RESOLVENT ESTIMATES IN [, FOR DISCRETE LAPLACIANS
ON TRREGULAR MESHES AND MAXIMUM-NORM
STABILITY OF PARABOLIC FINITE DIFFERENCE SCHEMES

MicHEL CROUZEIX AND VIDAR THOMEE

ABSTRACT. In an attempt to show maximum-norm stability and smoothing esti-
mates for finite element discretizations of parabolic problems on nonquasi-uniform
triangulations we consider the lumped mass method with piecewise linear finite ele-
ments in one and two space dimensions. By an energy argument we derive resolvent
estimate for the associated discrete Laplacian, which is then a finite difference oper-
ator on an irregular mesh, which show that this generates an analytic semigroup in
lp for p < 0o, uniformly in the mesh, assuming in the two-dimensional case that the
triangulations are of Delaunay type, and with a logarithmic bound for p = co. By a
different argument based on a weighted norm estimate for a discrete Green’s function
this is improved to hold without a logarithmic factor for p = oo in one dimension
under a weak mesh-ratio condition. Our estimates are applied to show stability also
for time stepping methods.

1. Introduction.

Recently several papers have appeared concerning stability and smoothing prop-
erties with respect to the maximum-norm of finite element discretizations of para-
bolic problems, see, e.g., Palencia [4], [5], Schatz, Thomée, and Wahlbin [8], [9], and
Thomée and Wahlbin [10] and [11]. In contrast to the corresponding investigations
in Lo-norm these results require so called inverse properties of the families of finite
element spaces, which restricts the associated triangulations to quasi-uniform ones.
In an attempt to remove such restrictive assumptions we consider the very special
cases of spatially one and two-dimensional problems, piecewise linear approximating
functions, and with numerical quadrature in the inner product containing the time
derivative. The discretization method then reduces to the lumped mass method
and may be considered as a finite difference method with variable mesh-width.
The proofs of our stability results are carried out by deriving resolvent estimates
for discrete analogues of the Laplacian.

We consider the model initial boundary value problem

(1.1) wg=Au inQ, u=0 ondQ, fort>0, withu(,0)=v in Q,

where () is either the one-dimensional interval (0,1) or a convex plane domain with
smooth boundary 0f2. Introducing the solution operator E(t) by u(t) = E(t)v , the
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maximum-principle for (1.1) shows that this operator, the semigroup E(t) = et&

generated by the Laplacian, is a contraction semigroup in the Banach space Cy(£2),

(1.2) [E@)v]loo < [|v]loo;  where [[v]loo = sup jv()];

and this immediately implies the corresponding result with respect to the norm in
L, = L,(2), where 1 < p < co. We also have the smoothing property

|E' #)v|l, < CtH|vllp, fort>0,1<p<oo, where |jv]|, = ]|z, @)

This property shows that E(t) is an analytic semigroup in L,, which is equivalent
to an estimate for the resolvent R(\; A) = (A — A)~!: For some 0 € (3, 7),

(1.3) [R(A; A)llp < for [arg A <0, 1<p<oo.

M
Al
This in turn is the same as saying that the solution of the elliptic problem
(1.4) AM—Au=f inQ, withu=0 on 0%,

satisfies the inequality
M
(1.5) [[ullp < Wllpra for [arg A| < 6.

For p = oo this is not as trivial as the proof of (1.2), and the domain of —A in
Co(€2) has to be restricted to u with Au = 0 on 012, see, e.g., Pazy [7].

For later reference we sketch a proof in the one-dimensional case for 1 < p < o
which yields a bound that is not uniform in p. For this, we multiply (1.4) by
¢ = 4i|ul[P~2 and integrate over Q to obtain, after integration by parts in the second
term,

1 1
(1.6)  Allull? +/ o (a|ulP~?) do = (f,uluP™?), where (v,w) = / v dz.
0 0
To proceed we think of (1.6) as a relation of the form

(1.7) ae'? +be¥ =¢, with a,b>0, ¢, ¥ € R,

and note that, by multiplication by e~¥ and taking real parts, since cos(¢—¢) > 0,
this implies

(1.8) a<le, i |p—1|<

bo | 3

To apply this to (1.6), with ¢ = arg), we show that the argument i of the
integral term satisfies |¢| < arcsin|1 — 2/p|. For this we study the integrand

