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Abstract

For a self — adjoint operator A with spectral family E4(-) and a Borel
set B in R let Ap and Ag\p be the unique self — adjoint operator in
ran E4(B) and ran E4(R \ B), respectively, such that

A= Ap ® Ap\p-

Let S be a symmetric operator with deficiency indices (n,n) and gap
J. Then for every self — adjoint operator A*** such that

dimran E gevws (J) < 1
there exists a self — adjoint extension A of S such that

Ay ~ A%
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1 Introduction

Let S be a symmetric operator. Suppose that the open interval J is a gap
of S. In the year 1947 M. G. Krein [13] has given the complete answer to
the question about which kinds of spectra the self — adjoint extensions of S
can have inside J in the special case when the deficiency indices ni(S) :=
dimker (S* F1) of S are finite. In the present paper I shall give the complete
answer in the general case.

Above question is part of a great research program. During the last seventy
years one has tried to find methods which make it possible to determine the
spectral families F 4(-) of self — adjoint operators A occurring in mathematical
physics, e.g. Schrodinger operators. This was, of course, partly motivated
by the fact that the measure

pra() =l EaC)f I

equals the probability distribution for the energy if A is the Hamiltonian of
a quantum system and the system is in the (normalized) state f.

Usually one is not able to give explicitly the spectral family E4(-) but one de-
rives certain useful partial results. E.g., it might be possible to determine the
eigenvalues E and corresponding eigenvectors f of A, i.e. the real numbers
E and vectors f # 0 such that pr4 =|| f ||? 0r, i being the Dirac measure
with mass in E. It might also be possible to determine the spectrum o(A)
of A, i.e. the smallest closed subset C' of R such that

praR\C) =0

for all f in the underlying Hilbert space. Moreover every self — adjoint
operator A can be uniquely represented as

A= A% @ AP @ A

where A%, APP and A®¢ is a self — adjoint operator in the closed subspace
of all f such that the measure uy 4 is absolutely continuous with respect
to the Lebesgue measure, a pure point measure and singular with respect
to the Lebesgue measure and continuous, respectively. One is also strongly
interested in the sets

0ac(A) :=0(A%), o0p(A) == 0(APP), 04 (A) = o(A*).
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Note that o,,(A) equals the closure o,(A) of the set 0,(A) of eigenvalues of
A.

While for a long time one had concentrated on the absolutely continuous
spectrum o,.(-) and the point spectrum o,,(-) it became clear during the last
decade that “singular continuous spectrum o.(-) is generic” (cf. the article
[15] by B. Simon and references given therein) and one has investigated this
kind of spectrum more detailed. In particular, it has been shown that in a
wide variety of applications it is useful to know whether the measure piy 4 is
« — dimensional, i.e. vanishes at every set with Hausdorff — dimension less
than o and there exists a Borel set B with Hausdorff — dimension « such
that ura(R\ B) =0, cf. the recent work [12] by A. Kiselev and Y. Last and
references given therein. For arbitrary o € [0, 1] let 0,(A) be the smallest
closed set C such that psa(R\ C) = 0 for every f such that usa is o —
dimensional.

In a wide variety of models in quantum physics the information about the
Hamiltonian of a given system is incomplete in the sense that one is given a
symmetric operator S which has infinitely many self — adjoint extensions and
one only knows that the Hamiltonian is one of these extensions. We refer to
the books [2], [3] and [4] by S. Albeverio et al. and references given therein
for a discussion of many of these models, namely the so called “zero — range
interaction” or “J — interaction models”.

If only incomplete information is available then one often studies an inverse
problem. The starting point are given properties and one wants to find out
whether there exists a self — adjoint extension with the preassigned properties.
One of the first well known results of this kind is due to K. O. Friedrichs [11]
and M. Stone [16]. They have shown that the open interval (—oo,b) is a
gap of the symmetric operator S, i.e. there exists at least one self — adjoint
extension A, of S such that o(Ay) N (—o0,b) =0, if and only if

(SEHZb LI f e D).

M.G. Krein [13] has shown that the bounded interval (a,b) is a gap of the
symmetric operator S if and only if

15— "29s 12"

feD(S).

If the closure S of S is not self — adjoint then in addition to the self — adjoint



extensions of S preserving the gap J of S there exist other self — adjoint
extensions A of S such that o(A)NJ # (). One might wonder which kinds of
spectra these other self — adjoint extensions can have inside the gap J. As
mentioned M.G. Krein has given the complete answer to this question in the
special case when the deficiency indices of S are finite and in this paper I
shall give the complete answer in the case of infinite deficiency indices.

