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Abstract

In the current paper it is shown that, in flow cases when the accel-
eration terms of the Navier—Stokes equations are negligible, a drastic
increase in the complexity of the solutions to the Navier—Stokes equa-
tions for the fluctuating velocity occurs when the quantity U;0U;/0x;
changes from being a linear function in space to being a non-linear one.
For instance, it is seen that in case it is a linear function in space, the
centroid of the trajectory positions for a certain delay 7 coincides with
the position along the trajectory of the mean flow for the same delay,
which is not true in the non-linear case. In addition, for uniform mean
flow with negligible acceleration terms, sufficient conditions for the co-
incidence of the advection and local mean velocity are given, along
with a formal proof of their sufficiency. The possibility of extending
the theorem to some other cases is also discussed. A method to take
into account the effect of mean velocity gradients on the velocity along
a trajectory and on the trajectory position is used in an attempt to im-
prove the accuracy of Taylor’s hypothesis for shear flows. This method
should allow a substantial relaxation of Lin’s criterion in many cases.

1 Introduction

Taylor’s hypothesis of frozen turbulence (Taylor, 1938) suggests that a tur-
bulent pattern is changed fairly slowly as it is advected past a point. Since
this allows the temporal variation of velocity obtained at one point to be in-
terpreted as the spatial variation of the velocity at a fixed time, this hypoth-
esis has been widely used in experimental fluid dynamics. For homogeneous,
isotropic turbulence with low turbulence intensity its validity has been estab-
lished thoroughly experimentally, see e.g. (Favre et al., 1952; Comte-Bellot
& Corrsin, 1971). However, it is also common knowledge (Lin, 1953) that
the validity of the hypothesis for shear flows is doubtful, and the measure-
ments of space-time correlation coefficients! in a boundary layer by Favre

1Some theoretical papers in the field discuss correlations, whereas almost all experimen-
tal papers consider correlation coefficients. For homogeneous and stationary turbulence
the two concepts are equivalent, but we shall distinguish the two by using the notation
R;j (xo0,t0,X1,t1) = u; (Xo,t0) uj (x1,t1) (the overline denotes ensemble average) for cor-
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relations and p;; (%o, to, X1,%1) = Rij (Xo,t0,%X1,%1)/ (uf (x0,t0) u} (xl,tl)) for corre-

lation coefficients. For stationary and homogeneous turbulence these quantities depend
only on the difference between xo and x; and between to and ¢;.



et al. (1957, 1958) confirmed this suspicion. Indeed, it was found that in
the innermost region of the boundary-layer, structures were not advected
by the local mean velocity, and worse, the locus of the points of maximum
correlation coefficients, when the time delay was adjusted to optimise the
correlation coefficient, did not coincide with the mean streamlines. In Stern-
berg (1962) it was concluded that “in any shear flow, the disturbance velocity
at a point P is in general different from the local mean velocity”. On the
other hand, in Champagne et al. (1970); Harris et al. (1977) it was found
that for homogeneous shear flow, the advection velocity? and the local mean
velocity coincided to within the accuracy of the measurements, even in case
of strong shear. This surprisingly simple behaviour was attributed to the
absence of curvature of the mean velocity profile, but curvature of the mean
velocity profile does not necessarily rule out the possibility of this simple be-
haviour. For example, in the core region of channel flow the validity of the
Taylor hypothesis has been confirmed both experimentally (Romano, 1995)
and numerically (Piomelli et al., 1989; Kim & Hussain, 1994; Wilhelm et al.,
1998) with good agreement between the advection and local mean velocities
despite the presence of a non-negligible curvature of the mean velocity pro-
file. So far a precise criterion of when to expect this simple behaviour has
not been presented, however, in this paper it is argued that, in cases when
the acceleration terms of the Navier—Stokes equations are small, it is rea-
sonable to expect that the crucial factor determining whether the advection
and local mean velocities coincide, is the linearity in space of U;0U;/0z;
(where U denotes the mean velocity).

Most of the research analysing Taylor’s hypothesis has focused on the
error due to non-negligible turbulence intensity, and on the properties of the
different terms in the Navier-Stokes equations. Lin (1953) and Heskestad
(1965) estimated the size of the terms of the Navier—-Stokes equations in
an attempt to analyse the error induced by the use of Taylor’s hypothesis.
Lumley (1965) made a rather complete analysis of the effects which gener-
ate the error, and found that if certain conditions are satisfied the dominant
contribution to the error for large frequencies is due to fluctuating advection
velocity, which clearly is a problem of increasing severity as the turbulence
intensity is increased. It should be stressed that Lumley’s analysis only ap-
plies for frequencies so high that the Lin (1953) criterion is satisfied, and
for some shear flows this is a considerable restriction. Lumley also gave cor-
rection formulae for the advection velocity and the spectrum, applicable for
the high frequencies in the case of non-negligible turbulence intensity. Lum-
ley’s correction equation was solved analytically by Champagne (1978), but
since the solution over-estimated the high-frequency part of the spectrum

2In older literature “disturbance velocity “ or “convection velocity” are typically used,
whereas in more recent literature both “advection velocity” and “convection velocity” are
used frequently. We will use “advection velocity” throughout, to emphasize that active
turbulent quantities are advected rather than passive scalars.



considerably, the validity of the approach has not been established beyond
reasonable doubt. Alternative formulae based on different assumptions have
been derived by Wyngaard & Clifford (1977) whose results agree well with
Lumley’s, however the measurements of Antonia et al. (1980) did not agree
well with the assumption used in Wyngaard & Clifford (1977). Recently,
Lumley’s analysis was used to derive correction formulae for general tensors
by Hill (1996), whose article also contains an explanation of the assumptions
made. In all the papers mentioned thus far it is assumed that the contri-
bution of the acceleration terms is negligible. However, the first attempt
to try to estimate the size of the error induced by the acceleration terms
was made in Gledzer (1997). In the current paper the approach of Hill is
extended to the case of homogeneous shear flow, and the method is used to
modify Taylor’s hypothesis to allow a significant relaxation of Lin’s criterion
for shear flows.

The introduction of the concept of an advection velocity different from
the local mean velocity has extended the range of validity of Taylor’s hy-
pothesis to certain shear flows, for instance the flow in the impeller stream
of a Rushton turbine (Michelet et al., 1997) and the turbulent von Kdrman
swirling flows (Pinton & Labbé, 1994). More generally, Zaman & Hussain
(1981) concluded that provided that the correct choice of the advection ve-
locity is made, “the application of the Taylor hypothesis can be acceptable
when applied to single large-scale structures that are not undergoing rapid
evolution or interaction with neighbouring structures”. In the same spirit,
we will in this paper establish theoretically that in cases when the accel-
eration terms of the Navier-Stokes equations are negligible, and the mean
velocity and mean vorticity fields are parallel, Taylor’s hypothesis is approx-
imately valid along individual trajectories, but, in general, we have little a
priori knowledge of where these trajectories are displaced as the time pro-
gresses. In fact, the major difficulty with introducing an advection velocity
different from the local mean velocity is that there is no known method to
predict this advection velocity from the Navier—-Stokes equations, and very
little research has been done in this area. As a first step to enable the cal-
culation of the advection velocity from simpler properties of the turbulent
flow, we will in this paper give sufficient conditions which establish that the
advection velocity, defined using the space-time correlation coefficients in
a manner described in the next subsection, coincides with the local mean
velocity.

A question which, by contrast, has received considerable attention in
literature, is how to define the advection velocity, and a number of different
definitions are in widespread use. Zaman & Hussain (1981) found that a
good choice was the “structure passage velocity”, i.e. the velocity of the
structure centre. A difficulty with this type of definition is that it requires
some structure identification procedure. For this reason, most definitions use
the space-time correlation coefficients, but there are several different ways



of defining the advection velocity from space-time correlation coefficients,
and since this issue is of great importance to us we will devote the next
subsection to it.

In section 2, we define mathematically the concepts to be used in the
subsequent sections and we use these concepts to state some of the results
that are be established later. In section 3 the case when U;0U;/0z; is a linear
function in space is analysed. For most of this analysis it is assumed that
the acceleration terms of the Navier—Stokes equations (pressure, Reynolds
stresses and viscosity) are negligible, but towards the end of the section,
the stability of the analysis to perturbations linear in time and space is
investigated. In section 4 it is shown that the picture is changed significantly
if U;0U;/0x; is a non-linear function in space.

1.1 On various definitions of advection velocity

Advection velocities defined from space-time correlation coefficients are used
widely, but can be defined in at least three different ways, as shown in Fig.
1. Suppose that the direction of the spatial separation is fixed. For a given
spatial separation Az there is a temporal separation 7,, which maximises
the value of the correlation coefficient, and it is possible to define the ad-
vection velocity uci = Azy/7,. Alternatively, we can follow Wills (1964)
and seek the spatial displacement Ax,, which maximises the correlation co-
efficient for a given temporal delay 77 and define the advection velocity as
Uz = Az, /Tp. An alternative and more practical definition of this advec-
tion velocity was given by Fisher & Davies (1964) who realised that Az, was
given by the point where the envelope of the temporal correlation coefficients
curves for all fixed spatial separations touched the temporal correlation co-
efficient curve for a given spatial separation (see Fig. 2). The equivalence is
clear, since for a fixed temporal separation the envelope is nothing but the
maximum value obtained when varying the spatial separation. From Fig. 1
it is seen that u.; > uc. In fact, an interesting estimate due to Comte-Bellot
& Corrsin (1971) suggests that for homogeneous, isotropic turbulence
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where Wlp is the rms of the fluctuating velocity in the direction of Az
and U is the mean velocity, which is assumed to be in the same direction. If
this formula is valid the difference between the various definitions of the ad-
vection velocity can be expected to be small unless the turbulence intensity
is large. For the near wall domain of a channel, the data in Wilhelm et al.
(1998) shows that u.o agrees with a definition based on tracing high-shear
layer structures, which indicates that a definition based on the space-time
correlation coefficient can be consistent with the suggestions of Zaman &
Hussain (1981).
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Figure 1: The solid curves show typical isocontours of the space-time correlation
coefficient. Az is the spatial separation in a certain direction, and 7 is the temporal
separation. The dash-dotted lines correspond to the three different definitions of
advection velocity.

Figure 2: Space-time correlation coefficient curves p(xs,7), for three different
spatial separations along one direction. The dot-dashed curve shows the envelope
of the curves for all spatial separations. Consequently, 7; is the temporal separation
then x4 is the spatial separation along the chosen direction that maximises the
space-time correlation coefficient. Analogous properties hold for ., and z,3.



