PERCOLATION DIFFUSION

TORBJORN LUNDH

ABSTRACT. Let a Brownian motion in the unit ball be absorbed if it hits a
set generated by a radially symmetric Poisson point process. The point set is
“fattened” by putting a ball with a constant hyperbolic radius on each point.
When is the probability non zero that the Brownian motion hits the boundary
of the unit ball? That is, manage to avoid all the Poisson balls and “percolate
diffusively” all the way to the boundary. We will show that if the bounded
Poisson intensity at a point z is v(d(0, 2)), where d(-, -) is the hyperbolic metric,
then the Brownian motion percolates diffusively if and only if v € L.
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1. INTRODUCTION

A percolation model was mathematically first set up in 1957 by S. Broadbent and
J. Hammersley in [2]. In their introduction they write:
“There are many physical phenomena in which a fluid spreads randomly
through a medium.”
“According to the nature of the problem, it may be natural to ascribe
the random mechanism either to the fluid or to the medium. Most
mathematical analyses are confined to the former alternative, for which
we retain the usual name of diffusion process: in contrast, there is (as
far as we know) little published work on the latter alternative, which we
shall call a percolation process.”

We want in the present paper to address a problem that takes account both
environment and particle stochastics, i.e. both percolation and diffusion. A physical
motivation could be to understand when a certain type of idealized randomized gas
mask works, e.g. Example 4 in [2], where we add the absorption of gas molecules at
the surface of the solid.

Furthermore, instead of working in a discrete lattice, we will be using a continuous
setting. This is now a standard approach using a Poisson process, see for example
[9].

The diffusion part is generated by a Brownian motion, and the percolation part
is created by a Poisson point process, with variable intensity, in the hyperbolic
unit ball. Let us here mention two authors that have done very interesting work
in a similar set up, but with constant intensities: R. Lyons calculated in [8] the
critical intensity for almost sure blocking of all rays—not Brownian paths—from
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the origin, for an appropriately chosen radius. A.-S. Sznitman in used in [11] and
[12], a constant Poisson intensity together with increasing domains in the hyperbolic
ball.

2. THE SET UP

Let d(-,-) denote the hyperbolic metric in the unit n—dimensional ball B = B™.
That is, if z and y are in B, then d(z,y) = inf,, [ 12J7z2||2’
over all curves v from z to y.

Let S be a point sequence in the open unit ball B given by a Poisson point pro-
cess in the hyperbolic space with intensity that is a radially symmetric continuous
function, 8(z). Due to the symmetry, we can write

B(z) = v((d(0,2)), foraw:][0,o00)—[0,00). (1)

where the infimum is taken

Remark 2.1. Let us separate the intensity function in the following way. Let M be
the supremum of 8 in B. By assumption M < oo. Now let v; be the function from
[0,00) to [0,1] defined by 8(z) = Mwv1((d(0, 2)).

We can think of our non—homogeneous Poisson process as a thinning of a sta-
tionary process. We get a realization of the process by taking a realization of a
stationary Poisson process with (constant) intensity M. Then, if z; is a point in
the realization, we remove it by probability 1 — v4(d(0, zx)) to obtain our point
sequence. By [9, Proposition 1.3] this process is the same as the non-homogeneous
Poisson process with intensity 3.

Let us now “fatten” the point sequence S by putting balls centered on each point
in § and having a given constant radius p. That is, for every z; € S let

B; = {z € B;d(z,z) < o} (2)

(These balls are called clouds in [8].) Let us denote the union of the balls, i.e. the
random archipelago, by A.

A= UBi- (3)

Let us now consider a Brownian motion started at the origin. What is the
probability that it reaches the unit sphere without hitting the archipelago .A? See
figure 1.

If we instead of using an Euclidean Brownian motion, take a process in the
hyperbolic geometry, we reformulate the question above by: What is the probability
that a (hyperbolic) Brownian motion started at the origin never hits the random
archipelago A? Let us use the following notation for that “escape” probability.

me = P[BM hits 0B before hitting .A]. 4)

Note that we have two different random processes involved, one for the generation
of A and one for the Brownian motion in the complement of A. Let us combine the
two processes in the following definition.

Definition 2.2. We say that we have percolation diffusion if there is a non-zero
probability that A is created in such a way that a Brownian motion, BM, avoids
hitting A with non-zero probability, i.e.

PA[Pem[BM hits OB before hitting A] > 0] > 0,

or in other words: P[m, > 0] > 0.
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FIGURE 1. A schematic picture of the situation. A Brownian mo-
tion in the unit disk. What is the probability that it reaches the
unit sphere without hitting the random archipelago A?