Thus we know which kinds of spectra the self — adjoint extensions of a sym-
metric operator S can have inside a gap of S. We do not know which kinds
of spectra are possible on the whole real axis. In order to treat this problem
it might be useful to combine the Weyl function approach by V. A. Derkach
and M. M. Malamud ([9], [10]) with the methods described in the present

paper.

In the following ideas and results from the articles [1], [5], [6], [7] and [8] will
play an important role and I shall scetch what is really new in the present
paper. Let T be an operator, f € D(T™) for all m € N and p a measure
with finite moments of arbitrary order such that

@I = [N @), Lm=o,1,...

and p is uniquely determined by the sequence of its moments (this holds,
e.g., if the support of y is compact). Then p is uniquely determined by f
and 7" and one might define y1; := p. If the operator T' is self — adjoint then
this definition is in accordance with the above one, i.e. prr(-) =|| Ev(-) f ||%
Er(-) being the spectral family of 7.

If T is self — adjoint, uy 7 is a pure point measure and pyr a continuous
measure then f 1 ¢. In particular, if f # 0 and pyr a continuous measure
then f cannot be approximated by a sequence {f,}nen such that uy, is a
pure point measure for infinitely many n.

Let S be a symmetric operator. Suppose that the open interval J is a gap
of S and the deficiency indices of S are infinite. Let p be a finite measure
with compact support in J. Then, in contradistinction to the self — adjoint
case, there exist f and f,, n € N, such that the measures usg- and py, s-
are defined, ji, ¢« is a pure point measure for every n € N,

prsr =p, and S™f, — S™f, n—o00, m=0,1,....



An explicit construction of such f and f,, n € N, is given in the proof
of the Lemma 10 below (under mild additional conditions on u). If one
combines this new result, which might be of interest in itself, with ideas in
the mentioned articles then one gets a proof of the main theorem of the
present paper.

2 Results and Proofs

Let A be a self — adjoint operator in a Hilbert space H. By the spectral
theorem, A has a unique representation of the form

A= / MEA().
Here E4 denotes the unique mapping from the Borel algebra B(R) of R into
the set of orthogonal projections in H with the following properties:

(i) For every f € H the mapping B || E4(B)f ||? from B(R) to the interval
[0, || f |I?] is a measure with total mass || f ||?. This measure will be denoted

by HfA-
(i)
D) = {FeH: [ fupald) < o),
Ar.f) = [tualdo, fe D).
For every Borel set B C R the operator E4(B) will be called the spectral

projector corresponding to A and B.

It easily follows from the spectral theorem, that for every Borel set B C R
we have
H =ran E4(B) @ ran E4(R\ B)

and there exist unique self — adjoint operators Ap in ran (E4(B)) and Ag\p
in ran (E4(R \ B)) such that

A= Ap ® Ag\s.



Inside B the operators A and Ap have the same eigenvalues and for every
eigenvalue E' € B of A the multiplicity mult (E, A) of E as an eigenvalue of
A equals mult (E, Ap).

For open sets J we have in addition that

pg,a(B) = piya,(B)
for every Borel set B C J and every f € H. In particular, we have
o(A)NT =0(A)Nd,  0ac(A)NT = 00c(As)NT,  05e(A)NT = 05(As) N,
and for every «a € [0, 1]

oa(A)NJ =0,(4;) N J.

Let S be a symmetric operator with deficiency indices (n,n). Suppose that
the open interval J is a gap of S. It easily follows from von Neumann’s
extension theory that

dimran E4(J) <n

for every self — adjoint extension A of S; “dim” means dimension in the sense
of Hilbert space theory, i.e. the cardinality of any orthonormal base. Up to
unitary equivalence this is the only restriction for the operators A;, A being
a self — adjoint extension of S:

Theorem 1 Let S be a symmetric operator in the Hilbert space H. Suppose
that the open interval J is a gap of S and the deficiency indices of S equal
(n,n). Let A®* be any self — adjoint operator such that

dimran E jaus (J) < n.
Then there exists a self — adjoint extension A of S such that
Ay~ AT,

Remark 2 In particular, A and A®”® have the same eigenvalues inside .J
and for every eigenvalue E € J of A we have

mult (E, A) = mult (£, A™).
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Moreover
o(A)NT = (A" )N, 0. (A)NT = o(Ag)NT,  o(Ase)Nd = o (ASF)N,
and for every « € [0, 1]

0a(A)NJ = 0,(A™) N J.
Remark 3 The theorem had been formulated as a conjecture in [1].

