ON THE KERVAIRE-MURTHY CONJECTURES

OLA HELENIUS AND ALEXANDER STOLIN

ABSTRACT. Let p be a semi-regular prime, let Cp» be a group of order
p™ and let ¢, be a primitive p"*'-th root of unity. In the present paper
we consider the following exact sequence, which can be extracted from the
Mayer-Vietoris exact sequence

0= V" ®V, = PicZCpn+1 — ClQ((n) @ Pic ZCpn — 0.

In 1977 Kervaire and Murthy established an exact structure for V,;”, proved
that Char(V;}) C Char(V;}) C CI®(Q((n_1)), where V, is a canonical
quotient of V,, and conjectured that Char(V,}) = (Z/p"Z)", where r the
index of irregularity of p.

We prove that under a certain extra condition on p, V,, = CI®(Q(¢n-1)) =
(Z/p"Z)" and V, = @)_,(Z/p" % Z), where &; is 0 or 1.

1. INTRODUCTION

In his talk at the International Congress of Mathematicians in Nice 1970, R.G
Swan named calculation of K¢Zx for various groups « as one of the important
problems in algebraic K-theory. In the nice paper [K-M] published in 1977, M.
Kervaire and M.P. Murthy took a big step towards solving Swans problem in
the case when m = Cj» is a cyclic group of prime power order. Before explaining
their results we recall that KoZr = Z @& KoZn and that KoZn = PicZr. In
this paper we will formulate the result in the language of Picard groups.

From now on, we let p be an odd semi-regular prime, let Cj» by the cyclic
group of order p" and let ¢, be a primitive p”*1-th root of unity. Kervaire and
Murthy prove that there is an exact sequence

0= V5 ®V, = PicZCpni1 — CIQ((n) @ Pic ZCpn — 0,

where
n—1 (p—1)2p"— 1
2

Vo =G x[[C,

p

and Char(V,) injects canonically in the p-component of the ideal class group

of Q(Cn—1)-
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Their starting point is the Mayer-Vietoris exact sequence associated to the
pull-back

X
ﬁ — Z[Gn]

2(X] __Fy[x]
XP"1) ENETE)

Let R* denote the group of units in a ring R. V,, is defined as the cokernel

( Fp[X] )*
(x?" 1)
* Fp[X] v«
Im{Z[GJ* X (garagy)® = (b))
The homomorphism ¢ defined by X — X~! in ( )I(Ffi{]l))* extends to V,, and
Kervaire and Murthy define V7 := {v € V, : ¢(v) = v} and V,; := {v €

Vi : c(v) = v7'}. Getting the exact structure of V, is then just a matter
of a straightforward calculation. When they get to the part of the proof that
concerns VI things get much harder, however. Kervaire and Murthy’s solution
is to consider the group V' defined by V,, := F,[z]/(zP" — 1))*/ Im{Z[(,]* —
Fplz]/(zP" — 1))*} instead. They make extensive use of Iwasawa- and class
field theory to prove that Char(V;) C C1P)(Q(¢,_1)). This is actually enough
since V,, is a canonical quotient of V,, so clearly we have a canonical injection
Char(V,,) — Char(V,)

Kervaire and Murthy also formulate the following conjectures.
Vo =Vn

and

Z
Char(V,"{) = (pn—Z)T,

where 7 is the index of irregularity of the prime p.

In the case n = 1 both conjectures were proven in [K-M] for semi-regular primes
and in [ST1], complete information, without any restriction on p was obtained
by Stolin.