-2
Ky = o (aul?~) = J' Pl + £ ()@l

2 2
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Setting u/*u2 = e, we have K, = (1/2)r?|uP~*(p+ (p—2)e**), so that we easily
find |arg K,| = |arg(p + (p — 2)e?¥)| < arcsin(|p — 2|/p). Application of (1.8) now
gives

_ _ s . 2
A llp < [(F,wluP=?)| < [ flIpllulB™",  for |arg A < 5 —aresin |1- 1—?\,
which shows

2
(1.9) IR(X; A)||p < for |arg A| < 6, = arccos |1— 5‘ <

b | 3

1
A7
We now want to derive a bound for the resolvent in a wider sector which extends
to the left halfplane. For this we use (1.9) (with A replaced by u) to obtain

1R A)llp < 1R A)llp/ (1 = [A = pll|R(5 A)llp)
1

<——,
| = A= p

Letting || — oo we find || — A — p| — |A[cos(|arg A| — 6,) and hence, with
My(p) = 1/(cos(|e| — ),

if [arg u| = Op, |A—pl/[p| < 1.

(1.10) 1RO A, < w

. for 6, < |arg\| < 6, + g
In particular, for p > 2, if we assume that |argA| < T + arcsin(1/,/p), then
cos(|arg A| — 6,) > cos(arcsin(1/,/p) + arcsin(1—2/p)) = 1/,/p, and hence

p m .1
1.11 IR(A; Al < L, for |arg \| < — + arcsin —;
. S Tx 2 T
for p < 2 the corresponding inequalities hold with p replaced by the conjugate
exponent p’ = p/(p — 1) in the bounds; note that |1 —2/p'| = |1 — 2/p|.

The estimate (1.9) shows that E(t) can be extended into a contraction semigroup
in L, for ¢ in the same sector in the complex plane, i.e.,

(1.12) IE®)|lp <1, for |argt| < 6,, 1<p<oc.

The inequality (1.10) (or (1.11)) shows that the semigroup FE(t) is analytic in
L,, and by the theory of analytic semigroups one may conclude that in addition to
stability E(t) has the smoothing property ||E’(t)||, < Cp/t for p > 2 (cf. Pazy [7]).
Using (1.12) one may demonstrate directly the sharper smoothing estimate

1
1

In fact, using an eigenfunction expansion we note that E(t) = ¢!~ may be thought
of as analytic in ¢t in Ly. Using the Cauchy formula in the circle 4, (¢) with center
at t € Ry and radius r = tsin 6, we may write

113 IOl < 5 (/r-T+

), for real t > 0.

o=t [ B g LB
2mi e (t) (T—t) 2w 0 (f,-eup)

3
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and hence (1.12) yields || E'(t)||, < 1/r. Since sin®#, = 1—cos? 0, = 1—(1—-2/p)? =
4(p — 1)?/p?, this shows (1.13).

We owe to Cesar Palencia the observation that a slightly weaker version of (1.12)
may be obtained by complex interpolation (see, e.g., Davies [4], Theorem 1.4.2)
between || E(t)||2 < 1 for Ret > 0, which is obvious by spectral representation, and
|IE(t)||lco < 1 for ¢t > 0, which follows by the maximum principle. For p > 2 we
then obtain ||E(t)||, < 1 for |argt| < «/p (which angle is smaller than 6, ~ 2/,/p
as p — 00). This method also yields somewhat weaker resolvent estimates than
(1.10) and (1.11).

The inequality (1.12) appears indeed to be optimal in the sense that F(t) cannot
be a contraction in a wider sector than |argt| < 6,. To elucidate this we consider
the case that @ = R and p > 2. We note that if |[E(pe®)v|l, = |lu(pel)], is a
contraction for p > 0, then, for appropriate initial values v,

d . :
—/ \u(pe‘6)|pdp‘ :Re/ [P~ 250" e da
dp Jr p=0 R

—9 :
= —Re/ (1[2—)|v|p_2|v'|2 + pT|v|p_4172(v')2)e‘9d:c < 0.
R

Choosing v(z) = e=¢"“*"/2, with w arbitrary in (—7/2, 7/2), this shows

Re/ w|Pz?(p + (p — 2)e**)e?da > 0,
R

or |# + arg(1 + (1 — 2/p)62i“’_)| < w/2 for |w| < w/2. But since we easily find
max|,|<q/2 | arg(p + (p — 2)e**)| = arcsin(1 — 2/p) = 7/2 — 6, we conclude that
0] < 6,,.