Another possible definition of an advection velocity from space-time cor-
relation coefficients was suggested by Goldschmidt et al. (1981) who chose
as advection velocity the quotient u.3 = z/7 such that Op(z,7) /0T =
—0p (z,7) /0z, which is well-defined if the isocontours of the space-rime
correlation coefficients ressemble those in Fig. 1. The reason for this choice
was to relate temporal and spatial derivatives just like in Taylor’s hypoth-
esis. An issue, which has not attracted much attention in the literature, is
that all advection velocities defined thus far only contain the velocity com-
ponent parallel with the fixed direction of the point separation. One of the
conclusions that can be drawn from the measurements in Favre et al. (1957,
1958) is that in many complicated flows, such as boundary layers and jets,
there is no a priori reason to assume that the advection velocity will be in
any one particular direction. To remedy this possible shortcoming, the def-
inition of uc can readily be modified to uce = Axy/ Tf, where Axp, is the
spatial separation which maximises the space-time correlation coefficient for
the temporal separation 7, taking all three dimensions into account. On the
other hand, the situation for u.; and w.3 is more complicated. For u.;, the
problem is that there is likely to be many points where 0p (z,7) /07 = 0, and
for u.3 it is difficult to make a geometrically meaningful definition consider-
ing the vast number of possible shapes of the four-dimensional isocontours.
For this reason u.o will be the definition primarily used in this paper, and
unless otherwise stated this definition will be used henceforth.

It must be emphasised that in general the advection velocity depends on
the size of the separation in time or space, or equivalently it can be seen to
depend on the frequency (Fisher & Davies, 1964; Lumley, 1965). The effect
is most pronounced for shear flows though it has also been observed for the
high-frequencies in uniform flows (Cenedese et al., 1991). The dependence
of the advection velocity for shear flows on the size of the separation in time
or space is not surprising, since the advection velocity, for all the definitions
discussed, is really an average of the advection velocities at all points along
a suitable path linking the two points at which the correlation coefficient
is taken. For the near-wall region of a boundary-layer where the outgoing
motion is more correlated than the ingoing, it can be expected that the
advection velocity increases with the point separation, since the structures
move into regions with increasing mean velocity. For u.o and u.3, but not
for u.1, this picture is consistent with the measurements in Favre et al.
(1967). Noteworthy is that both Michelet et al. (1997) and Pinton & Labbé
(1994) found that good agreement may be obtained for Taylor’s hypothesis
if the average velocity over the paths is chosen as the advection velocity.
Consequently, it seems that when discussing the advection velocity at a point
P the most relevant quantity is the advection velocity for an infinitesimal
separation in time or in space.

Advection velocities has long been considered as an average of the advec-
tion velocities over trajectories. For example, Grant (1958) suggested that



the line of maximum correlation coefficient in time and space is “something
like and average streamline for particles within jets”. A priori it is not clear
what average to take though, since there may be a weight making certain
trajectories more important than others. One interesting suggestion was
given by Sternberg (1962, 1967) who assumed that vorticity is advected by
the mean velocity and based on this he concluded that the advection veloc-
ity of a velocity structure is given by an average of the advection velocities
of the vorticity generating it. This theory is able to give a qualitative ex-
planation of the advection velocity distributions in the near-wall regions in
a boundary-layer or a channel, but the effect on more general flows has not
been calculated. In fact, the question of how to use say the Navier—Stokes
equations to predict the effect of mean shear on the advection velocity has
been largely ignored, as most research effort in the field seems to have been
focused on the question of how to define the advection velocity and on the
relationship between the various definitions. In particular, no explanation
has been given as to why the advection velocity appear to coincide with the
local mean velocity in case of homogeneous shear flow and in the core region
of channel flow, but not for other shear flows.

In this paper we will formulate sufficient conditions which ensure that
the advection velocity u.o, as the separation approaches zero, almost cer-
tainly® coincides with the local mean velocity (or equivalently that for a
fixed temporal separation the spatial displacement of maximum space-time
correlation coefficient Ax,, coincides with the location of the trajectory of
the mean flow at time 7.)

2 Theoretical preliminaries

We start from the instantaneous Navier—Stokes equations
ou; __0u; 1 0p 0%u;

+ u; = —— 1
ot 7 0z p Ox; E)w? ’
where p is the pressure, p the density and u; denotes the velocity in the z;
direction of a cartesian co-ordinate system. Furthermore, it is assumed that
the velocity field is solenoidal, i.e. that it satisfies the continuity equation:
ou;

—=0. 3

oz, 3)
In addition, assume that there exists a stationary, ergodic #, mean flow.
(The ergodicity need not be imposed in all arguments below.) Furthermore,

(2)

3The “almost certainly” refers to the fact that we will only prove that under certain
condition Ax,, is a local maximum of the space-time correlation coefficient for the temporal
separation 7.

“defined to mean that temporal averages coincide with ensemble ones. In this paper
we assume that there exists a probability measure over the ensemble of all possible flow
states. For a more detailed discussion of this issue see e.g. (Frisch, 1995)



we will without additional comments assume that all moments used exist
and that the correlations and the correlation coefficients are C? functions of
space and time.

Perform a Reynolds decomposition of the velocity and pressure fields

U (X,t) = U (X) +u; (X,t) (4)
p(xt) = P(x)+p(x1t) (5)

into mean and fluctuating parts. It is evident that the continuity equation
holds for each of the components U; and u;. In addition, the Navier—Stokes
equations can be split into a mean and fluctuating part. Here, we will only
be concerned with the latter:

Ou; Ou; Ou;  0U; Ou; 1 0p 0%u;

E‘FUJ@—FUJ%—F%UJ—U]%—;% VW?, (6)
where the overbar denotes an ensemble average. A central part of Taylor’s
hypothesis is that the advective terms in the Navier-Stokes equations dom-
inate the dynamics on the scales studied. Hence, the terms on the right
hand side: the Reynolds stresses, the pressure gradients and the viscous
terms must be comparatively small. In the core region of channel flow the
numerical calculations presented in Piomelli et al. (1989) supports this as-
sumption. In case of high Reynolds number flows with uniform mean flow,
estimates have been made by Lin (1953); Heskestad (1965) which show that
the acceleration terms are comparatively small in a mean sense, though for
the analysis of Taylor’s hypothesis in these and most other studies, including
the present one, to be strictly valid they must be uniformly small in time,
space and ensemble. This condition is not likely to be met in real flows,
and therefore we will investigate the sensitivity of our results to perturba-
tions, which can be thought of as non-negligible values of one or several
acceleration terms. However, for most of the article we will assume that the
acceleration terms indeed are negligible, and therefore we will analyse the
properties of the system of equations

ou; _ _ ou; oU;
g P Wit 5ot g

UjZO. (7)

The system of equations (7) is hyperbolic, and such systems are com-
monly analysed by the method of characteristics. A characteristic is noth-
ing but a particle trajectory, and the method of characteristics is thus La-
grangian particle dynamics. Hence if we let v (¢|xo,%0) and X (¢|x0,to) de-
note the fluctuating velocity and the coordinate at time ¢ of a liquid particle,
which was at x¢ at time ¢y, we have that (7) is equivalent to the equations
(Note that both v and X depend on u (xg,t), but we do not indicate this



when we do not use it, in order to simplify the notation somewhat.)

dX;

= Ui(X(txo,t0)) +vi (tlxo,t0) (8)
dv; ou;
W g, (X(xoto))v; (txo, ) ©)

There is a technical difficulty with the method of characteristics that
calls for a comment. There is a possibility that two characteristics cross
which requires that the velocity at that point attains two different values,
which is clearly unphysical. For Burger’s equation (the 1-D version of (7))
this problem is typically solved by adding viscosity to the problem. It is
very likely that adding viscosity will remove this difficulty in the present
case as well, and thus when this difficulty arises, viscosity, and hence the
acceleration terms in general cannot be negligible, in which case our model
is inapplicable. We will henceforth ignore this difficulty, by saying that we
assume that the velocity field is uniquely extendible in the space-time region
under consideration (except on sets of probability zero in ensemble).

We may gain some insight into the system of equations (8)-(9) just by
eliminating v (¢|xg, t9) from the system:

’X; oU; dX; dv;
= X —L 4 1

= X —1 _ (X ; 11
G (X 110, 10)) G = 58 (X (txa,10)) v (Hxo,t0) (11

oU;
= 5, (X(txo, %)) Uj (X (t]x0, t0)) - (12)

Zj

This system has the initial conditions
dX

X (tolxo0,t0) = %0, —- (to[x0,%0) = U (x0) + uo , (13)

dt

where we have used ug to denote u (xg, ).

The theory of systems of ordinary differential equations tells us that the
properties of (12) are far more simple if g—gj (X (t|x0,0)) U;j (X (t|x0,10)) is
a linear function of X (¢|xg,?p) than in the general case. This distinction is
apparently new and it separates flow cases for which linearity holds, which
include flow with uniform mean flow, the homogeneous shear flow and chan-
nel flow, from jets, wakes and boundary layers, which are examples of flows
for which the right hand side of (12) is a non-linear function of X (¢|xg, to)-
Hence, linearity of this quantity separates rather accurately flows for which
lines of maximum space-time correlation coefficients coincide with the mean
streamlines and flows with more complicated behaviour. The only excep-
tion from this classification known to the author is the near-wall region of
channel flow where the advection velocity is distinct from the local mean



velocity, yet the right hand side of (12) vanishes. However, one must recall
that we have assumed acceleration terms to be negligible, which is clearly
not the case in the near-wall region of channel flow.

In the linear case we can perform a much more detailed mathematical
analysis of our equations than in the general case, and for that reason we
will devote the next section to the study of the linear case, and in section 4
we will discuss some properties of non-linear flows. Throughout the article
we will when discussing linear (non-linear) flows without any additional
modifiers refer to flows such that the acceleration terms are negligible and
the right-hand side in (12) is linear (non-linear).

One striking difference between the linear and the non-linear case con-
cerns the motion of the centroid of the ensemble of trajectories as the tem-
poral separation increases, i.e. the properties of X (¢|xg,%p). In the next
section we will see that in the linear case X (¢|xq,%p) coincides with the
mean flow trajectory Xm (t|xg,%9), which is given by the solution to (12)-
(13) with ug = 0. By contrast, these quantities are normally not identical
in the non-linear case as will be seen in section 4. This property, that
the operations of taking average and propagating along trajectories do not
commute, makes it unlikely that the locus of the space-time correlation co-
efficient maxima, which contain information carried by several trajectories,
should coincide with the mean streamlines in the non-linear case.