In this paper we will prove that under an extra condition on the semi-regular

prime p, Char(V;F) = C1?P) Q(¢,—1) = (pn%)r. We will also give some informa-
. . ~Y Z

tion on conjecture number one and prove that Char(V,") = @; ( m), where

0; € {0, 1}.
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2. CONSTRUCTION OF NORM MAPS

In this section, we construct certain multiplicative maps. In some sense, these
maps are the key to the result on Picard groups in the following section.

k41
For k > 0andi > 1,let Ay ; := Z[z]/(£5—=1). Note that A, = Z[(,]. Before

zpF —1
we start we need to do some observations. First, for each k¥ > 0 and 7 > 1 we
have a pull-back diagram

U itl

(2.1) Ak i1 Z[Cr+i)
Jkyit1 T
' Ihi \
Api —"—— Dy

An element a € Ay ;11 can be uniquely represented as a pair (a;, b;) € Z[Ck44) ¥
Ap;. Using a similar argument on b;, and then repeating this, we find that a
can also be uniquely represented as an (: + 1)-tuple (a;,... ,Gpm, ... ,a9) where
am € Z[Ck+m)- In the rest of this paper we will identify an element of Ay ;11
with both its representations as a pair or an (i + 1)-tuple.

For k> 0and ! >1 let N;H_l,l : Z[Ck+1) = Z[(k) denote the usual norm.

We want to prove the following result.

Proposition 2.1. For each k > 0 and i > 1 there exists a multiplicative map
Ni; such that the diagram

Z[Cr+4]

is commutative. Moreover, if a € Z[(k+i], then

Nii(a) = (Nt (a), Neio1(Npyin (@) = (Npyin(a), Neyiz(a), - ., Neyi(a)).

The maps Ni; will be constructed inductively. If 7 = 1 and k is arbitrary, we
have A1 = Z[(;] and we define Ni; as the usual norm map Njyq,:. Since

J\~/'k+1,1(Ck+1) = (), we only need to prove that our map is additive modulo p,
which follows from the lemma below.

Lemma 2.2. For k>0 and 1 > 1 we have
i) Agt1, 15 a free Ay j-module under Ty ; — Ty ;.
i) The norm map N : Api1; — Ag,, defined by taking the determinant of
the multiplication operator, is additive modulo p.
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This is Lemma 2.1 and Lemma 2.2 in [ST2] and proofs can be found there.

Now suppose Ny, ; is constructed for all k and all j <7 — 1. Let ¢ = g1, :
Z[Ck+i] = Ak+1,; be defined by p(a) = (a, Npy1,i-1(a)). It is clear that ¢ is
multiplicative. From the lemma above we have a norm map N : A 1; —
Apgi. Define Ny ; := N o . It is clear that N ; is multiplicative. Moreover,
Nii(Ch+i) = N(ChtirTht1,i-1) = N(Tgt14) = Tk, where the latter equality
follows by a direct computation. To prove that our map makes the diagram
in the proposition above commute, we now only need to prove it is additive
modulo p. This also follows by a direct calculation once you notice that

k+i+1
x£+1i -1
pla+b) — pla) —pb) = .,
Ty, —1

for some 7 € Agy1.

Regarding the other two equalities in proposition 2.1, it is clear that the second
one follows from the first. The first statement will follow from the lemma below.

Lemma 2.3. The diagram

N
Z[Ckyi) —— Z[Ck1i-1]
Nk i Nk—l i

A = Ap_1

18 commutative

Proof. Recall that the maps denoted N (without subscript) are the usual
norms defined by the determinant of the multiplication map. An element in
Ay can be represented as a pair (a,b) € Z[(kyi—1] X Ag,i—1 and an element
in Aj_;; can be represented as a pair (¢,d) € Z[(kyi—2] X Ag—1,4-1. If (a,b)
represents an element in A ; one can, directly from the definition, show that
N(a,b) = (N(a), N (b)) € Ag-1,-

We now use induction on 7. If 4 = 1 the statement is well known. Suppose
the diagram corresponding to the one above, but with ¢ replaced by 7 — 1, is
commutative for all k. If a € Z[(;+;] we have

N(Ng,i(a)) = N(N((a, Ngt1,-1(a))) = (N(N(a)), N(N(Nk11,i-1(a))))
and
Ni-1,i(N(a)) = (N(N(a)), N(Nk,i-1(N(a)))).