Remark 4 In the special case when the deficiency index n is finite the the-
orem has already been proved by M.G.Krein ([13]).

The first step in the proof of the theorem is to show that the problem can
be reduced considerably. In fact one needs only to prove the following:

There exists a closed linear subspace Hy of H and a self — adjoint operator
M in the Hilbert space Hy such that

MCS* and M =~ A%,

This is a consequence of the following

Lemma 5 ([1], Lemma 2.1 and Lemma 2.2)

(i) Let S be a symmetric operator in the Hilbert space H. Let Hy be a closed
subspace of H and M a self-adjoint operator in the Hilbert space Hq. Suppose
that M 1is a restriction of the adjoint S* of S. Then the operator

Swr = 8" p(s)4p(m); (1)
i. e. the restriction Sy of S* to the space
D(S)+D(M) :={f+g: f€D(S),g€ DM)},
can be represented in the form
Su =M & Gy (2)

for a unique symmetric operator Gy in the Hilbert space Hj .
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(i) If in addition the open interval J is a gap of S and
o(M)cJ
then J is also a gap of Gy and S has a self — adjoint extension A such that

AJ:MJ.

Proof: Let f,f € D(S) and g,§ € D(M). We have

(Su(f+9).f+3) = (S£.f+3)+ (89, f) + (Mg, 3)
(£,8°(f +9)) + (9, SF) + (9, M)
= (f+9,5u(f+9)

Thus S}, is a symmetric operator in the Hilbert space .
Let f € D(Sy). For every n € Z let
Pn = EM([n, n -+ 1))P'Hoa

Py, : H — H being the orthogonal projection onto Hy. Since M is a self—
adjoint operator in the Hilbert space H, it follows from the spectral theorem
that for every n € Z the operator P, is an orthogonal projection in H onto
the closed subspace ran(P,) of H,

ran(P,) C D(M), n € Z, (3)
ran(P,) L ran(P,), n #m, (4)
> P, =Py, (5)
neZ
P,Mg= MP,g, geD(M),nc¢cZ. (6)

Thus we have

(PuSuf,9) = (Suf,9) = (f, Mg)
= (P.f,Mg) = (MP,f,9)
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for every g € ran(P,). In the second step we have used (3) and the facts that
Sy 1s symmetric and M a restriction of Sy,. In the third step we have used
(6) and in the last step again (3). Thus we have

P,Suf=MP,f, necL. (7)
Since, by (7), (4) and (5),

(MP,f, MPyf) = (P.Sucf, PuSacf) =0, k #n,
and

D NMPFIP =Y N PaSuf P = | Puof |I? < o0,

neEL neZ

the sequence {M Y°N . P,f}nen converges in Hy. Since M is closed and,
by (5), limy_ e ij:_N P,f = Py, f it follows that

Py, f € D(M) (8)
and
N
MPy,f = lim ZN MP,f = 2; PoSuf = PyySuf. 9)
n=-— ne

Here again we have used (7) and (5). By (8) and (9),
Su =M ® Gy,
where
Go := Sum D(Sar)NHE -

G, is a symmetric operator in the Hilbert space Hg since Sy is a symmetric
operator in . Obviously the above decomposition of S;, is unique.

(ii) We shall consider the case when J = (—oc,b). The proof in the other
case is virtually the same.

Assume that
(Gof, ) < bl FII? (10)
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for some f € D(Gy). We choose g € D(S) and h € D(M) such that
f=g+h

Then we have

(59, 9) Su(f—h),f—h)
((f,f)+ (h,h))

If =Rl =2bllgl

In the second and the fourth step we have used that Sy, = M @& Gy and in
the third step the assumption (10) and the hypothesis that (M) C J and
consequently (Mh,h) < b||h|? for every h € D(M). (11) is a contradiction
to the hypothesis that (—oo,b) is a gap of S. Thus we have shown that
(Gof, f) > b|| f|? for every f € D(Gy), i.e. that (—oo,b) is a gap of Gy,
provided (—o0,b) is a gap of S.