For the linear case, however, the situation is more hopeful since, as will
be seen below in Section 3.1,

AX (t|X0,UQ,t0) = X(t|X0,t0) —X(t|0,t0) (14)

T
is linear with respect to the vector [xoTuoT] , i.e. there are matrices A

and B which are functions of ¢ only, such that
AX (t[xo,u0,%0) = A(t) xo” + B (t)uo” . (15)

We will now give sufficient conditions which imply that the mean streamlines
and the locus of the space-time correlation coefficient maxima coincide for
uniform flow. To this end let us make the following definition

Definition 1 The probability distribution function of the simultaneous oc-
currence of uy at (0,t) and of ua at (x,t), denoted by P (uy (0,t) ,u2 (x,1)),
is said to have parity symmetry around the origin if

P (uy(0,t),u2 (x,t)) = P(—u1 (0,t), —uz2 (—x,1)) . (16)

Clearly, parity symmetry can be defined around any point. A typical case
where parity symmetry does not hold is helical turbulence (Moffatt & Tsi-
nober, 1992). In most flows with uniform mean velocity it seems unlikely
that the turbulence would be helical, but for example in the homogeneous
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shear flow case in Champagne et al. (1970); Harris et al. (1977) the situation
is less clear.
We are now ready to state the following theorem

Theorem 1 Suppose that AX (t|xop, uo,to) is linear with respect to the vec-

T
tor [xoTuoT] and that v (t|xp,uo,to) is independent of xo and that its

dependence with respect to ug is linear. In addition, suppose that the fluc-
tuating velocity field is stationary, homogeneous and uniquely extendible for
t <t < ty. Furthermore, suppose that the probability distribution P has
parity symmetry around xg for t < t < t1, then for t <t < t1, and any
i,j, the space-time correlation coefficient p;; (x,t) has antipodal symmetry
around X (t|xo,to), i.e. that for any vector h

pij (X (o, o) + 1) = pij (X (o, o) — h,1) (17)

Remark 1: A consequence of the theorem is that unless X (¢|xo, to)
is the maximum of the space-time correlation coefficient functions p;; for a
given temporal separation, the maximum is attained at at least two different
points.

Remark 2: The conditions on AX (t|xg, ug, o) are satisfied for all lin-
ear flows for which the acceleration terms can be neglected. The conditions
on v (t|xg, up, to) are met for homogeneous shear flows where the accelera-
tion terms can be neglected, but not for other linear flows such as channel
flow.

Remark 3: Since the turbulence is assumed to be homogeneous the
theorem applies both to correlations R;; and correlation coefficients p;;.

Theorem 1 excludes some possibilities, but we would like to establish
that X (¢|xo, %) is a local maximum of the space-time correlation coeffi-
cient with temporal separation ¢ — ty. If the maximum is, in fact, a global
maximum, such a result would, by virtue of the coincidence of X (|xg, %)
and X, (t|xg,to) for linear flows, shown in the next section, imply that the
advection velocity defined using correlation coefficients coincides with the
local mean velocity. However, to achieve this goal, we must study more de-
tailed concepts. Suppose that we know the value of the velocity component
u; (X0,t) = w40, then what is the expectation value (over the ensemble) of
the velocity component u; (x,t) ? This quantity will be denoted by

u; (X, t|x0, w0, t). (18)

We know that it is u;y if x = x¢ and that it approaches zero as |x — xg|
exceeds the integral scale. A quantity which will be of great importance to
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us is

Guo i (X — Xo) = u; (X, t[x0, uip,t) P (uo) , (19)
where P (ug) denotes the probability of having the velocity vector ug at the
point xg. Here, by virtue of the homogeneity, this probability is independent
of xg and gy, is a function of x — x¢ only.

Definition 2 We say that gu,; s predominantly concave if

82
/R 5 Uz0 Wguo’i

where there is no summation over i, 1 is any unit vector and c is a constant.

dug < 0, (20)

X=Xg-+cug

Before we treat the question of when we can expect gy, ,; to be predominantly
concave, we will discuss its relevance to the topic at hand. In fact, we are now
ready to state a theorem, which ensures that the trajectory along the mean
streamlines is a local maximum of the space-time correlation coefficient.

Theorem 2 Suppose that all the conditions in Theorem 1 hold and that in
addition v (t|xo, uo, to) is constant and equal to ug, and that AX (t|x¢, v, to)
satisfies (15) with A non-singular for all time, and B = f (t) Id, where f is
a scalar function of time and Id is the identity matriz. Suppose furthermore
that guy,i is predominantly concave, then X (t|xo,%0) is a local mazimum of
the space-time correlation coefficient functions p;; (no summation over i)
for a given temporal separation.

Remark 1: The conditions on AX (¢|xg, ug, ) are met for flows with
uniform mean flow, for channel flow as well as for the homogeneous shear
flow studied by Champagne et al. (1970); Harris et al. (1977) (but not for
general linear flow) provided that the acceleration terms can be neglected.
The conditions for v (¢|xg, ug, ty) are met for flows with uniform mean flow
in case the acceleration terms are negligible. After the proof of the theorem
in Subsection 3.3 we will discuss possible extensions to channel flow and
to the homogeneous shear flow studied by Champagne et al. (1970); Harris
et al. (1977).

Remark 2: Suppose we retain all the conditions in the theorem, except
that we assume that there exists a unit vector 1 for which the left hand side
in (20) is positive then it can be seen from the proof of the theorem that
X (t|x0,t0) is not a local maximum of the space-time correlation coefficient
functions p;;. (If there exists a unit vector 1 for which the left hand side in
(20) is zero the situation is unresolved.) This shows the crucial importance
of the concept of predominant concavity to the problem at hand.

Remark 3: By virtue of the assumed homogeneity the theorem holds
equally well for correlations as for correlation coefficients.

We will now conclude this section with a subsection analysing the prop-
erty of predominant concavity.
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2.1 Analysis of the concept of predominant concavity

In general, it appears to be a difficult problem to determine whether a certain
flow has the property of gy, being predominantly concave. Accordingly, we
will only show that this almost certainly is the case if certain conditions ap-
ply. Subsequently, we will discuss the possible dangers if these conditions are
not satisfied. Note that throughout this section the summation convention
does not apply for any 7 indices.

Assumption 1: Let us assume that u; (x, t|xo, uio, t) /u;o is independent
of the value of u;p, and thus given by some function v (x — x¢) of space. In
that case we have that

o0

Rii(x—x¢) = / wiou; (X, t|x0, wio, t) P (ui0) duso (21)
— 00

— WBv(x—xo) | (22

where R;; (x) is the spatial autocorrelation of the u; velocity with separation
vector x — xg. Consequently,

u; (X, [0, ui0, 1) = %ZCXO)- (23)
Wip

With this assumption, the integral in (20) becomes

2 2
uypy 0
/R3 _’U,Z?O 83:]83% 14 (X XO)

ljlkP (uo) duo, (24)

X—Xg=cug

where the /;’s are components of 1. Let us change the integration variable
to y = cug, for which the integral becomes

L/ ZLQR..( )15l p(z)d (25)
|C|3u—z20 R3 yz 8y]8yk (A y ] k c y
1 -
= —37—2/ f(y) h(y)dy (26)
] uio /R?
where
s 0°
= —iy;i(—1)" ——=Rii (y) Il 27
fy) iy; (—1) By, 0yr i (¥) jlk (27)
hy) = -inp(2) . (29)
If we use Plancherel’s (or Parseval’s) formula the integral in (20) becomes
1 A <
S / F (k) b (k) dk, (29)
|| ufy /R
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where f and h are the Fourier transforms of f and h respectively, which are
given by

F09 = o (0 )? Fi (19) (30)
h(k) = C%P(ck) (31)

2

Here I/%; is the three-dimensional spectrum of the u; velocity component,
and P is the characteristic functional of the velocity. Our next assumption
restricts the choice of these functions.

Assumption 2: Assume that ﬁ; and P are isotropic, i.e. that they
depend only on |k|, and assume also that they are real, bounded, positive and
decreasing as functions of |k|. We furthermore assume that the logarithm
of RZZ is a concave function of In|k| and that Ru decays exponentially for
sufficiently large values of |k|.

If we let i denote the unit vector in the z;-direction, and use this as-
sumption it can be seen that

fe) = %(k-lfﬁ;(|k|)+2(k-1)(1-i)f?;(lkl) (32)
- _ ch i
il = g (k) (33)

where a prime denotes differentiation. Consequently,

Fha = % (Ik)) B (jekd])
(k-1)(1-i) (i-k)

+ K Rii ([kl) P’ (|k]) (34)

With assumption 2 it is clear that the first term on the right hand side of
this expression is positive. The sign of the second term is typically negative,
but can vary with the choice of 1 and i. However, if we combine this with
(29) we find that it is solely the second term which threatens the validity
of (20). Hence, it is readily seen that the critical case is if 1 and i coincide,
which we will assume henceforth.

Let us now introduce a polar coordinate system with the z-axis directed
along i. Hence, if (34) is integrated over the entire space it becomes

[ FHhac — 27r02/ [|k|1’z;'(\k\)/ cos* 0 sin 00
0 0
— ™ ~/
+ 2R,-,-(|k|)/ cos293in0d9] |k|3P (ck|) d[k| (35)

4
= Swe [T WS R () + T R (i)
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x|k P (|ckl) k| (36)

= e [T By (k) KPP (lek]) d [k

—5wc0[|| i (D)) K% P (jek) i (37)
To satisfy predominant concavity we must have that this integral is positive
due to (29).

According to assumption 2 we have that |k|'%/3 R; (|k|) is zero at zero
as well as at infinity. We thus have that

7 [ R ()] i =o. (39)

In addition, we have that [[k|'”/* R ([k|)| < 0 if and only if [k|""/* Ry (Jk|)

decays. Due to the assumed concavity of the logarithm of R;; (k|) as a
function of In|k|, we find that there exists a |k|,,,;, such that

(K" R (kD] > 0, if |k| < K], (39)
(K" Rii (kD] <0, if [k| > K| - (40)

We may estimate the size of |k|,,, by noting that in the inertial range of
a turbulent flow the three-dimensional autocorrelation spectrum decays as
\k\_n/?’ (see e.g. (Frisch, 1995)), which shows that

1

|k|crit ~ Z

(41)
where £ denotes the integral scale. Since P’ (|ck|) < 0, we have thus found
that predomlnant concavity holds if the average of the absolute value of

|k|2/3 P (|ck|), welghted with the size of [|k|10/3 R;; (|k|)] is less for |k| < +
than for [k| > £

Assumption 3: Suppose that P is Gaussian.