By the induction hypothesis Ny ;1 o N = N o Ni41,-1 and this proves the
lemma. ]
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3. MAYER-VIETORIS EXACT SEQUENCE FOR PicZCy» FOR 2-REGULAR
PRIMES

By a generalization of Rim’s theorem (see for example [ST1]) PicZCpn =
Pic Ay, for all n > 1. Hence the Mayer-Vietoris exact sequence
Z[Ca]* Aan — D{‘)‘,n — PicAopnt1 — PicZ[(y] @ Pic Agy — Pic Doy

associated to the pull-back diagram 2.1 can be used to find information con-
cerning Pic ZCyn

Since Dy, is local, Pic Dy, = 0 and since Z[(,] is a Dedekind ring, Pic Z[(,] =
ClZ[(,). By letting V;, be the cokernel

Dj
Im{Z[Ca]* x Aj,, — D}

we get an exact sequence
0 — Vi, = Pic Ag ny1 — ClZ[(,) & Pic Agn — 0.

Note that definition of V;, is slightly different from the one from [K-M] but the
two groups are still isomorphic. It is easy to see that Do, = F,/(z — l)p"+1_1.
In this group, let z denote the class of z. and let ¢ : Dj, — Dg, be the

automorphism defined by ¢(z) = z . By abuse of notation we also denote

the induced map on V,, by ¢. Define V;F := {v € V,, : ¢(v) = v} and
V., i={veV, : cv)=v1}

We continue with a theorem about the structures of the groups D,’;,i. First,
let ¢ : Dy ; — Dy ; be the group homomorphism defined by ¢(z) = z, where T
denotes the class of z in Dy ; = Fplz]/(z — )Pt Clea~rly, F, C Djé,z and
by the structure theorem for abelian groups, D;;)i =F,® Dl:,i where Dlt,i is a
p-group. Now define
DZI ={u € ]:7}271 : c(u) = u}
and
f?;;_z ={ue€ b,’;,i s c(u) =u)
Since f);;,i is an finite abelian group of odd order and since ¢ has order 2 we get
~ *+ r)*—
Dy 2 Fp @ Diy © D

n—1 n—1_4

Proposition 3.1. |f)6‘;71| = pp27_3 and |l~)(9)‘,;—1| =p°

Proof. D())k,nfl can be presented as {1+a; (z—z 1)+.. .+apn71_2(fﬂ—.’1}71)pn_172}.
Since c((z—z~!)7) = (—1)/ (z—=x 1) it is not hard to see that 136‘,;71 can be rep-

resented as {1+ai(z—z~ 1) +az(z—z71)3+.. .+apn—1,2(:1:—w_1)pn_l_2}. Hence

n—1 n—1_

n—1

|1~)3;l_1 =p = = and since |1~)§’n_1| =p"" 2 we get |D8;_1| =p~ =z . O
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We will now use our norm maps from section 2 to get an inclusion of Z[(x+;—1]*
into A,‘;,i. Define @i ; : Z[Chti—1]" — A,’;,i be the injective group homomorphism
defined by € — (€, N ;(e)). By proposition 2.1, ¢y ; is well defined. For future
use we record this in a lemma.

Lemma 3.2. Let By; be the subgroup of Al*c,i consisting of elements (1,b), b €
A;:‘,ifl' Then A;::,Z = Z[Ck—l—i—l]* X Bk,i

In what follows, we identify Z[(x1i-1]" with its image in A} ;.

We now need a technical lemma which is Theorem 1.2.7 in [ST3|.

k+i_ k

*) = {6 S Z[Ck—}—ifl]* :e=1 mod N P

Lemma 3.3. ker( hri1

gk,z|Z[<k+i_1]

We will not repeat the proof here, but since the technique used is interesting we
will indicate the main idea. If a € Z[(;4;_1]* and g i(a) =1 we get that a = 1
IIlOdp in Z[Ck—l—ifl]a Nk,i,l(a) =1 IIlOdp in Ak,i*l and that fk’ifl(ap%l) =
Ik,i—1 (Nk%@fl) Since the norm map commutes with f and g this means
that Nk,i,l(“le) = Nk%@fl The latter is a congruence in Ay ; 1 and by the
same method as above we deduce a congruence in Z[(x;—2| and a congruence
in Ay ;9. This can be repeated ¢ — 1 times until we get a congruence in Ay ; =
Z[(k]. The last congruence in general looks pretty complex, but can be analyzed
and gives us the neccasary information.