3. AN INTEGRAL CRITERION FOR PERCOLATION DIFFUSION

Theorem 3.1. Let S be a realized set of point in the hyperbolic unit ball from
a Poisson point process with intensity 5(z) = v(d(0,2)). Let A be a random
archipelago based on S as in (8). We have percolation diffusion if and only if
vell

Remark 3.2. Note that v € L! if and only if the expected number of Poisson points
are finite.

The proof of the theorem will be based on a result concerning the concept of
minimal thinness given in the following section.

4. MINIMAL THINNESS

Let us denote the class of non-negative superharmonic functions in the unit ball
2
by SH(B), and the Poisson kernel at 7 € 0B, =L by P,.

V lz—1|n>

Definition 4.1. The reduced function of h with respect to the a subset E of B
is defined as

RF (w) = inf{u(w) : u € SH(B) and u > h on E}.

We can make this function lower semi continuous by regularizing it to the regular-
ized reduced function RP(z) = liminf,,, RF (w).

Definition 4.2. A set E is minimally thin at 7 € OB if there is a 2p in the unit
ball such that RE (20) < Pr(20).

Let us now go back to our random archipelago and study the following set.
M = {7 € OB such that the random archipelago A is minimally thin at 7}.

Let us use the notation | - | for the surface area on the unit ball (in R), and let
wn—1 be the full area, i.e. w,—1 = |0B|. We will use the following zero-one law for
the above defined set 901.
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Lemma 4.3. With probability one, we have that A is such that

1 [0, vegL!
Wn—1 |§Dt| - { ]., v E Ll.

Proof. We will use a Wiener series criterion for minimal thinness developed in [5]
and in [1]. Let {Qx} be a Whitney decomposition of B, and let ¢ be the Euclidean
distance from the center of the Whitney cube @ to the boundary 0B and let pg(7)
be the distance from the center of @) to the boundary point 7. See Figure 2. By
cap we denote the logarithmic capacity when n = 2, and the Newtonian capacity
when n > 3; see for example [6].

Qx
\ \ \
\H\i\\ LTI
X .

FIGURE 2. Part of a Whitney decomposition of the unit disk. The
side length of the squares (or cubes in higher dimensions) are com-
parable to its distance to the boundary, dB. For more background
and details see for example [10] on page 16.

We will now use the following series.

2 -1
i 4qp ) I
1 fn=2,
- z,;pkw (‘)g cap(A N Qr) nr

2
Z Li cap(A N Q) if n > 3.
— pr(T)"

A result of Essén in [5] (for n = 2) and Aikawa in [1] (for n > 3), gives us that
A is minimally thin at a boundary point 7 if and only if W (r,.A) converges.

Let CT)\; be the extended cube obtained by adding all points with hyperbolic
distance to @ at most g, the radius of the islands. We can now estimate the
probability that, for a given cube Qg, ANQy is empty by the probability that there
is no Poisson point in (/Q\;;, which is exp(— févk B(z) dz) see for example [9, p. 12].
This can be approximated, since 3 is continuous, by

exp(—B(center(Qy) Volume(Qy)),

where Volume is the hyperbolic area (or volume in higher dimensions). We have also
that Volume(Qy,) ~ Volume(Qy) since the diameter of the cubes are approximately
constant in the hyperbolic metric. (We use the standard notion that two positive
functions v and v are comparable, i.e. u = v, if there is a constant C' > 1 such
that C~'u < v < Cu holds.) Thus, the probability that A N Qy is not empty is
comparable to

W(r) =W(r, A) ()

1 — exp(—/B(center(Qx) Volume(Qr))-

We will obtain an estimating series of W by changing @ to (5; in Equation (5),
that series, denoted by W will converge together with .
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Suppose now that @y and B; intersect. Then they have to be comparable in size.
Furthermore B; N Q) = B;. Hence

B; N Qy, # 0 implies cap(Qx N B;) = cap(B;) ~ cap(Qk)-

Now using calculated values for capacities. See for example [6, p. 165, 172], we
can get simplified series.

diam R q lf n= 2’
cap(Qy) ~ { (@) o
diam(Qy)" % ~ ¢ 0> 3.
~ g "
W(r) = W(r) ~ _ QG 6
(r) ~ W(r) BZQ o7 = 2 (e XA (6)

~
~

~ 9% _ 9 _g(center(Qy))Volume(qQ
BV~ ) pr(T)" Bl anq ) = Zpk(T)n (1 e (@) (@)
k k

~ Zpﬁ)” (B(center(Qy)) Volume(Qy))-
k

We now use that the hyperbolic area of the Whitney cubes are about constant
and that 8(z) = v(d(z,0)), giving us

B[W ()] ~ k pljg)ny(d(center(Qk),O)).