With this assumption we find that the absolute value of [k|*3 P’ (|ck|)

——1/2
attains its maximum when |k| = \/g —L where lul> " is the rms value
2
clu]

of the size of the fluctuating velocity. Hence we can be almost certain that
predominant concavity holds whenever

5 L
c K \/;W (42)
u]

Below we will see that ¢ is typically the time it takes for a particle trav-
elling with the mean flow to travel between the two points which the cor-
relation is taken at. This indicates that unless the separation between the
points is comparable to the integral scale divided by the turbulent intensity
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(|u\21/2 J/U) predominant concavity should be a consequence of the three
assumptions above. However, at such a large separation, any residual cor-
relation would clearly be almost impossible to measure.

Before we conclude this section we should discuss briefly the possible
effects of violations of the three assumptions above. Let us begin with
easiest case: Assumption 3. If the characteristic functional is not Gaussian,
but satisfies the requirements in Assumption 2, then we expect the results

above to hold, except that the, fairly irrelevant, coefficient \/g changes.

If assumption 1 is violated it is very difficult to analyse predominant
concavity. However, it is reasonable to believe that the correlation length
for a large value of u;g is shorter than that for a small value of u;y. This is
most likely going to reduce the impact of the integral scale effects, and thus
the situation will be improved rather than made worse.

The most critical assumption appears to be assumption 2. The assump-
tions that the logarithm of Ry is concave function of In|k| and that Ry
decays exponentially for sufficiently large separations are valid for most tur-
bulent flows. The assumptions on P are also met for characteristic func-
tionals of near Gaussian behaviour. The problem occurs for I/i’; for small
values of |k| since the spectrum should be zero at zero (due to the absence
of energy at the zero wave number). Hence, R;; must be increasing for small
values of |k|. This means that for such small values of |k| the first term in
(34) is negative. This makes it less obvious that 1 = i, yet this still seems
very likely. If this remains so, there should be no other difficulties with this
deviation from the assumption. The remaining assumption is the isotropy
of P and R;;, and if this assumption fails severely it may well jeopardize
predominant concavity. The exact sensitivity to anlsotropy is in general dif-
ficult to estimate, but if the angular dependence of P and RZZ are known
the procedure presented above can perhaps be used to determine whether
predominant concavity holds.

3 Flows with uniform mean flow, channel flow and
homogeneous shear flow

In this section we will study the case when % (X (t|x0,t0)) U;j (X (t|x0,t0))
is a linear function of X (t|xg, tp). In the ﬁrst subsection we will solve (7), i.e.
the Navier—Stokes equations for the velocity fluctuations without the accel-
eration terms. Some of the implications of this analysis for the application
of Taylor’s hypothesis will be described briefly in the following subsection.
The third subsection will largely be devoted to the proofs of Theorems 1
and 2, but a rough estimate of the size of the moving-frame correlation co-
efficient will also be presented. Finally we will study the sensitivity of the
model to linear disturbances in space and time.
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3.1 Calculation of the trajectories and the velocity fluctu-
ations along these when the acceleration terms are ne-
glected

First we will consider the case when ggj (X (t|x0,t0)) U;j (X (t|x0,tp)) van-
ishes identically, which is the case for channel flow and in case of uniform
mean flow, provided that the acceleration terms can be neglected. For these

flows it is evident that
X (to,%0,t) = x0 + (U (x0) + uo) (t —to) - (43)

Knowledge of the mean velocity profile will hence enable us to calculate v
by solving the following system of ODEs
dvi _ 0
dt N 8£Ej

(%0 + (U (x0) + uo) (¢ — t0)) vj (|0, to) - (44)

Due to the time dependent coefficients there will, in general, be no solution
on closed form. However, in the case of uniform mean flow we trivially find
that v () = up, and for channel flow the same formula holds for the v, and
vg components, whereas the v; component is given by

t QU
v1 (t) = up1 — ( 3—1 (zo2 + uo2 (t —to)) dt) U2 - (45)
tg 02

The special case of constant U; was considered by Hill (1996) in a similar
fashion. However, Hill considered an advection velocity separate from both
the mean and the instantaneous velocity, which was assumed to be constant
both in space and in time for each advection realisation and thus it was
only allowed to vary in an ensemble sense. On the other hand, for the
turbulent quantities that were advected no such restrictions applied. This
approach seems natural if the turbulent quantity is a passive scalar, but
if it is a velocity it seems somewhat artificial, and since the success of the
approach relies upon the negligibility of the right hand side of (6) it is
perhaps more natural to assume that this right hand side is zero and then the
need to separate between the advection velocity and the turbulent quantities
vanishes.

We will now extend the previous results to the case when

oU;
ailt 5

(X (t|x0,t0)) U;j (X (t|x0,t0)) = A X (t|x0,t0) + B;-

In this case we may solve (12) by rewriting it as a sixth order system of
first order linear ordinary differential equations with constant coefficients,
which can be solved readily. This technique will be used in subsection 3.4.
However, for the most typical of linear cases, homogeneous shear flow, there
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is a more direct approach. In this case we assume that U; = U + Uj;z;.
Hence, the system (8)-(9) becomes

dX;
dtz = Ujo + Ui X (tx0, to) + v; (txo0,t0) (46)
dv;
o = Ui (txo,to) - (47)

However, (47) can be solved using standard methods (see e.g. (Coddington
& Levinson, 1955))

v; (t[x0,%0) = exp (—=Uy; (t — to))ujo - (48)

Since we now know the behaviour of v along a trajectory we can use this
information to calculate these trajectories. Indeed, standard ODE theory
(see e.g. (Coddington & Levinson, 1955)) tells us that the solution to (46)
is given by

t
X (tixo,to) = o+ lexp Uy —to =)V
0
+ exp Ui; ¢ — to — 27)ujo) d7. (49)
To simplify this expression, let us assume that the 3 x 3 matrix U;; is
invertible, and let us denote the inverse by U7, i.e. we have that U;;U? k=
U"Ujy, = 6. Hence (49) becomes
X; (t[x0,t0) = xo+ [expUy; (t — t0)) — 6i5] U*Ugo
1 .
+ E[GXP (Ui (t — to)) —exp(— Uy (t — t0))] U7 u (to, 0) . (50)
We should now briefly discuss the case when Uj; is not invertible, in which
case (50) must be modified slightly. We will demonstrate this modification

under the condition that U;; is diagonisable. In this case there is an invertible
tensor E;; and numbers );, at least one of which is zero, such that

Uij = Eig\i0 EY | (51)
with summation on k£ even though it occurs three times. This implies that
the integral causing difficulties becomes

t t :
/ exp (—Uj;7)dr = Ezk/ exp (—Ap7)dT EX (52)
to to

This last integral is

1
t —(1—exp (=X (t—t0))), if \g £ 0
[(exp(rersin = { 30ROt 32
to t — to, if \p =0
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Similar techniques should work in the non-diagonisable case as well, however,
if U;; is nilpotent it may be easier to express the exponential function as a
polynomial and perform the integration directly.

To summarize this analysis let us note that two of the main features
of the results obtained in the linear case, when the acceleration terms are
neglected, are that Lagrangian velocity the v for all times is a linear function
of its initial value ug and independent of x¢ and that the difference between
a trajectory passing through xg at the time ¢y and the mean flow trajectory
(the solution with ug = 0) passing through the origin at the time #; is a

linear function of the vector [XOTUOT]T. This shows that the conditions of
Theorem 1 are satisfied in this case. If U; is constant in space, we have found
that the Lagrangian velocity is constant and that the difference between a
trajectory passing through xg at the time ¢y and the mean flow trajectory
(the solution with ug = 0) passing through the same point at that time is
just the time multiplied by ug, which shows that in this case the conditions
of Theorem 2 are satisfied.

3.2 Implications for the use of Taylor’s hypothesis

Taylor’s frozen turbulence hypothesis (Taylor, 1938) is the assumption that
a turbulent velocity field changes relatively slowly as it is advected past a
given point. Using this hypothesis it is possible to interpret the temporal
variation of the velocity at a point as the spatial variation of the velocity at a
fixed time along some curve. Consequently, typical applications of Taylor’s
hypothesis are for the measurement of structure functions, correlations and
spectra. If we limit ourselves to linear flows where the acceleration terms
are of little significance, the hypothesis seems to work fairly well. There is,
of course, an error due to the hypothesis, and this error can be divided into
two different parts. Some of it is due to variation of the velocity along a
trajectory, and the rest of the error stems from the fact that the advection
velocity varies and hence all trajectories do not coincide. The error of the
second kind has been considered by several authors (see e.g. (Lumley, 1965;
Wyngaard & Clifford, 1977; Hill, 1996)), and in the two first of these articles
correction formulae for the calculation of the spectrum were proposed. In
Hill (1996) the two methods were compared and extended to give a correction
for a wide range of tensors. The error due to the variation of the velocity
along a trajectory has, on the other hand, received less attention. Indeed, as
we have already seen the velocity along a trajectory is constant if the mean
flow is constant and the acceleration terms are neglected. Whereas we have
been unable to weaken the second requirement, our calculations above allow
us to take into account the variation of the velocity along a trajectory due
to mean shear.

Even though, as we shall see in the next section, our methods cannot
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be extended easily to cover more general mean velocity profiles, we can, by
approximating the general mean velocity profile with a locally linear rather
than a locally constant profile, expect significantly improved accuracy for
Taylor’s hypothesis applied to general shear flow, when we incorporate (48)
and (50) into our formulae for the derivation of spatial correlations from
temporal ones.

Traditionally, the Lin (1953) criterion

10U

Ul > v | oy (54)
has been used to determine for which wavenumbers x we can expect the
effects of mean velocity gradient to be negligible. However, if we can take
into account the local value of the mean velocity gradient it seems reason-
able that this criterion should be replaced by a criterion where the mean
velocity gradient is replaced by the difference between the local mean ve-
locity gradient at a given point along a trajectory and that at the point of
measurement. This suggests that Lin’s criterion can be relaxed to

U
0y; 0y

1
Ul > =

= , (55)

which in most situations is a considerable relaxation.