If for example i = 2, we get after just one step a = 1 mod p in Z[Ck1],

N(a) =1 mod p and N(“p%l) = % mod p in Ay, = Z[(x], where N is
the usual norm. By viewing N as a product of automorphisms, recalling that
N is additive modulo p and that the usual trace of any element of Z[(j1] is
divisible by p one gets that N(a) = 1 mod p? and hence that N(“le) =0

mod p. By analyzing how the norm acts one can show that this means that
k+2_k
a=1 mod X, 77

We now go back to the calculation of the Picard groups. What we would
really like is to get an expression for the group V,,, defined in the introduction.
As we described in the introduction Kervaire and Murthy have shown that
Vo =V, x V;F, given an explicit formula for V,, and shown that when p
is semi-regular there exists a canonical injection Char(V,t) — C1® Z[¢,_1].
As mentioned in the introduction Kervaire and Murthy construct a canonical
injection Char(V;') — CI®) Z[¢,_1], where V, is a group such that V, is a
canonical quotient of V,, (giving a canonical injection Char(V,) — Char(V;})).

In this section we will show that under a certain condition on the semi-regular
prime p, the injection Char(V;) — CI®) Z[¢,_1] is an isomorphism. This will
follow as a corollary to theorem 3.5, which is the main theorem of this section.
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In our setting the group V,, is defined as
*
D 0,n
i ~ ?
Im{Z[(p—1]* — Dg .}

n::

where Z[(,_1]* are the group of all units € such that ¢ = 1 mod A,_;.

We now need to define the condition on the prime mentioned in the introduction.
For more information on this, see [W]. Let B; be the i-th Bernoulli number
and B; , be the generalized i-th Bernoulli number associated to a character x.
Let w be the Teichmiiller character. If p is a semi-regular prime, let 41,...,1,
be the even r indices such that 2 <4 < p — 3 and p|B;. If

B ,i-1 # 0 mod p?

and

for all ¢ € {i1,...,%,} then we will call p 2-regular. The number r = r(p) is
called the index of irregularity. In [W], p202, the following result is proved.

Theorem 3.4. If p is a semi regular 2-reqular prime and r the index of irreg-
ularity, then C1P) Q(Co1) = (Z/p"Z)".

The main step in our approach to the Kervaire-Murthy conjectures is the fol-
lowing theorem.

Theorem 3.5. Let p be an odd semi-regular prime and let r = r(p) be the
index of irregularity. Then |V} = p'™

It is worth noting that calculations have shown that every prime p < 4000000
is 2-regular.

For n > 0 and k£ > 0, define
Upi := {€ € Z[¢,)* : e =1 mod AF}.

Before the proof of the theorem we need some lemmas about these unit groups.
We let UP denote the group of p-th powers of elements in U.

Proposition 3.6. Let p be an odd semi—regular prime and let r = r(p) be the

index of irreqularity of p. Then ‘(’”’"é| =p" for all n > 0.

We let (Z[(,])», denote the Ap-adic completion of (Z[(y]).

Lemma 3.7. Let € be a unit in (Z[(,))x, withe =1 mod /\ﬁnHH, then there

n

exists a unit vy in (Z[Cn])s, such that e =~P. Moreover, y =1 mod Xj ™.

n
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Proof. We will use the \,-adic exponential and logarithmic functions, defined
by power series in the usual way. It is well known that log(1l + z) converges if
v, () > 1 and that exp(z) converges if vy, (z) > p™ + 1, where v, denotes the
valuation with respect to A,. Let e = 1 +x. Then vy, (z) > p" ™! +1 and hence
vy, (2F) > k(PP 4+1). F1 <k <p—1 we get

oy, (2% /k) > k(™ + 1).