We now consider semidiscretization in space of (1.1) by piecewise linear finite
elements. In the one-dimensional case (d =1),let 0 =29 < x1 <---<zy =1 be
an arbitrary partition of 2 and let S;, be the continuous piecewise linear functions
on {2 which vanish at = 0 and z = 1. In the two-dimensional case (d = 2), let Ty,
denote a regular triangulation of €2 and let S; be the continuous piecewise linear
functions on 7 which vanish on 0f2. In each case the corresponding semidiscrete
problem is then to find U = U(t) € S such that

(1.14) (Us,x) + (VU,Vx) =0, VYx €Sy, fort>0, withU(0)=VW.

The solution operator Ep,(t) defined by U(t) = Ej(t)V is then the semigroup gener-
ated by the discrete Laplacian defined by (A, x) = —(V, Vx) for ¢, x € Sp. Un-
der the assumption of quasi-uniformity of the partitions it was shown in Crouzeix,
Larsson, and Thomée [3] for d = 1 and for general dimension in Thomée and
Wahlbin [11] that the analogue of (1.3) holds for Aj and that thus Ej(t) is an
analytic semigroup in S, equipped with the L,-norm, uniformly in p and h.

The problem we want to address here is thus the possibility of removing the
restrictive and undesirable assumption of quasi-uniformity of the partition. For
d = 1 this assumption means that with h; = z; — x;_; the ratios h;/h; are bounded
for all 7, 7, and for d = 2 that each triangle of 7, contains a circle of radius ch with
¢ > 0 independent of the maximal diameter h of the triangles of 7.
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In order to show stability results for nonquasi-uniform partitions we have had
to modify our semidiscrete method (1.14) by applying a quadrature formula to the
first term. We begin to do this for d = 1. Noting that U € S}, is defined by the
values U; = U(z;) we introduce the discrete inner product

N-1
(V, W) = Z k;V;Wj, where r; = 3(h;j + hjt1).
j=1
The semidiscrete problem now reads
(1.15) U, x)n+ (U, x') =0, Vx€S,, fort>0, withU(0)=V.

The definition of the discrete Laplacian Ay : S, — Sy, takes the form

(]‘16) (Ah¢,X)h = _(,(pl’ Xl)7 le7 X € Sha
and we find easily

(U1 =U; Ui =Uj
hjt hj

(1.17) (ARU); = )/kj, forj=1,...,N—1.

The parabolic problem (1.15) may also be written as the semidiscrete finite differ-
ence equation

(1.18) U — AU =0, fort>0, withU(0)=V.

Denoting by Ej(t) = et the solution operator of (1.15) (or (1.18)), it is easy to
see that this is a contraction semigroup on S with respect to the maximum-norm

HER(#)Vlloo < IVlloo,  where [[V]joo = [[V']|n,c0 = max [Vj].

This follows easily by a discrete maximum-principle but may also be expressed by
saying that the resolvent R(\; Ap) = (M — Ap) ™! satisfies

1
(1.19) IR An)loo < 5, for A > 03

this is a special case of the discrete analogue of (1.9) which is contained in Theorem
2.1 below.

We are also able to show that the analogues of (1.10) - (1.13) hold in this case
with respect to the natural discrete L,-norm,

N
(1.20) Vil = (3 #;V37) ™.
j:l

For p = oo one may use the analogue of (1.11) to derive a corresponding maximum-
norm bound with the factor ,/p replaced by |log k|'/? where k£ = min; k;; this will
result in a smoothing estimate in maximum-norm with a factor |log x|'/2.
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Under the very weak condition on the partition that h;/h;+1 is bounded we are
also able to show in Theorem 3.1 that the resolvent is bounded in maximum-norm,
and hence uniformly in L, for 1 < p < oo. The proof is based on that in Crouzeix,
Larsson, and Thomée [3] and uses a weighted norm estimate for a discrete Green’s
function, with a weight depending on the partition.