To illustrate how one could use (48) and (50) when invoking Taylor’s
hypothesis we will briefly discuss one way of estimating the spatial correla-
tion between two points along a streamline of the mean flow, from the time
series of all three velocity components obtained at a single point, which we
assume to be the origin. What we would like to calculate is

R (X, (20,8 — 7)) = u; (0,%) u;j (X (¢|0, —7) , 1), (56)

where 7 is the temporal separation of the two points along a streamline of
the mean flow and ug is the instantaneous velocity at the origin at time ¢t —7.
However, the only instantaneous information we have access to is wu; (0,t)
for all three values of i (in addition it is assumed that we have access to
sufficient information about the mean flow to enable us to calculate the
local mean velocity gradients).

If we neglect the acceleration terms and assume that the mean velocity
profile is close to linear, our previous analysis shows that

’u,j(X(t|0,t—7'),t):ij(T)uk(O,t—T) ) (57)

where F;; is an invertible matrix valued function of the temporal separa-
tion given in (48). In this flow case we also have that X,, (¢|0,t —71) =
X (t|0,t — 7), and therefore we have at each time access to the value of u;
at some point X (¢|0,t — 7) separated from the point where we would like to
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know u; by AX (¢/0,ug,%). The essential approximation used in Taylor’s
hypothesis is to let the unknown value of u; (X, (¢|0,t — 7),t) be approx-
imated by the value of u; (X (¢/0,¢ — 7),t), which we have access to. Of
course, we may use Taylor’s formula to describe the difference between the
measured correlation and the real correlation as

ARU (Xm (t|0,t - T)) ==

= 4 (0,1) —g“j (X (|0, — 7)) AX} (4]0, ug, t — 7) +
Tk
+ 1 (0, 1) u (€ (), 1) AX)(t]0, uo, t—7) A Xy (40, ug, t—7),(58)
2”2 ; a.’L'ka.Tl ; k , uo, T l , 10, T)s

where £ (t) is a point between X, (¢|0,t — 7) and X (¢|0,¢ — 7) at each time.
From (50) we have that

A Xy, ()0, u0,t0) = Gim (t — to) um (0,%0) (59)

where Gy, is a matrix valued function of the temporal separation, which is
O (t) for small t. We can hence express the first of the error terms in (58)
as

Oou;

Grm (7) Frﬁi (1) u; (0,1) 92,

(X (t]0,t —7) ,t) up (X (¢|0,t —7),t) . (60)

In the special case of uniform mean flow we have that G, (1) F,,} (1) is
only a linear function of 7 multiplied by the identity matrix, but for general
linear flow there are higher order terms in 7 with off diagonal components.
If we, however, assume that 7 is small enough to enable us to approximate
Gim (7) F.l by a function of time multiplied by the identity matrix the

expression becomes

f(7)u;(0,1) Ouj (X (t]0,t —7),t) ug (X (¢]0,t —7),¢) . (61)

oxy,

In this case, we may apply the continuity equation to find that this is

f (T) aixk (uz (O’t) Uj (X (t|07 t— T) ’t) Uk (X (t|07 t— T) ’t)) ’ (62)

where the derivative is applied to the point X (¢|0,¢ — 7). Now, if we consider
the average as an ensemble average and assume homogeneity we may replace
the derivative with one at the origin instead provided that we insert a minus
sign. Consequently, the term becomes

() Fy (7) Fi (7) 3—; (0,8)u (0,6 — )t (0,6 —7) . (63)
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It seems likely that a velocity gradient at a point will be essentially uncor-
related to the velocities at the same point but at a different time (this is
a slight variation of the assumption of the independence of the small and
the large scales used by Heskestad (1965) and others), in which case this
term will vanish. In any case, all the factors in this expression except for
the derivative is available to us, and estimating the derivative with Taylor’s
hypothesis should be much safer than estimating spatial correlations, and
therefore we could calculate the value of this expression from our measure-
ment data.

To summarize, we can say that if we have uniform flow with negligible
acceleration terms, which is homogeneous and for which the small and large
scales are essentially independent of each other then the first term in (58)
should vanish. For general linear flows satisfying all the other assumptions
we can perform a power series expansion in 7 of the term to find that for
small 7 it should be of order O (72). Hence we may conclude that if we use
the method outlined in this subsection the error due to Taylor’s hypothesis
for the spatial separation X,, (¢|0,7 — 7) along a mean streamline is of the
order of magnitude O (72) for small 7 for any linear flow. This error is one
order smaller than that expected from Lin’s criterion so, at least for linear
flows, our method seems to offer some improvement. Clearly, correction
formulae of the Lumley or the Wyngaard & Clifford type can be implemented
in the present case as well, to increase the accuracy of the measurement of
the spectrum even further.

3.3 On the properties of moving-frame correlation coeffi-
cients

The primary aim of this subsection is to prove Theorems 1 and 2. After the
proofs we will discuss possible extensions of the theorems.

In the previous two subsections the aim was to understand the variation
of the velocity along a trajectory and how this knowledge could be used to
improve the accuracy of Taylor’s hypothesis. Now consider the situation we
studied in the last subsection, i.e calculation of the correlation coefficient
between u; at the origin and u; at a point on the mean trajectory given
by X, (¢|0,t — 7), for some 7. In the case of a linear flow with negligible
acceleration terms, we found that what we had access to was the value of u;
in a cluster of points, the exact locations of which depend on the u;. Since
we had a linear flow with negligible acceleration terms the centroid of the
cluster was Xy, (¢£/0,t — 7). Our aim in the last subsection was to try to
extract some information about the desired correlation coefficient from the
data we had access to.

Suppose now that there were a point X such that u; (X,t) was more cor-
related with the velocity at our cluster of points than u; (X, (¢|0,t —7),t).
In this case our application of Taylor’s hypothesis would yield more infor-
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mation about the correlation coefficient between u; at the origin and u; at X
than that between u; at the origin and u; at X, (¢/0,¢ — 7). Of course, this
is the situation where an advection velocity different from the local mean
velocity is typically introduced. However, such an amendment to Taylor’s
hypothesis has not been justified with direct use of the Navier—Stokes equa-
tions. Fortunately, for linear flows with negligible acceleration terms, the
experimental and numerical evidence suggests that the advection velocity
and local mean velocities coincide. On the other hand, for non-linear flows
this does not seem to be the case. In the next section we will see that for
non-linear flows the centroid of the trajectories for some temporal separation
will no longer coincide with the position along the trajectory of the mean
flow for the same temporal separation. Clearly, the information exists along
the individual trajectories and hence it is more likely that the location of
the point where u; attains its maximum correlation coefficient with the u;s
in the cluster, is determined by the statistical properties of the individual
trajectories rather than by properties of the mean flow, which is not really
involved in the problem. Indeed, one is tempted to conjecture that the loca-
tion of the point where u; attains its maximum correlation coefficient with
the ujs in the cluster, is given by the centroid of the cluster for all flows
where the acceleration terms can be neglected, yet it should be stressed
that there is no need for the proper averaging process to be this simple. By
proving Theorems 1 and 2 we will obtain sufficient conditions for the validity
of this conjecture in the case of uniform mean flow.
Proof of Theorem 1
Since the turbulence is assumed to be stationary and homogeneous, we may,
for convenience of notation, choose t; = 0 and x¢ = 0.
To prove the theorem we will establish that for any h we have that

u; (0,0) uj (X (#0,0) +h, ) = u; (0,0) u; (X (#0,0) - h,¢) (64)

Since we assume that R;; (x,t) is a differentiable function, the relation (64)
implies that the gradient of R;; (x,t) vanishes in X (¢|0,0), which is hence
a stationary point for R;; (x,t). Because of homogeneity the same property
holds for p;; (x,1).

We have that

u; (0,0) u; (X (#0,0),1) =

o0 - @
_ /_wug/mugp(ug(o,()),ub (X(#[0,0),¢)) duldu ,  (65)

where the superscripts a¢ and b are used to identify the variables, and
P (uf (0,0),u’ (X (t|0,0),t)) denotes the probability distribution of the

simultaneous occurrence of u; at (0,0) and of u at (X (¢]0,0), t).
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Now let us introduce the notation q (h) = X (¢/0,0) + h, u; (q (h) ,t) =
u(q(h),t). Of course, in a given realisation uy depends on the position,
but when we use it as a stochastic variable we will suppress this dependence
when it does not matter, and only indicate it when it matters, ¢.e when we
discuss the probability density of it occurring.

By the unique extendability, and the assumptions on AX and v we have
that (see Fig. 3 for an illustrations of these quantities)

= C(t)ug (66)

t)
t = A (t) ug + B (t) h= XO (t, Ug, h) (67)

where A (t), B (t) and C (t) are matrix valued functions of t. Consequently,

X ()0, 0)

(0,0)

X (0lq (h),?) = Xo (¢, us,h)

v(0|q<h),3< I

Figure 3: An illustration of the trajectory quantities used in the proofs of Theorems
1 and 2. Filled circles illustrate positions at time ¢ and unfilled circles positions at
time 0. The solid line illustrates the motion of the centroid of the ensemble at time
t of the trajectories emanating from the origin at time 0. The dashed-dotted line
illustrates the trajectory backwards in time of a particle at position q (h) at time
t with velocity ug.

we have that
P(uf(0,0),us"(a (h), 1)) = P(uf(0,0),(C (t) ue’ ) (Xo (¢, us, b) ,0)) . (68)

From (67) we have that Xg (¢, —ut, —h) = —Xg (¢, ug, h) for any h and
u;. If we use this, (66) and the parity assumption we have that

P (uf (0,0),us’ (q(h),1)) = (69)
= P (uf(0,0),(C () u) (Xo (t,us,h),0)) (70)
= P (—uf(0,0),— (C(t)u’) (~Xo (£ us, ) ,0)) (71)
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= P (-u¢(0,0), (C () (-u)) (Ko (t,—u,—h),0))  (72)
= P (—uf(0,0),—u’ (a(~h),1)) (73)
Now consider,

u; (0,0) u; (q (h),t) —u; (0,0) u; (q(~h),t) = (74)
_ /_ “up [ e (2 (0,0), v’ (q (h) 1)) du’duf -