Now suppose k > p. Let In be the usual natural logarithm. Let & = [p” where
l €Z and (I,p) =1, then p" <k and

or (k) = (" = p")r < (" = p™)(In(k)/ In(p)).
With this in mind,

ur, (@5 /k) = (" + 1) > (B — )" + 1) — (" — p™)(In(k)/ In(p)) =

n n k—1 (pn—|—1 + 1) ln(p) ll’l(k)
=" - )ln(p)( pntl — pn _k—l)
n bk —1/7In(p) In(k)
> " - )1n(p)(p—1_k—1)20’

where the last inequality follows from the fact that ltn_itl) is strictly decreasing

for ¢ > 2. The calculation above shows that vy, (log(1 +x)) > p"*! + 1. Hence
vAn(% log(1+ z)) > p™ + 1 and we can define y := exp(l—lj log(1 + z)). Trivially,
P = € and since pvy, (7) = vz, (7P) = va,(€) > 0, v € (Z[¢n))a,- In the same
way 7! € (Z[¢n])a, S0 7 is a unit. To show that v =1 mod APt we need to
examine the sum

k

exp(y) =D T

k=0

where y = 11—)10g(1 +2z) =0 mod AP"*! U 1f i is a natural number, the number
of p-factors in 3! is given by [%] + [L} + ..., where [a] stands for the integer

p2
part of a. Hence vy, (i!) < (p"~! —p”)p%1 and U}\n(yk_’?) > k. This shows that
p"—1 y’“
exp(y) = Y T mod XY +
k=0

To examine this sum it is enough to consider the worst case which is when
k = p"~l. By counting p-factors as above, we see that

u,E) =" =) "+ p 1) = -

This finishes the proof since now
n—1
yP _ - _
o () 277 Mt + 1) - —p") =" 4" 2+ L



ON THE KERVAIRE-MURTHY CONJECTURES 9

Proof of proposition 3.6. First, by lemma 2 in [ST1], U ntl ] = Ut i

n,p n,p

and since the \,-adic valuation of ¢ — 1 where € is real is even, U;'an =
vt

U:,pn“ +1- We hence need to evaluate ‘(Jﬁﬁ‘ Denote the field Q(¢,) by

K, and let L, be the maximal unramified extension of K,, of period p. Clearly,
Gp := Gal(L,/K,) = CI?)(K,)/pC1?)(K,), where C1P)(K,) is the p-Sylow
subgroup of the class group of K.

If € € Uy, pnt141, then it follows from lemma 3.7 that the extension K, C
K, (¥/€) is unramified and K,(¥€) C L,. Using Kummer’s pairing we get a
bilinear map Gpn X U, ynt111 =< (o >, (0,€) — o(€)e”'. The kernel on the
right is obviously the group of all p-th powers in U, jn+14; which is (Up pn41)P
. Suppose that the kernel on the lef:f is trivial. Then, by a well known result,
H >~ Char(G,) and hence % =~ Char(G;). But (CI®)(K,))™ is
a p-group, and by results of Iwasawa, has r generators, so |G,;| = p” and this
proves the theorem. So, we only need to prove that the kernel on the left is
trivial (we can restrict ourselves to the +-part). Suppose < o,¢ >=1 for all €.
If we can show that every unramified extension K,, C L of degree p is given by
L = Ky(v), where v is a p-th root of some € € U,, yn+1,1 we are done. Again,
|G, | = p", so there are r distinct unramified extensions of degree p. We now
use induction. Let n = 0 and suppose Ky C L is an unramified extension of
degree p. It is well known that such an extension can be generated by ¢/e for
some unit €. If ¢ € U(f s and € € U({ s+1, then local considerations show that
s < p—1 implies that Ky C Ko(¥/€) is ramified. Hence L = K({/e) where
€€ U&' p = U&' »+1- Now suppose every unramified extension of K,_; is given

by a p-th root of a unit, that is we have r units €1,...,¢, € U,‘l"_l,p,—b+1 such
that every distinct extension FE;, ¢ = 1,2,...r is generated by a p-th root of
€;- Consider ¢; as elements of K,,. A straightforward calculation shows that
€ € U:’an e Hence a p-th root of ¢; either generate an unramified extension
of K, of degree p or ¢/¢; € K,. The latter case can not hold since then we
would get F; = K, which is impossible since F; is unramified over K, _1 while
K, is not. Hence we have found r distinct extension of K, and this concludes
the proof. O