The approach taken above for 1 < p < oo carries over to two space dimensions
and we thus show in Theorem 4.1 analogues of the resolvent estimates (1.9) - (1.11),
for piecewise linear finite elements on not necessarily quasi-uniform triangulations,
but assuming these to be of Delaunay type. Again this will show a maximum-norm
estimate with a constant depending this time on the logarithm of the minimum
area of a mesh neighborhood of a vertex.

In Section 5 we shall apply our resolvent estimates to show some stability esti-
mates for fully discrete finite difference schemes for our parabolic equations in one
and two space dimensions.

We begin to consider the stability of the fully discrete backward Euler method
ford=1: Let 0 =typ <ty <---<t, <... be a partition of the positive time axis,
set k, = t, — tn_1, and let U™ = U(t,). With 9,U™ = (U™ — U™ 1)/k we may
then pose the problem

Ok, U™ — ARU™ =0, forn>1, withU°=V.

Setting Exp, = (I — kAy)~! this may also be expressed as

(1.21) U" = By, yU"" = Epp(tn)V, where Egp(tn) = [ [ Ek;n-
j=1

Since Exp, = k™ 1R(k™1; Ap), (1.19) shows that ||Expllnp < 1 and hence

n
1Exkn(tn)llnp < T [ 1 Bk;nllnp <1, for 1 <p <o
1=1

A corresponding result for d = 2 will follow from Theorem 4.1 below.

For the purpose of treating more general time-stepping methods of the form
(1.21) where now Ey, = r(kAp), with r(A) is a rational function, we show in
Section 5 a slight modification of a Banach space result of Bakaev [2] which permits
application of our resolvent estimates in the complex plane. In particular, if () is
A-acceptable, so that |[r(A)| <1 for Re A < 0, and if |r(00)| < 1 then the resolvent
estimate (1.10) implies a stability bound of the form

| Exn () Vine < CpllV|np, for 2 <p<oo,

with a certain modification for p = co. If |r(c0)| = 1 a logarithmic factor may have
to be added to the stability bound unless the time stepping is quasi-uniform, see
Section 5 for details.

2. Resolvent estimates in one dimension.

We begin by showing a resolvent estimate in the discrete L,-norm which is valid
for any choice of the partitions of Q@ = (0,1).
6



Theorem 2.1. With Ay defined by (1.16) we have

2
(2.1) IR AR)|lnp < for |arg A\| < 6, = arccos|1— 2—9|, 1<p< oo,

1
Al -
and, with My,(p) = 1/ cos(|¢| — 0,),

My (arg A)

T
Further, with £k = min; k;
. | log &'/? m 1
(2.3) IR(A; Ap) oo < eT, for |arg A| < B + arcsin W.

For the proof we need the following lemma:

Lemma 2.1. Let z and w be two complex numbers and set
H, = (w—2)(wlwP~? — z|2[P~?), where1 < p < .

Then 9
|arg H,| < arcsin|1 — —|.
p

Proof. Setting d = w — z and ¢(t) = d(z + td) |z + td|P~? we may write
- 1
Hy = Al )2 + P~ = a2l = p(1) - () = [ @O
0

I | .
and it hence suffices to show |arg ¢’(t)| < arcsin |1 —2/p|. With d? (z + td) = re'¥
we have

-2 2 .
@(t) = SlAP et 4P =d? 1) otdP ™ = Je+tdP % (o (p-2)e™),

and the desired result then follows as for the continuous case in the introduction.
O

Proof of Theorem 2.1. Introducing the discrete elliptic problem to find U € Sj,
from

(2.4) AU — AU = F,

we have U = R(A; Ap)F so that the statement (2.1) will follow from

1
(2.5) Uy < 5 1Pl for A >0
We obtain from (2.4)
(26) )‘(Ua X)h + (U/7 XI) = (F7 X)h7 VX € Sh7
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and choosing x = I, (U|UP~2) where Iy, is the interpolant into S; we have
Zh H, j, where Hy; = (Uj — Uj—1)(U;|U;[P~* = Uja|Uj—1 7).

Note that each Hy, ; is of the form of H, in Lemma 2.1, and this lemma therefore
shows |arg(U’, x")| < arcsin |1 — 2/p|. We may now think of (2.6) as a relation of
the form (1.7), and the argument in the proof of (1.9) may again be applied to show
(2.1). We then deduce (2.2) from (2.1) in the same way as (1.10) follows from (1.9)
(for p = oo, let p — o0). In particular (1.11) holds in || - ||»,, with A replaced by
Ap.

