20;ye2) = z Z ai By (azy).

By Proposition 1.4 then, M; is a right A-Galois extension of M. O

M; /M is of course a faithfully flat Galois extension because the extension is free:
cf. [M] for many nice properties such as “affine quotients.”
We propose the following two problems related to this paper:

1. Are conditions 1 and 2 in the depth 2 conditions independent?
2. If M;/M is A-Galois in a Jones tower, is M /N B-Galois? Equivalently, if Mj
is a smash product of M; and B, is M; a smash product of M and A?

There is an affirmative answer to the second question in case the extension M/N
has a tunnel construction N/R as in Proposition 2.5 satisfying a depth 2 condition.
In this case, A is replaced by Cyr(R), B by A, M by M; in the proofs above and
Theorem 4.4 shows that M; is the smash product of M and A.
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