Proof of theorem 3.5. We need to prove that |E3;|/|go,n(Un,1,1)| = p".
We will prove this by induction on n. First, by Lemma 3.3, we have for any
n>1

_|_
Un—l,l
-
Un 1,p7—1

Il

QO,R(Urjll,l)
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. U+
Since go.n (U1 1) C gon(Z[¢n-1]"") C D* the group A is finite. Sim-
1,1

n
nlpnl

ilarl [C” " is finite. This shows that %71 is finite since
y 1 —1,1
P" -1
_|_
|Z[Cn71]*+ H Un—l,l | o |Z[Cn71]*+ ‘
¥ T — T :
Unfl,l Unfl,pnfl Unfl,pnfl

Ifn= 1 this and Dirichlet’s theorem on units tells us that U(f | is isomorphic
to 27 . By proposition 3.6
-3
‘ U(;rl | _ ‘ U(T1/(U(;rl)p | _ PPT
UOp 1 Op v/ ( ) P’

This shows that
| D51l /90,1 (U1 1)| =
so we have proved our statement for n = 1.

Now fix n > 1 and assume the statement of the theorem holds with n replaced
by n — 1. We can write

U:—1,1 i U;—l,l Un 1,pn—1-1 n lp" LS N
Iy |Un+1,,n1 1||U:1pn 1+1|| =
_ U 14 U, Lpr-1-1 Urjf1,pn*1+1/(Urjf1,pn*1+1/)p _
= Iy o miza . 1+1|| UF st/ a7 | =
_ U 14 U, Lpr-1-1 U, 1,pn=141 Udipno1 -1
e L o [ o e
By Dirichlet’s theorem on units we have (Z[(,— 1] A ——1 Since all

quotient groups involved are finite we get that U 1,10 Utl,pn,l, Ut

n n—1,pn—1-1
and Un 1p The rest of the proof is

devoted to the analysis of the four right hand factors of 3.1.

n pn 1_1

n-141 are all isomorphic to /s

Obviously,

n

U+ p —p -1 n_,n—1
n—lpr—l41 7 2 ﬂCp » 1

— P

U 1o 0P (pz)

This shows that
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Moreover, by proposition 3.6

‘ U;fl,p"fl ‘ oy

(U:—l,pn—l-q-l)p -r
We now turn to the second factor of the right hand side of 3.1. We will
show that this number is p by finding a unit € ¢ U;;_l 41 such that < e >=
U:—l,p"—l—l/U:—l,p"—1+1' Since we know that the p-th power of any unit in
U:—l,p”*1—1 belongs to U:_l,pn,lﬂ this is enough. Let ( = (,—1 and n := (pn2+1 .

n—1 _(.n—1
Then 7% = ¢ and ¢(n) = ', Let e := T +1:7’—(1p D Then c(e) = € and

7
one can by direct calculations show that e is the unit we are looking for.

We now want to calculate
+
U, 1,1

n—
_|_
Un—l,p"*1—1

Consider the commutative diagram

Z[Cnfl]*

NO,n—l
fO,n—l

* : 90,n—1 %
0,n—1 DO,n—l

It is clear that fon-1(U,y ;) C f)éj;hl and that gon—2(U, 5,) C f)g;fl.