_ /_o:o uy /Rs ug'P (U? (0,0),u’ (g (—h) ,t)) dubdu? | (75)

if the inner integrations are performed, it is seen from the relation between
(69) and (73) and the simple fact that ufu} = (—uf) (—ug’-) that the outer
integral over uf > 0 for the first term in (75) equals the outer integral over
uf < 0 for the second term and vice versa. Hence (75) vanishes and the
condition (64) has been established. qed
Proof of Theorem 2

Once again, the turbulence is assumed to be stationary and homogeneous,
and thus we may choose ty = 0 and x¢g = 0. We must prove that for any h,
and for any sufficiently small § > 0 we have that

u; (0,0) u; (X (2]0,0) + 6h, 1) < u; (0,0)u; (X(2]0,0),£) . (76)

With q and u; defined as in proof of Theorem 1 we have, by assumption,
for all h and for any sufficiently small § > 0, (see Fig. 3 for an illustration
of these quantities)

v(0[(q(dh),t) = wuy (77)
X (0] (q(Sh),t)) = f(t)Tue+ G (t)dh=Xq(t,us,dh)  (78)

where f (t) is a scalar function of time, G (t) a matrix valued function of
time with non-zero eigenvalues and I the identity matrix. Consequently, we
have that

P (uf (0,0),u’ (a(dh) 1)) = P (uf (0,0), us’ (Xo (£ us,6h) ,0)) . (79)

Hence, in order to calculate the space-time correlation coefficients in (76)
we can equivalently calculate the single-time correlation coefficient of u; at
the origin and at a cluster of points for which the positions depend linearly
on uy. For the right hand side we have h = 0 and hence the cluster has
the centroid at the origin, whereas for the left-hand side when dh # 0 we
have that the centroid is located at G (¢) dh # 0 (G is assumed to be non-
singular).

In general, we have that the probability density of both a and b occur-
ing, P (a,b), is equal to the conditional probability density of a occuring
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provided that b has occured, P (a|b), multiplied by the probability density
of b occuring, P (b). If this notation for the probability densities is used,
and the notation introduced in (18) and (19) is recalled, then the discussion
in the previous paragraph implies that

u; (0,0) u; (X (¢[0,0),¢) =
_ /RS b, /oo ul P (uf (0,0), us’ (Xo (,u.’,0) ,0) ) dufdu®  (80)
—00
- /Rgugui(o,mxo(t,utb,0),ugi,o)P(ut”(Xo(t,ut”,o),o))dut”(&)

= /RS u%gutb,i (—XO (t,utb, 0)) dutb, (82)

where we have used the fact that the inner integral in (80) is the expectation
velocity of u; at the origin provided that it is known in Xg (¢, ut,0) at
the same time multiplied by the probability of having the velocity uy at
Xo (t, Uut, 0) .

Similarly, we find that

u; (0,0) w; (X (tlq (90),0), ¢) = /R iguns (~Xo (t,ut, b)) dugd. (83)

According to Theorem 1 we have that

Uy (03 O) Us (Wa t) =
— 5 (0.0 us (XTa R, 0).1) + s (0,0) ws (X (-00),0).1) )

(oo 38)) (Kot ) 59

where we have used the fact that X depends linearly on dh. A one-
dimensional Taylor expansion of g,,+ around —Xg (t, ug?, 0) along the di-
rection of —G (t) h shows that

u; (0,0) u; (X (tla (4h),0),¢) — u: (0,0) u; (X (2]0,0),t) =

82

_ i ; 2 2 3 3
= 3 /R i 5 G dued? |G (1) bf* + O (5 |G (1) b[®) (85)

x=—Xo(t,u,0)

where 1 is a unit vector in the direction of G (¢)h. For any fixed time ¢
we have that Xg (¢,ut,0) = kug for some k, and hence by Definition 2 we
have that the first term on the right hand side of (85) is strictly negative.
Furthermore, it is the term of lowest order in § and hence for sufficiently
small § > 0 we have that the right-hand side in (85) is strictly negative.
This establishes (76) and hence the theorem. qed
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From this proof we note that if u; (x,t|x0,ujo,t)P (ug,xo) is predom-
inantly concave then Theorem 2 would also hold for the cross-correlation
coefficients p;;. However, the Taylor stress u;u; is often negative and in that
case we would be more interested in when the space-time correlation coeffi-
cient function has a (negative) minimum, and in this case the theorem holds
if u; (x,t|x0,uj0,t)P (ug,%g) is predominantly convex (instead of < 0 use
> 0 in the definition). The major reason for not including these correlation
coefficients in the theorem is that it is less evident that the maximum of the
correlation coeflicient is obtained for zero separation, and if not, we cannot
expect them to be predominantly concave (convex) when the correlation
coefficient at zero separation is positive (negative).

For channel flow, Theorems 1 and 2 do not apply. All conditions on
X are satisfied, but the conditions on v are not. In fact, only v; fails to
meet the required criteria, and hence the theorems should apply for pse and
p33. For Theorem 1 the problem with pq; is that v (¢|x¢,0) does not depend
linearly us (xg,0) in this case. In fact, linearity is an unnecessarily strict
requirement, since all we require is, in fact, that v (¢|x¢,0) is an odd function
of u(xg,0), but for channel flow this relaxation does not help us. Indeed,
if Theorem 1 is to hold for the pi; correlation coefficient in channel flow,
the parity symmetry must be replaced by some other far more complicated
relation. For Theorem 2 the situation is worse since the very dependence of
v1 (t|x0,0) on uy (xg,0) violates the conditions.

The primary reason why we did not allow vy (¢|xo,t) to depend on
ug (xg,t) in Theorem 2 is best illustrated by what would happen in the
case of homogeneous shear flow considered by Champagne et al. (1970);
Harris et al. (1977). In this case we have that

U1 (t|X0, O) = U (Xo, O) + ?UQ (Xo, 0) t, (86)
{5

with 0U;/0zo > 0, and with this relation the only way that we can pursue
the argument in the proof of Theorem 2 easily is if we make the additional as-
sumption that u; (x,t|xo, ujo,t) P (ujo,Xo) is predominantly concave. How-
ever, ordinarily we must in this flow case have that u;u; is negative, and
even if u; (x,t|xo,uj0,t)P (up,Xp) is predominantly convex we cannot ex-
tend Theorem 2 without difficulty. Indeed, the dependence of u; (x,t) on
ug (X (0|x,%),0), which is growing linearly with ¢, will give a negative con-
tribution to p;; the relative importance of which (compared to the positive
contribution from the dependence of u; (X (0|x,¢),0)) will be growing lin-
early with time. Similarly, the overall concavity of the function that will
replace gy, in this case will be successively eroded by the convex contri-
bution from u; (x, t|xo, u;0,t)P (ng,Xg). Hence, whereas it is clear that this
violation of the conditions required for Theorem 2 has little impact on valid-
ity of the theorem for small separations, its implications for large separations
remain somewhat unclear. The same conclusion is largely valid in the more
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complicated cases, such as channel flow or general linear flow. There are,
however, other difficulties with the homogeneous shear flow considered by
Champagne et al. (1970); Harris et al. (1977), since it is not homogeneous
in the streamwise direction, and since its parity symmetry is quite question-
able. In fact, if Theorem 1 is to hold, which is consistent with all presented
data, then the departure from parity symmetry must cancel the effects of
inhomogeneity in some sense.

We will conclude this section by an estimate of the shape of the moving
frame correlation of a frame moving with the local mean velocity in case all
the assumptions in Theorem 2 are satisfied. This moving frame correlation

is given by u; (0,0) u; (X (¢0,0), t) which according to (82) is given by

/ uigu,i (—Xo (t,u,0)) du . (87)
R3

If we now, as a rough assumption, assume that the functional form of
u; (X, t|x0, w0, t) is independent of the value of u;y, (Assumption 1 in section
2.1) we find from (23) that

s (0,0) s (X(H0.0).¢) ~ [ "R (Xo (1,,0)) P(w)du  (88)

with no summation on ¢. Here we have used homogeneity to avoid having to
specify the point in which we are to have u. If we assume that P is Gaussian
we have that u2P (u) attains its maximum value at

ur,:lr:mz = (Ui,mam =4 2uz2’uj,mam = O’Uk,maa: = 0) 3 (89)

and as u_z2 decreases the distribution approaches a delta function multiplied
by u_f/ 2. If P is not Gaussian but still reasonably close to it, these properties
are still valid with the exception that we might get a coefficient different from
V2 in (89). If we as a first approximation replace 2P (u) in (88) by a delta
function multiplied by u_f/ 2 at ui , given by (89) we find that

u; (0,0) u; (X (2]0,0),¢)
L [Rit (Xo (1, 0}00,0)) + Rt (Xo (£ Uy, 0))] (90)

2 mazx?

— % [Ru' (f (t) \/ﬁ,o, 0) + Ry (—f (t) \/ﬁ,o, 0)] (91)

where we have used (78) and where R;; (a,b,c) denotes the autocorrelation
of u; with separation z; = a, x; = b, z} = ¢, where 4, j, k all are different,
but the order is arbitrary. In case of uniform mean flow, channel flow or the
homogeneous shear flow studied by Champagne et al. (1970); Harris et al.
(1977) we have that f (t) =t.

Q
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Hence if we consider the moving frame correlation

RY" (1) = 1 (0,0) uy (,X(2]0,0)),

and use the fact that the autocorrelation is typically symmetric in the ;-
direction, (91) suggests that RM ~ R11< 2u_12t,0,0>, i.e. the moving

frame correlation is given by the R;; autocorrelation in the z; direction.
Hence, the integral time scale of the moving frame correlation, T} is re-
lated to the integral length scale of the autocorrelation Li; according to

Ly = \/ﬁu_gl/QTf‘fF . Apart from the constant, this result was obtained in
Corrsin (1963) by making assumptions about the shape of the spectrum,
which is a completely different method.

To test the validity of the formula (91) it could be compared with exper-
imentally measured auto- and moving frame correlation coefficients. Such
measurements have been made for example by Comte-Bellot & Corrsin
(1971) for roughly isotropic turbulence, by Champagne et al. (1970); Harris
et al. (1977) for homogeneous shear flow with two different values of the
mean shear, and by Romano (1995) for channel flow. According to (91), the
separation for which the autocorrelation coefficient attains a certain value

—1/2
should be \/iuf / /U times the separation when the moving frame corre-
lation coefficient attains the same value. Unfortunately, for most of these

measurements the value of \/iu_%l/z /U is fairly small, and therefore testing
(91) involves measuring very small distances in the published figures, which
introduces an error too large for a satisfactory comparison with theory.