To show (2.3) we note that, with & suitable,

1T np < Tlloo = 3, /P (s [URP)P < 677U g, for U € Sh,

Therefore for p = | log k|, we have |R(A; Ap)|loo < €||R(A; Ap)||h,p, and the desired

result now follows from the analogue of (1.11). O

In the same way as in the introduction, Theorem 2.1 can be translated into
properties for the semigroup Ej(t) = et®r.

Corollary 2.1. We have

2
(2.7) WEL()|lnp <1, for|argt| <6, =arccos|l— 1—)|, 1<p< o,
and
(2.8) tELO|hp < ), fort>0, 1<p<oc.

3. A logarithm free maximum-norm estimate for the resolvent for d = 1.

In this section we show a maximum-norm bound for the resolvent which is valid
in any sector in the complex plane not containing the negative real axis, under a
mild condition on the partition.

Theorem 3.1. Assume that hji1/h; < p. Then, for any 0 < ©, we have, with
C=0Cy,,

[B(A; An) ||

C
,pgm, for |largA| <6, 1<p<cc.

Proof. It suffices to consider the case p = oo. The proof is a modification of that
in [3]. We remark that the problem (2.4) can be written, with ay, B positive, cf.
(1.17),

—arUgs1 + (ak + B + AUk — BrUk—1 = F,

Assuming that £ is such that |U||co = |Uk|, and noting that oy + B = 2/(hrhk+1)

we deduce

(3.1) A U] < [1Floo +
8

4
—|Ug|.
hkhk+1| 4



Assume first [A| > 6/(hghg41) so that

42
< 24
hihg+1 3

Then (3.1) implies
3
1Ulleo = 1Uk| < 5711 lloo,
Ry

which is the desired result for these .
The main part of the proof will concern the remaining case |A| < 6/(hghk+1)-
We introduce the discrete Green’s function G; = G; k() € Sy, by

X', G") + X, G)n = Xk VX € Sh,
and use it in the representation
Uk: = (UI, GI) + )\(U, G)h = (F, G)h

Since thus
Uk| < |F'llh,00llGlln,1,

it suffices to show

(3.2)

C
h,1 S W, for ‘)\‘ S 6/(hkhk+1)

This will be done by a weighted norm technique.

In [3], where quasi-uniformity of the partition was assumed, the weight function
used was of the form w(z) = 675 lz—2k| with 4 appropriately small. Note that then,
for z = z; >z, w(z;) = Hg=k+1 e"¢hi and similarly for z; < xj. Here we set,
with ¢ = |A|'/? and « to be chosen later,

L, for j =k,
wj = Hg=k+1(1 +v€hi), for j > k,
Hf:j-u(l + v€hs), for j < k.
We shall show that

|Gw||n < CE™3? and |lw™H|s < CETV2.
Together these inequalities imply
1Glln1 < IGwlallw™ I < CE2 = CIAITY,

which is our claim (3.2). We begin with the bound for w™'. For this we note that
wj_l < (1+ |zj — zk|y€)™!, and hence
1+p

5 (1 + |y — zk|v€) " 2dy
0

lw™ Ik = Z kjws 2 < 3 (hk + hrg1) + ——

° C
§5k+(1+ﬂ)/ (1+?J’Y§)_2dy=%+0hk <c¢t
0
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For the desired bound for Gw, let V' € S}, be defined by V; = Gjw; for j =0,..., M.
We shall then show that, for v suitably chosen,

(3-3) IV'II* + %IVII; < e

We note that with W € S}, defined by W; = ij?. = Vjwj, for 7 = 0,...,M, we
have ||V||2 = (W, G)p, and (W',G’) + A(W, G)p, = Wi, = Vj,. Hence

V12 +MVIE = IVII? = (W', G") + (W', G) + AW, G = [V'|I* = (W', &) + Vi
Since |argA\| < 0 < 7 and |a + bel?| > cos(6/2)(a + b) when a, b > 0, this shows

(3-4) (||V'||2+£||V||h)cos— V2 + AIVIE] < Vel + V]2 = (W', G").