n
Recall that Af, | = Z[(,—2]" ® B and that the norm map Ny,—1 acts like
the usual norm map N = Nn_l,l 2 Zn-1]* = Z[(n—o]*. Tt is well known
that N(Cp—1) = (p—2. By finding the constant term of the minimal polynomial
(x —1)P — (2 of A\—1 we see that N(A,_1) = A\y—2 and by a similar argument
that N(¢¥_, —1) =¢¥_, — 1 when (k,p) = 1. Since N is additive modulo p we

get that NO,n—l(Uvj—l,l) - U:—z,l- Hence we have a commutative diagram

+
Un—l,l

f

NG

+ 9 H*+
Un—2,1 ’ DO,nfl

We want to show that f(U; ,,) = g(U, ,,). Since f(U; ;) C g(U," ,,) by

n
commutativity of the diagram above, it is enough to show that N is surjective.
Pt

In Z[(;], let wj :=—(; *  and consider

Vil = —1-
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If we fix (; = eV =1/P*Y) e see that

o sin(lﬁ/pﬂ'l)
P sin(m /pi )
and hence real. Moreover,
-1
= l4+137
= w b
Yi,l G —1

so when (I,p) = 1 the ;; are units. Let J; be the group of positive real units
in Z[¢;] and let Jy; be the subgroup generated by v;;, | € {2,3,..., (™ —
1)/2, (I,p) = 1}. This is a well known construction and the details can be found
in [W] p 144. Since v, is real, it is congruent to a rational integer a mod ()\3)
Off course, a Z 0 mod (p). Hence a?~! = 1 mod (p) and this shows that
'yjp,_l =1 mod ). Withj = n — 1 this shows that 'yzj,l e Ul 1,1 and with

7 =n—2 that 'yn 2l € U _9,1- Now, a straightforward calculation shows that
N(7n—1,l) = '7n—2,l SO Jon e N(U:_l,l). Let AT = h(Q(¢n—2)") be the class
number of Q(¢,—2)". By corollary 10.6 on p. 187 of [W] p|h(Q((n—2)") implies

plh(Q(¢)™) and since p is semi-regular we get that (p,ht) = 1. By Theorem
8.2 on p. 145 of [W] we have

Jn—
JOn 2

Now take arbitrary € € U," _91- Then €2 is positive and hence an element of .J,, 5.
By the fact above there exists s € Z such that (s,p) = 1 and €?* € Jy,_o. This
means that e25(P-1) ¢ N(Ur‘l"_l,l). Since (2s(p — 1),p) = 1 we can find u,v € Z
such that 2s(p—1)u+pv = 1 s0 € = 2P~ Dutpv — (25(=D)u(eP)v ¢ N(UT 1)-
This shows that N is surjective.

| =

We will now use our inductive hypothesis. This means that |D0 n1/9U,- 2,1)| =
p("=Dr_ 1t is easy to see that ker(f) = U"

n—1,pn—-1-1 50
n
and
IU+U—1+11\ = 19U, = D _plp (07 = ===t
i

by proposition 3.1 This finally gives

Vil = [DgplleU_i )l =
p—3 _ — 73 _ _ _pnfpnfl
= pz -p —2 +(n l)r_pl.p 5 —|—1.pr:pnr

which is what we wanted to show. O
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Recall that Kervaire and Murthy have proved that there exists a canonical
injection Char(V;") — C1®) Q(¢, 1). By theorem 3.5 and theorem 3.4 the two
groups have the same number of elements we get the following corollary

~

Corollary 3.8. Let p be a semi regular 2-regular prime. Then Char(V;}) =
Cl?) Q(¢n1) = (Z/p"2)".

Finally, it is not hard to show that V,, and V,, do not differ by too much. Recall
from lemma 3.2 that A, = Z[(y—1]" X Bo,n. If (1,€) € By, then e =1 mod (p)

and ¢® = 1 mod (p?) in Af n—o- This also means that (" —1)/p = 0 mod (p) in
A§ n—o which is enough for (1,e)? = (1,1) mod (p) in AF,,_; to hold. By abuse
of notation,
V. Va =
" Im{B, = D§,}*
so the discussion above together with the preceding corollary yields the corollary
below.

Corollary 3.9. V, 2 @/_, Z/p"%Z, where §; € {0,1} for all i

1%
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