Let z = center(Qy). From the definition of the hyperbolic metric it follows that

1+ |z
d(z,0) =log<1 — :z:)

Hence we have that )
d(center(Qy),0) ~ log e
k
close to the boundary, which is what we need since minimally thinness is a local

concept.
Thus,

pr(T)™

We have therefore that E[W (7)] converges if and only if the integral I in (7) below
converges, where we transformed unit ball to the upper half space such that 7
goes to 0, and used cylindrical coordinates. We also truncated for the “height”
coordinate, here denoted by y, since we can again use the fact that it is sufficient
only to consider the domain close to the boundary to decide if we have convergence

or not.
2 e’} n n—2
y 2. r" " “drdy
1:/ w_/iulo—iz 7
=0 Jrg (2 422 ( gy) y" ™

2 2 o T.n—2
= Wp— v(log — ————drdy.
’ /yzo (log ?/) /7':0 (r2 +y2)n/2 i

Let us study the inner integral, using the substitution s = r/y,

° rn—2 1 [ gn2 1
7617«:—/ S ds=-C,.
/r:0 (r2 +y2)n/? yJo (s2+1)2 y "

where C;, < 7.

E[W(T)]MZ Gk l/(longk).
k
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Thus going back to the original integral I we have that
2 y(log 2 S
m/ ﬁd;,:/ u(t) dt.
0 Y 0

=00 ifv¢gLt,
<o ifvelLl.

Thus we see that

EW(r)]~1= { (8)

Suppose now that we pick a Whitney decomposition where the side lengths,
measured in the hyperbolic metric, of the cubes is greater than 2p, i.e. the diameter
of the islands in 4. Tt is then possible, by partition each dimension with the help of
two different “layers”, to split such a W series into 2" independent series, such that
one island can not intersect two different cubes in the same sub-series. See Figure
3 for a schematic depiction in the planar case, where

~ dk ai
wos ; ey Xacan ; pe(ryn Xanau

ar ar
2 i Xane, + 2 iy Xan

3 4 3 4 3 4 3 4

1121 2111212
3[4]3[4]3[4]3] 4] 34]3][4]3[4]3]4

FIGURE 3. In each sub—sum, e.g. D, the event ANQ and ANQ;
are independent for different cubes @} and @;.

Thanks to the independence in each sub—series, we can use Kolmogorov’s three

series theorem, see for example [3] on p. 118 (where we let X} be the random
ai

pr(T)™

Hence we have that

variable X Ang,; and noting that, 0 < X}, <1, we can pick 4 = 1.)

Qe
Z ()" XAan < 00 a.8.

~ Pk

if and only if both

ZE[ 9ic XAan] < o0 and ZV[ q'?)n XAan] < 00,

~ k()" ~  Pe(T

where V is the variance. )
As we noted above, 0 < p,j—’;)nXAka < 1, giving us that

g5 ar
Vo Xavad B e Xana)
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Therefore W(7) converges if and only if all sub-series

ai
; E[pk ()" XAka] converges.

Hence we see from (8) that W(7) < oo a.s. if and only if v € L. That is, A is
minimally thin with probability one at 7 if and only if v € L!.

Remark 4.4. Note that since we assumed that v was continuous, we have that the
convergence only depends on the tail, which corresponds to the fact that minimal
thinness is a local property at the boundary.

Since we picked an arbitrary point 7 on the boundary 6B, we know that if v € L!
V7 € 0B, P[A is minmally thin at 7] = 1.

By Fubini’s theorem,

E| /6 ; X 4 minimally thin at - dr] = /a ; P[A is minimally thin at 7]dr =

=/1w=wm=%%
8B

Therefore the random variable
1

Wn—1

/a . Xa minimally thin at » 47

which is positive, and is at most 1, has 1 as expected value and hence is 1 a.s. Hence

1
Wn—1

[0 =1 a.s.

Using the same argument for the case v & L' gives us the result of the lemma. O

5. THE PROOF OF THE THEOREM

Proof of Theorem 3.1 . Let BM be an ordinary Euclidean Brownian motion started
at the origin. We can find a very nice potential theoretic interpretation of w, given
in [4, p. 653], which can be stated in the following manner.

R{0) = P[BM started in 0 hits A before hitting the boundary 8B].