We can bound the first term on the right by

(3-5) Vil < [Vlloo < VIV'IHIVIIR

1
2 V/ V <_ V/2 2V2.
<g& ™ IV ”h—8§+6(“ 17+ &V I7)

For the last term on the right in (3.4) we write

N
IV'|)? = (W', G") = Zh (1Vi =Vjmr|? = (W =Wi1)(Gj = Gj-1))) = D h; ' B;.
Here, since W; = Vjw;, G = ijj_l,

Bj = V;Vj_1(wjw 1)+ ViVj—1(wjwy ' = 1)

Wi 1 J

= ViVi(wjw; oy + wjmw; ' = 2) = V; 0;V (wjw; sy = 1) = V; 0;V (wj—1w; = 1).
Here

ij

-1 1= { hJ’YSa lf] > k7
7 —hiv€(L+ hjv€)™,  if j <k,
and similarly

L { —hiyE(L+ hyy)7Y i >k

wj—w; - —1= L

I hj’)/ga lfj < ka

and hence
Wi, _ 1 Fwjw; T —2= ( j7§)2(1 + hj7§)_1-
Thus, using also h; < phj_q,
hi 1Bl < hyv?€|Vy|? + 24€|V; | 10V5] < e HaV;]? + Cey?e® (hy + 1) |V,

from which we deduce
V]I = (W', G") < €l[V'[| + 20|V 7.

Choosing € = (cos(0/2))/4, v* = ¢/(2C.), and using (3.5) we finally obtain the
estimate (3.3) from (3.4), with the constant C = 1/(cos(6/2))%. The proof is now
complete. 0
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4. Resolvent estimates in [/, in two dimensions.

In this section we consider the initial boundary value problem (1.1) where 2 is
a two-dimensional convex domain and 9f2 is smooth. Let 7, = {7} be triangula-
tions of Q C R? without any particular restrictions, and let Sj denote continuous
piecewise linear functions on 75, which vanish on 9Q. Let {P;}2* denote the inner
vertices of Sp, and {P; }%"flvjh the ones on 9. Further, let {®;} I+ TMr g,
be the corresponding basis functions, with ®;(F;) = 6,5, and set U; = U(P;) for
U € Sy, so that U; =0 for j = Np, + 1,. Nh—|—Mh

With (-,-) the inner product in L, (Q) the semidiscrete problem is now to find
U(t) € Sy, such that

(4.1) (U, x)n + (VU,Vx) =0 Vx €Sy, fort>0,

where the discrete inner product is defined using quadrature by
(VW)=Y Q. (VW), where Q,(f) = sarea(r) Y _ f(P
TETH PjeT
or
Np
(V,W)n=>_r;V;W;, where r; = Z area(T
j=1 P €T

The semidiscrete problem (4.1) may now be written
U — AU =0, fort>0, withU(0)=Y,
where Ay, : S;, — Sy, is defined by

_(AhwaX)h = (VanX)7 ¢,X € Sh-
We find

(ARU); Zn a;;U;, where oj; = (V®;,V®;), forj=1,---,Np.

=1

We note that ZNh+Mh a;; = 0 since ZNh+Mh o, =

The basis of our [, analysis is the following lemma where for an edge e; of 7j,
defined by two neighbors P;, and Pj,, ;U =U;, —Uj,.
Lemma 4.1. For every edge of the triangulation there is a real-valued constant
vj = —aj,j, such that

(VU,VX) =Y %0;U-9x, VU, x € Sh.
J
If Ty, satisfies the Delaunay condition the constants vy; are nonnegative.

Proof. It suffices to remark that, noting that U; = x; = 0 for Np+1 < j < Np+Mj,

Np+Mp
(VU, VX) = Z Qg sz Za” U U )
1,j=1 i£]
Now, the Delaunay condition means that for all edges of 7, the sum of the two
opposite angles is < 7, which is equivalent to saying that a;; < 0 for 7 # j. O

We are now ready to state the two-dimensional analogue of Theorem 2.1.
11



Theorem 4.1. Assume that the triangulations Ty satisfy the Delaunay condition.
Then the resolvent estimate (2,1) and (2.2) hold with respect to the discrete norm
defined in (1.20).