Interestingly, for R (¢) (91) gives us an approximation in terms of the
Rgy autocorrelation along the x5 axis, and for R} we have an approxima-
tion in terms of the R33 autocorrelation along the z3 axis. If we were to
calculate RM¥ (t) using the same technique we would find that it primarily
depends on the autocorrelation Rio along the lines xo = +x;.

3.4 Sensitivity of the model to linear disturbances in space
and time

The purpose of the subsection is to study the sensitivity of the solutions for
linear U; obtained in subsection 3.1 to small acceleration terms, which are
sufficiently small so that they can be linearised in time and space. Since
these terms are, in general, unknown this is merely a sensitivity analysis,
which is meant to indicate roughly the magnitude of the error caused by
neglecting them. However, the Reynolds stress terms are stationary in time,
and can thus, at least in principle, be measured. The formulae developed
here can in fact be used to correct for a linear approximation of the Reynolds
stress term.
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In this subsection we will add a linear right-hand side to (7) in the case
when U is linear. In the next section we will consider general disturbances,
but then we are only able to analyse the system for small times. In the case
under consideration here we may proceed in the same manner as in Section
2 to obtain the system of equations

dX;

o Uio + Uij X;; (t[x0, to) + vi (t[%0, to) (92)
dv;
d_tZ + Uijvj (t|X0,t0) = AZ' + BiO (t - to) + Bz'ij (t|X0, to) . (93)

At this point the argument becomes easier if we employ vector/matrix no-
tation. Thererfore we will write v (t) for v; (t|xo,%0), X (¢) for X; (t), U, for
Uio, U for U;;, A for A;, B for By and B for B;;. The system above can
thus be written

d|lv |_|-U B v
dt | X | | T U X
where Z denotes the identity matrix.

We now let w = [v X]” and let £ denote the 2 x 2-matrix in (94). If
we assume that det £ # 0 we have from standard ODE theory that

Uo

Tl oA

_|_

B ] (t—to)  (94)

w = Ceflt-to) _ p-1 ) A]T — Lt [0 B]T (t—1to0) — £ [0 B]T (95)

where C' is a constant to be chosen to satisfy the initial values. However,
to calculate e£(*=%) which dominates the dynamics of the system, we must
diagonalise a 6 x 6-matrix, which involves a fair degree of work, and obscures
the insight into the relation with the problem without acceleration terms.
These drawbacks are remedied, however, by the following proposition:

Proposition 1 With L defined as above, we have that

(a) If X is an eigenvalue to £ and w, = [v, X.]T a corresponding eigen-
vector, then \? is an eigenvalue to U? + B and X, is a corresponding eigen-
vector.

(b) Conversely, if u? is an eigenvalue to U? + B and s. a corresponding
etgenvector, then +u are eigenvalues to L with corresponding eigenvectors

[— (U TF pT)se s’

Proof (a) We have assumed that

EREIRFAL (99

The equation for the second row yields that

Ve = \X, — UX, . (97)
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When this relation is substituted into the equation for the first row we get
(u*+B) X, = XX, (98)

which proves (a).
(b) We now assume that

(L{2 + B) Se = [12s, . (99)

To begin with, we consider

U B || -—UFpI)se | _ | U>Fpd+B)se
] - ] e

If we now use (99) this expression becomes

UWPFud+B)se | | (WPTFuld)s.
l :Ill:l,use ] N g :I:uge ] (101)
= 44|~ (ut“z) Se ] (102)

which proves (b). qed

Not only does Proposition 1 show that it suffices to linearise a 3 x 3-
matrix to diagonalise £, but in addition it shows how a small B affects
the eigenvalues of . In fact the problem is on a form where the standard
asymptotic techniques can be applied directly.

It is also worthwhile to note that in the case of constant U; treated in
the previous section we have that &/ = 0. Hence, the short term behaviour
is essentially determined by the eigenvalues of v/B.

4 General shear flow

The moment we step from linear U; to quadratic U; the system of equations
(12) becomes non-linear, and thus finding solutions to the system becomes a
very tough task. The complexity of the solutions also increases considerably
in a way that has strong physical implications. To illustrate this increased
complexity we will study the short time behaviour of the solutions to the full
system, including the acceleration terms, by expressing it as a power series
in (¢t —tp). Needless to say, once X has been found v can be obtained as
an infinite series. First, however, we will make a simplification of (12) valid
in case of irrotational mean flow, which reveals some information about the
change of the fluctuating velocity along a trajectory in this case.
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4.1 The case when U; is irrotational

When the mean vorticity is exactly zero (note that no assumption is made
about the fluctuating vorticity), then we may find a quantity conserved by
the system (12) (In fact, it is really sufficient that U x €@ = 0, which is
a somewhat weaker condition than € = 0.) This can be used to derive a
Bernoulli type equation, which is useful when discussing Taylor’s hypothesis.
For the remainder of this subsection we assume that

oU;
Q) = e,m-jan =0. (103)
J

Now let us multiply (12) with dX/dt to obtain

1d /dX dX dX d?X oU; ax;
(=22 =222 - U (X 104
2dt<dt dt) dt  dt? Uil )axj( )"a (104)
oU; dX;
= U; — 1
U (X) gt (%) 50 (105)
1D(U-U)
Using the initial conditions we have established that
dX [? 2 2
| ~UX)"=2U(x0) - u(xo, %) +[u(x0,%0)[",  (107)

for all t. Firstly, this equation tells us that the speed of the particle trajectory
in this model only depends on the fluctuating velocity at the initial position
and on the variation of the mean velocity along the trajectory. Secondly, we
may substitute (8) for dX;/dt to obtain

2U (X (t[xo0, %0)) - u (X ([x0, %) , ) + [u (X ([x0, %) , 1)|* =
= 2U (xq) - u (%0, %0) + |u (xo,%0)|?, (108)

for all ¢. This implies that the quantity 2U (xq) - u (x0, o) + |u (x0,%0)|* is
conserved along trajectories provided of course that the acceleration terms
are negligible. Assuming that the turbulence is not too anisotropic and that
|UI2 >> |u|? the first term should dominate the second by a factor in the
order of |u|/|U|. Consequently, this model satisfies some variant of Tay-
lor hypothesis along each trajectory for the fluctuating velocity component
which is parallell to the mean flow at the instantaneous location. However,
we do not know the location of a given trajectory at a certain point in time,
so we have no a priori way of knowing the location of the point of maxi-
mum correlation coefficient in this case (which may or may not be at the
centroid of the cluster of trajectory locations at each point in time). Note
that this picture is quite consistent with the conclusions of Zaman & Hus-
sain (1981), that unless the large-scale structures are not undergoing rapid

32



evolution (which they often would if subjected to strong mean vorticity)
then Taylor’s hypothesis work reasonably well provided that we adjust the
advection velocity.

The only case when U;0U;/0z; is non-linear for which we have been
able to find an exact solution is the rather non-physical situation for which
U; only depends on z; and does so quadratically. The solution can then
be expressed in terms of Jacobian elliptic functions (see e.g. (Abramowitz
& Stegun, 1970)). The full solution is presented in the appendix, but we
mention that for all solution cases the trajectory position depends on the
fluctuating velocity at the initial point in a highly non-linear way, and that
for almost all the solution cases the trajectory approaches infinity in finite
time, which clearly illustrates the limitations of the model as well as the
complexity of the situation.

4.2 The small time behaviour of the system including accel-
eration terms

We would now like to consider how the situation is affected by including
the acceleration terms, which we have neglected so far. These terms include
the Reynolds stress terms, the pressure terms and the viscous terms. If we
derive an equation analogous to (12) from (6) rather than from (7) we obtain

d’X; oU; Oou; 10p 0%u;
= 7t . . 1
dt? Ui oz L oz; poz; v ox5 (109)
= fi(X)+7i(X) +p,(t,X) + v (¢,X) (110)

Recently, Gledzer (1997) computed corrections to Taylor’s hypothesis for the
acceleration terms. A crucial approximation in his analysis was, however,
to approximate the value of the acceleration terms along the trajectory by
their value in one particular point. In order to solve (110) we will generalise
this approach and replace the value of the acceleration terms along the
trajectory by their Taylor series in one particular point, which we choose to
be the origin. This will allow us to find a solution for small values of ¢t — %
to (110) on the form

1 1
X; = XY (t—to)+ §X§2) (t —to)? + EXZ@ (t —t0)® +

+ %X}‘” (t—t0)" + O ((t—1)°) . (111)

where XZ-(J ) denotes the value of the jth derivative of X; at time ¢y. This
solution can be used to indicate the speed at which the centroid of the
locations of the trajectories at any point in time will depart from the location
of the trajectory of the mean flow at the same point in time. Furthermore,

the solution could easily be used to calculate v (%|0,?y) along each trajectory
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in terms of a power series in (¢ —tp). Hence the accuracy of Gledzer’s
approximation, mentioned above, could be estimated for small temporal
separations.

For brevity of notation we will henceforth assume that fy = 0. To this
end we will use the Taylor expansions of f;, r; and p;, and thus we must
assume that these terms are sufficiently regular to render this approach valid.
For the remainder of this subsection we will use

1
fix) = fi+ fugwi + 5 fignmimn + O (1x*) (112)

1
T (X) = Tz(') + iz + Eri,jkxjxk + 0O (|X|3) (113)

. 0 T A S
D (X) = D +p,10t +pir; + 9 p,zOOt + (p,Z]O +p,10_7) tw] + P,ijkTiTk ) +
+ 0 (%)) (114)
1

V; (X) = UZQ + v ot + vi x5 + 2 (’Ui,o()t2 + (’Uz',jo + 'Uz',Oj) tr; + 'Ui,jkxjmk) +
+ 0 (%)) (115)

where a zero after the comma in the subscript indicates derivation with
respect to time, a letter after the comma in the subscript indicates derivation
with respect to a spatial direction and a zero in the superscript indicates the
value of the function at time zero. After substitution of these expressions
into (110) we obtain upon equating terms the following equations.