That is,
me = 1— R{(0). (9)
Let us study the following function in the unit ball.
1 .
J(2) = == | Rp.(2)dr.
0B Jou "
It is then not hard to check that:
e J is positive in B. R
e J <1 in general, since R# (2) < P;(2).
e J =1 quasi everywhere on A. X
e J is harmonic in B\ A and in A, since R# is harmonic there.
[ ]

J is superharmonic in B, since it can be viewed as the minimum of two
harmonic functions.
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Definition 4.1 tells us then that J is the regularized reduced function on A with
respect to 1, i.e.

J(2) = R (2). (10)
We then have, thanks to equations (9) and (10), that
N 1 N A
. >0 RA0) <1 & ] R{ (0)dr < 1 & |{T € 8B, R# (0) < 1}| > 0.
oB

Let us denote by 9y the set {r € 0B, Rﬁf (0) < 1}. Hence,

e > 0 |My| > 0. (11)
Trivially we have that My C 9 from where we deduce, using Lemma 4.3, that
vg L' = PM =0]=1= P[] > 0] =0= Plr. > 0] =0. (12)

We expand the definition of 9%, in the following way. Suppose for a moment
that A is a given fixed archipelago. For any 7 € 9, define ¥(7) to be the subset of
B\ A such that

R# (2) < Po(2) if z € B(7).
Furthermore, let

o(r) = zelgfr) d(0, 2).

In view of Definition 4.2, such a §(7) exists for all 7 € 9.
We define the following subset 9a of M. Let

Ma = {T € M such that §(r) < A}.

Note that 90ty agrees with our earlier definition of My above, and that Ma 7 M
as A goes to co. By the monotone convergence theorem, we then have that

i )= Ji [ o, = [t X, 04 = i, 0] = 0

Hence if |9 = w,,—1 we can always pick a A such that [9a| > 0.

Let us now look at a general archipelago A and suppose that P[|| = w,, 1] = 1.
Note that the subsets {|9ta| > 0} in the sample space 2 converges to {|9t| > 0}
as A goes to 0o. Then again by monotonicitywe have that

lim P[|9Ma| > 0] =P[M| > 0] =1.
A—o0
Hence there is a A such that
P[|9%a| > 0] > 0. (13)

We will now use this to obtain the opposite implication of (12). Suppose that
v € L', then we have from Lemma 4.3 that P[|9| = w,_1] = 1, and there is a A
such that P[|9ta| > 0] > 0. But AN Ba is empty with probability

exp(— B(2)dz) > 0 since v € L.
Ba

Hence we have that P[|9| > “5=] > 0 which by (11) implies that P[r. > 0] > 0.
Thanks to (12) we have that
veL e Plr, >0]>0.

That is, we have percolation diffusion if and only if v € L. O



PERCOLATION DIFFUSION 9

REFERENCES

[1] H. Aikawa Thin sets at the boundary, Proc. London Math. Soc. (3) 65 (1992), 357-382.
[2] S.R. Broadbent and J. M. Hammersley Percolation processes I. Crystals and Mazes Proceed-
ings of the Cambridge Philosofical Society 53 (1957), 629-641.
[3] K. L. Chung A Course in Probability Theorem, Academic Press, Inc. (1974).
[4] J. L. Doob Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag,
Berlin Heidelberg New York (1984).
[5] M. Essén On minimal thinness, boundary behavior of positive harmonic functions and quasi-
additivity of capacity, Proc. Edinburgh Math. Soc. 36 (1992), 87-106.
[6] N. S. Landkof Foundations of Modern Potential Theory, Springer—Verlag, 180 (1972).
[7] T. Lundh Discrete groups and thin sets Ann. Acad. Sci. Fenn. A. I. Vol. 23, 291-315, (1998).
[8] R. Lyons Diffusions and Random Shadows in Negatively-Curved Manifolds, Journal of Func-
tional Analysis, 138 (1996), 426-448.
[9] R. Meester and R. Roy Continuum percolation Cambridge University Press (1996).
[10] E.M. Stein Singular Integrals and Differentiability Properties of Functions, Princeton Uni-
versity Press, 1970.
[11] A.-S. Sznitman Lifschitz Tail and Wiener Sausage on Hyperbolic Space, Communications on
Pure and Applied Mathematics, Vol. XLII (1989), 1033-1065.
[12] A.-S. Sznitman Lifschitz Tail on Hyperbolic Space: Neumann Conditions, Communications
on Pure and Applied Mathematics, Vol. XLIIT (1990), 1-30.

DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY, SE-412 96 GOTEBORG,
SWEDEN
E-mail address: torbjrn@math.chalmers.se