Further, with kK = min; k;,

| log(k/|92])| /2 m . 1
,  for|argA\| < — 4 arcsin .
A g Al < 5 log(=/|2)[72

[B(A; An)loo <

Proof. We set x = I,(U|U[P~2) in (4.1) and note that by Lemma 4.1

(VU,Vx) = Z%aUa OUP=?) Z%

By Lemma 2.1 we find |argA;| < arcsin|l — 2/p| and hence |arg(VU, V)| <
arcsin |1 — 2/p|. As in the proof of Theorem 2.1 this implies the [,-estimates (2.1)
and (2.2) as in the proof of Theorem 2.1. This time, with k appropriate,

1Ulloo = |Ux| < H_l/p(fﬂ?k|Uk\p)1/p < ﬁ_l/pHUHh,p, for U € Sp,.

and the maximum-norm estimate follows as in (2.3), with p = |log(k/|€2|)|- O

The key points in our proof are the lumped mass discretization of the inner
product in L?*(Q) and the positivity of the v; in Lemma 4.1. Therefore our result
is still valid in three dimensions when the v; are nonnegative (this is true for
some meshes but we do not know if it is compatible with efficient mesh refinement
procedures. For instance, the Delaunay procedure does not imply this property in
three dimensions). Similarly, Theorem 4.1 is valid in the plane for the linear non
conforming element under the asumption that the v; are nonnegative, which is the
case if and only if in each triangle the angles are at most 7 /2.

5. Stability of time stepping schemes.

For the purpose of treating fully discrete methods of the form (1.21) with Ey;, =
r(kAp) and r(\) a rational function we now show the following abstract result based
on Bakaev [1], [2], which is geared to application of our above resolvent estimates
in the complex plane.

Theorem 5.1. Assume that A generates an analytic semigroup in a Banach space
B, so that

IR A) < 2

R for |argA| < tm+6, with § € (0, 1r).

Let 7()\) be a nonconstant A-acceptable rational function, so that |r(\)| < 1 for
ReA < 0. Let {k;}}_, be any sequence of positive numbers. Then there erists a

positive constant C = C(r) such that, with k, = maXj<n, k
Too = 7(00),

. CM(1 +[logi)), i lreel <1,
CRUN ) ) CCSTER vl : Pl <
1 (1+ |10g6] +log(ha/E,), i lreel = 1
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Proof. Since the r(k; A) commute we may assume without loss of generality that
kj < kjy1 for j > 1 so that k, = kp, k,, = k1. Assume first that [ro| < 1. We may
write (with [T, r(k4) = I)

n n—1 J
H (kjA) =ri I+ Zr Bj, where Bj = (r(kj+14) — rool) Hr(klA)
j=1 7=0 =1

and hence
IIHT (kjA)[| < \Tool"+Z\7“oo|J max || Bj-
1=1 7=0

Since |roo| < 1 it thus suffices to bound B; by the right hand side of (5.1). For this
we shall first show that for some constants a, b > 0, and m,

e Al for || <,
(52) o< { o

e , for [A\| <€, |argA| = 57+,
and
(5.3) I7(A) — 7ol <m/|A|, for |A|>¢€ ReA<0.

If |r(0)] < 1 it is clear that (5.2) holds for € small and a,b appropriate, so we
may assume now that |r(0)| = 1. The first inequality then follows at once for €
small enough since log |r(X)| = O(|A|) for |A| small. The second then holds with
b = (sind/d) inf)x <c, Rea<o(log |T(X)|/ Re A|). If the infimum is attained for some
A with Re A < 0, then clearly b > 0. Otherwise, by compactness, the infimum is
attained as a limit A\, — iy with y € R, and we have |r(iy)| = 1. We can write
r(iy+2)/r(iy) = 1+c2"+O0(2F*1) with ¢, # 0 and then log |r(iy+2)| ~ Re(cxz¥).
Since |r(iy + z)| < 1 for Rez < 0, we conclude k¥ = 1 and ¢; > 0. Therefore
log |r(An)|/Re A, ~ ¢1 and b = ¢y 8ind/d > 0. The estimate for () — roo of (5.3)
also follows since this rational function has no pole for Re A < 0 and vanishes at
A = 00.

We may write, with I'; a suitable contour surrounding the spectrum of A, by
the Dunford-Taylor functional calculus,

J
27”/ (r(kjs1A) = roo) [ [ r(ki A R(X; A) d
=1

Recalling that k; < kj11 for j > 1, we shall choose I'; = I') UT'; UT' where, with
tj = Zg=1 ki

={X (A= ¢/t;, |arg Al < 5(m +4)},

={N largA| = 5(m +0), e/t; < [A| < €/k;},

={X largA| = 5(7 +6), [A[ > €/k;}.