0@): X = fo4rd+p%+0) (116)

3
0@): X = pio+uvio+ (fig+rij+pij+vij) X](-l) (117)
= piio+vio+ (fij +7ij+pij +vig) (U,O + u?) (118)
)

O (t2) .oxW = Pp,ioo + vi00 + (fi,j +7ij +Paj + vij) XJ('2 +
+  (pijo + pjioj + vijo + vioj) X]('l) +
+  (fijk + Tigk + Pijk + Vijk) XJ(-”XIED (119)
= p,ioo +vi00 + (fij +7ij + P+ vij) X
X (fj(-J +r) +p% + U?) + (pijo + P,i0j + vi,jo + vigj) X
X (U]Q + u?) + (fijk + Tijk + Dijk + Vijk) X
x (U +uf) (U +uf) (120)

This gives the position of a trajectory for small times. For most applica-
tions we cannot trace individual trajectories so we would like to relate this
information to information about trajectories of the mean flow, which we
could calculate beforehand. If we repeat the above procedure we obtain for
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the short time behaviour of X, defined in Section 2 (remember that the f;s
and the r;s are already averaged, whereas the p ;s and the v;s have vanishing
means).

X3 = f+r (121)
Xr(r:zz) = (fij+rij) X(l) (122)
= (fi;+ 7"”) (123)
XSZ) = (fij+rij) X ‘|' (fiik + Tijk) X(l)X'r(nl)c (124)
= (fog+rig) (£ +73) + Fagi+ 1ig8) UPUR (125)

We thus have that
X:(t) — X, Y PR RN () W SO .

() = Xmi (1) = wit+ 5 (ph+07) 8+ g [p,io + vi,0
(g +vig) U} + (fig + rigg +pag + vi) “ﬂ £
1
2 [szO + vi00 + (p,ij + viy) (fg(') + 7"?)
(fij +rij+pij+vig) (p?j + vjo)
D,ijo T P,ioj + Vijo + v; OJ) (UJO + Iu’?)

fijk + Tijk) (ujUk + ukUjQ + ugug)

3 . 0, ,0 0, ,0Y],4 5

+ (p,zylc + ’UZ,]]C) <Uj + UJ) (Uk + Uk)]t +O(t ) (126)

Fortunately, the quantity of primary interest is the ensemble average of
this expression. Upon avaraging several terms vanish and what is left is

+ o+ o+ + o+

(
(f

- 1 . 1
Xi=Xmi = S(pa+vig) it + o [(P i +vig) (0% +09)
+  (pijo + piioj + vigo + vios) ul + (fik + 7ijw) udu

+ g+ ouge) (U + 08U+ )+ 0 () (127)

From this we see that the centroid of the trajectories now departs from the
trajectory of the averaged flow as O (#*) for small t. However, for homoge-
neous turbulence we find that the coefficient in front of the ¢3-term vanishes
as is seen from

o0 - 1 % (0,0) u; (0,0) (128)
Pigtty = pax,ax] 29 45 {5
B 10 (0p
- 5 ( o (0,0)u; (0, 0)) (129)
B 190 (9p
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— Pu;

Uizjuj = Uaxiax] (an) Uy (07 0) (131)
8 aQ’U,Z'
_ . 132
0 0%u;
= Vou, 002 (0,0) u; (0,0), (133)

where we have used the continuity equation Ou;/0x; = 0. Similarly, sev-
eral of the coefficients for the ¢*-terms will vanish for homogeneous flows,
however, one term that will not vanish, in general, is

1
@fi,jku]-uktél (134)
where it is easily checked that

o3U; 0%U; oU, oU; 9%

fijk = 00,01, ot Oz;0zr; Oz, Oz Ox;0x)

(135)

Hence for general shear flows, when this quantity does not vanish, we find
that the centroid of the trajectories departs from the trajecory of the aver-
aged flow at least as fast as O (t*) for small ¢, which underlines the impor-
tance of separating the two concepts.

5 Conclusion

In this paper we have demonstrated that, in the case when the acceleration
terms of the Navier—Stokes equations are negligible, a drastic increase in the
complexity of the solutions to the Navier-Stokes equations for the fluctu-
ating velocity occurs when the quantity U;0U;/0z; changes from being a
linear function of space to being a non-linear one. For instance, in case it
is a linear function in space, we have demonstrated that the centroid of the
trajectory positions for a certain delay 7 coincides with the position of the
trajectory for the mean flow for the same delay, and, by contrast, this does
not hold in the non-linear case, when the behaviour is far more complex.
This may explain why the loci of the maxima of the space-time correlation
coefficient coincide with the mean streamlines for homogeneous, isotropic
turbulence, for the homogeneous shear flow and for the core region of chan-
nel flow, but not for the wall region of channel flow, for boundary layers, for
jets and for wakes. Indeed, in the former cases acceleration terms are small
and U;0U;/0x; is a linear (or constant) function of space, whereas in the
latter cases at least one of these conditions is violated.

In the case of uniform mean flow, with negligible acceleration terms
sufficient conditions for the coincidence of the advection and local mean
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velocities have been given, along with a formal proof of their sufficiency. It
has also been argued that these conditions can be modified to extend the
above property to certain other cases including the core region in channel
flow and homogeneous shear flow, at least when the temporal separations,
which enter into the definition of the advection velocity, are small. It should
be noted, however, that to establish these results we had to introduce the
concept of predominant concavity, and at least the first assumption we made
when analysing this concept seems rather difficult to test experimentally, but
possibly DNS could used to achieve this.

We have also shown how our method to take into account the effect
of mean velocity gradients on the velocity along a trajectory and on the
trajectory position can be used in an attempt to improve the accuracy of
Taylor’s hypothesis for shear flows. At least in principle our method can
allow a substantial relaxation of Lin’s criterion in many cases. By using
non-intrusive experimental techniques it should be quite possible to examine
experimentally the importance of taking into account the effect of the mean
velocity gradients when applying Taylor’s hypothesis.
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A Exact solution in case of a quadratic U in one
dimension

Suppose that U; is a quadratic function of z; only (i.e. independent of x5
and z3). Then (12) becomes for X;

X, dU,
= —_— ]-
pT U1 (X1) g5, (X1) (136)
= (a0 + X1 + 02 X?) (1 + 200X1) (137)

Now this equation contains only dU; /dz1, and thus we can assume that U;
is irrotational. Thus we may use (107) to obtain

dX;\? 0
=) =K 1
( 7 ) + U7, (138)
where
K = u(to,0) (2ap + u (t0,0)) - (139)

This implies that

% =S\VK + U (X1)?, (140)

where S = sign (o + u (9, 0)) if this expression is non-zero, otherwise S =
sign (apay ). If this expression is also zero then X; = 0 so S is immaterial.
The equation (140) is separable, and hence the solution is given by

/y dz
0 \/K + (o + a1z + a22)?

=S (t—to) - (141)

This integral can be expressed in terms of elliptic integrals, and hence after
some manipulations, the solution can be expressed using Jacobian elliptic
functions (see e.g. (Abramowitz & Stegun, 1970)). We refrain from present-
ing the detailed calculations and just give the results. Let

K ay a?

= ~o» VPR
o oy 4aj

V=X +24 (142)
a9

K,

In all the solutions it is assumed that as # 0.

1. The case when K > 0. Let

R=AZY K, 5:\/% (\/A2+K1—A), A= gig . (143)
Then we have that
\/_1 + Lsc ([—agA\/R—ﬁQS (t —to) +ph] k—;%)
le—R_l - — T , (144)
1 — 4sc [ asA\/R—[3%S (t to)+ph]|(ﬁ+\/ﬁ)
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where

ph =sc™! (Aal/ (202) + VR, 26VR ) (145)

a1/ (2a2) — VR (ﬁ + \/1_%)
sn(ulm)
cn(ulm)
the notation y = sc~! (ulm) means that u = sc (y|m).

and where sc (u|m) = is a Jacobian elliptic function, and where

. The case when K <0, A > /—Kj. Let

A:\/A-l-\/—Kl, B:\/A—\/—Kl . (146)

Then we have that

20/—K;
Y, =B AS (t —to) + ph] |—Y 2L 147
= e (fonas -t 1K) L a
where
_ 2y —K;
h=sc! [ -2 148

and where the notation is the same as in the previous case.

. The case when K < 0, |A| < /—Kj. Let

A=\/A+/-K, B=+/V/-K —A. (149)

Then we have that

Y; = Bne ([QQ\/A_2+B25 (t — to) + ph] |A2+f\/_ V;{?) . (150)

where

A+ =K
ph:nc_1< el 1) , (151)

ZOéQB 2\/ —K1

and where nc (u|m) = is a Jacobian elliptic function, and where

1
cn(ulm)
the notation y = nc ! (ulm) means that u = nc (y|m).

. K<0, A< —y/—K;. Let

A=\/-A++-K;, B=\/-A—V-K;. (152)

Then we have that

¥, = Ade ([agAS (t — to) + ph] |:i;—\/_ V:ﬁ) , (153)
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where

ph=dct [~ A= VK (154)
204" —A + +/—K; ’
dn(u|m)

and where dc (u|m) = is a Jacobian elliptic function, and where

en(ulm)
the notation y = dc™! (u|m) means that u = dc (y|m).

. K =0, A > 0. In this case the solution is

an a\/_S(t—to))
\/_2a2\/_+t (2 .
1—2 \/—tan (QQ\/_S(t—to))

(155)

. K =0, A <0. In this case the solution is

yi —A% +vV-A+ (2%2 — \/—A) exp (2042\/—AS (t— to)) .
2 VoA~ (2 — V=4) exp (200V=AS (t  to) )
(156)
. K = A = 0. In this case the solution is
1
v, =4 (157)

@ 2—a1S(t—tg)

. K <0, A=+v—-K, a1 #0. In this case the solution is

s (5 )i

Yi = - 2 )

< (2&—) +2A — M) exp (2a2\/ﬁs (t—to)) - %
(158)

. K <0, A=—v—K, a1 # 0. In this case the solution is

o1 (35)" o (o5 - )

Yi=—v-2A |1+
1 —\/—1 — o <2a2) tan(agx/—2AS (t— to))
(159)
It can be seen that the conditions A% + K = 0, a; # 0 imply that
1 a1 2
— (=) >1. 160
—2A (20&2) - ( )
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10. K <0, A2+ K =0, oy = 0. These conditions imply that ug = —ag.
Hence, it can be seen that X; and all its derivatives vanish at ¢ = .
Thus

X1=0 (161)

Some comments should be made about these solutions. Firstly, except for
some trivial cases all of the above solutions blow-up in finite time. This only
manifests the local character of the validity of the quadratic approximation.
Moreover, it is far from unlikely that the method breaks down earlier when
the characteristics cross each other. Secondly, all solutions have a strongly
non-linear dependence on g (¢, 0).
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