1
2
1
2

Starting with I') we have, since [r(A) — roo| < 2 there,

j
‘/ <ol paki|A 197l 2
ro INl=e/t; 11 Al
—oM{(e/t;)! / e N4\ = 2M e 27 = CM.
|A|=€/t;
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For I'} we note that [r(kA)| < 1for A € T3, 1=1,...,j, and that kj1|A] > k;|A| >

€ and hence
/.

Finally, since k|| < kj|A| < e for I <j on T,

o0 o0
d
<mM Ll VI / 2 —om
o/k; Kipa Al W e/k; T

e/k; J

ri e/t; -1 \ | ~ €/t; z
> _dr
=CM e P— < CM(1+ |logdl).
bed T

This completes the proof when |ry| < 1.
Let now |ro| = 1. In this case we have, for ¢ < 1 small enough,

el for [A| <k,
- o< eal A for [A] > 1/e,
. =) e R for |A <e, |argA| = 1(r + ),

e/ for |\ > 1/e, |arg Al = L(x +6),

This time we write

f[ (kjA) =™ I+—/ Hr(k)\ (A; A) dA

where I',, divides the complex plane into two parts, one that contains the spectrum
of A and one that contains the poles of 7(\). We choose I'y, = Ut_,T'}, where with

tn = 35—y kj and & = (327, k)7

To =X (A= ¢/tn, |arg Al < 3(7 +6)},

I’,l1 ={\; |arg)| = 5(7?-1—(5) €/tn < |A < €/kn},
L2 ={X; |argA| = (7 +0), ¢/kn < A < 1/(ck1)},
FB ={\; Jarg | = 5(m +6), 1/(ek1) < || < 1/(efn)},

={X Al =1/(etn), |argA| < (7 + )},

Here, using the first two bounds of (5.2),

‘/ <y atu A AL oo/ G 1B _ oy
rours | = e/t Al IAI=1/(e/En) Al
Further,
e/kn 1/(6£n) ~
‘ / <CM e—b5tniﬂd_x +CM e—b5/(tn$) d_:[,'
riurs €/tn z 1/(ek1) T
> d.
—cM | e <CoM@ +|logdl).
bed z
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Finally,

1/(cks) gy
‘/ <cMm Y OM + log(kn k1),
r2 e/kn €T
Together these estimates complete the proof when |r| = 1. O

Application of this result to Egp(t,) = H?Zl Ej;n, where Epp = r(kAy), with
|Teo| < 1, then shows by Theorem 2.1, in one space dimension (d = 1), without any
restriction on the partitions in space and time (for simplicity we assume p > 2)

Cp'?1ogp||V |h.p» for 2 < p < oo,

5.5) |1 Exn(tn)V]inp <
(5.5) [|[Ekn(tn)V|h.p {C|1Ogﬁ|1/2(1+10g|10gﬁ|)||v|

h,005 for p = 0.

and
|1 Bk (tn)Vkyoo < CullVlnoor  if hj/hjer < p for all j > 0.

In two space dimensions (d = 2) the estimates in (5.5) remain valid, provided the
triangulations are of Delaunay type.

In the case |ro| = 1 stability factor in Theorem 5.1 contains the additional term
log(k,/k,,) which is bounded when the time stepping is quasi-uniform. As may
be seen from the proof, this term arises in the estimate along I'2, and one may
show that this term may be bounded even for some nonquasi-uniform partitions
of the time axis. Consider for example the Crank-Nicolson method, with r(\) =
(1 + A/2)/(1 — A/2). Here one finds easily that (5.4) holds with ¢ = 1. Using
for instance k; = kqj9, with ¢ > 1, we have that k;|A| < 1 for j < [ when
Al € (1/ki11,1/k;) and hence on this interval, since #; > cl97

n
|H7‘(k‘j)\)\ < e WEimi kAl < o=bti/kigr < gl
j=1
Hence
n—1l r1/k d n—1 oM oM
‘/ <CM e—cot 4 <MY e log(kis k) < o <5
I‘% =1 1/kl+1 X = —e

In particular then, the term log(k,,/k,,) may be replaced by §~1, and stability holds
for 6 > 0 fixed. We shall not pursue this investigation further here.
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