(
(
b
b

A

Since J is a gap of Gy we can choose a self — adjoint operator G in the
Hilbert space My such that Gy C G and o(G) N J = (. Then the operator
A:= M & (G is a self — adjoint extension of S and

AJ:MJ@GJ:MJ.
a

In the special case when the deficiency indices (n,n) of the symmetric oper-
ator S are finite Theorem 1 easily follows from the above lemma. In fact let
A% he any self — adjoint operator such that

dimran Epeue(J) < n < 00. (12)

Let {E;}¥_, be the family of eigenvalues of A** inside J where every eigen-
value E € J of A%® occurs exactly mult (E, A%®) many times in {E;}% ;.
By (12), k < n. Since the kernel Ny of S* — E is n — dimensional for every
regular point E of S we can choose, by induction, an orthonormal system
{e;}F_, such that S*e; = Eje; for i = 1,... k. Obviously the restriction M
of S* to the space Hy :=span{e; : i =1,...,k} is a self — adjoint operator
in Hyo, M = M; and M ~ A**. Thus it follows from the above lemma that
there exists a self — adjoint extension A of S such that A; ~ A%*.
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In what follows we shall concentrate on the case when the deficiency indices of
S are infinite. Then it is often difficult to give directly a self — adjoint operator
M in some closed subspace Hy of H such that M C S* and M ~ AJ“.
However, since A%** is a self — adjoint operator, it can be represented as

A5 = P Qu,
i€l
for some suitably chosen family of finite measures u; on the Borel algebra of

R (cf. [17], Theorem 7.18). Here ), denotes the operator in L*(R, y) which
is defined by

DQ) = {fel®w: [ Puldt) <o),
Quf(t) = tf(t) p—ae, feD(Q).
Thus first we shall concentrate on the simpler problem how to determine a
closed subspace Hy of H and a self — adjoint operator M in H, such that
McS* and M~Q,

if a measure y is given. Once this problem is solved it is easy to complete
the proof of the theorem. Several ideas will be used for the solution of this
simpler problem. One of these ideas is virtually contained in the proof of the
spectral theorem as given in E. Nelson’s book [14], cf. the following lemma
and its proof.

Lemma 6 Let S be a symmetric operator, i a finite measure on the Borel
algebra of R and f € NpmenD(S*™) such that the support of u is compact and

(S*™f, S*f) =/tm+l,u(dt), m,l=0,1,2,... (13)

Then there exists a closed subspace Hy of H and a self — adjoint operator M
wn Hy such that
McS* and M ~Q,.

Proof: Let H) be the span of the vectors f, S*f, S**f,... and H, the closure
of HJ. Tt follows from (13) that for every finite family {a;}™, in C

IS ausef |P= / > it Puldt).
1=0 1=0

11



Since H] is dense in Hy and the set of  — equivalence classes of polynomials is
dense in L*(R, 11) it follows that there exists a unique unitary transformation

U:Ho— L*(R, p)
satisfying

Uzals*z I za,tz

for 4 —a.e. t € R for every ﬁmte family {ai}z’:O in C.
Let
M :=U""'Q,U.
Obviously M is a bounded self — adjoint operator in Hq and Mg = S*g for

every g € HY. Since HJ is dense in Hy, M is bounded and S* is closed it
follows that M C S*. a

It is easy to give f with the required properties provided p is a pure point
measure:

Example 7 Let S be a symmetric operator. Suppose that the open in-
terval J is a gap of J and the deficiency indices of S are infinite. Let
p=> 0" Bndg, for some summable family {3, },en and some bounded fam-
ily { E, }nen in J. Since for every E € J the space N (recall that Ng denotes
the kernel of S* — F) is infinite dimensional we can choose, by induction, an
orthonormal family {e, }nen in D(S*) such that

S*e, = E,e,
for all n € N.

Obviously

f _zmene N D™,

meN

S*mf:ZE;n Bnen, m=1,2,...,
n=1

and consequently

(S, 5% f) = / ), mal=0,1,2, ..

12



Now let 4 be any finite measure. Due the fact that the set of finite pure
point measures on the Borel algebra B(R) of R is dense in the set of all finite
measures on B(R) it is natural that one tries to use the following strategy
for the construction of a vector f satisfying

(S*™f,8%f) =/tm+’u(dt), m,1=0,1,2,...
One chooses pure point measures j, such that
n — - weakly.

Then one tries to find vectors f,, such that
(5 fuy S fu) = / " (dt), m,1=0,1,2,...,

fTn—Ff

for some vector f and {S*™f,}nen is a Cauchy sequence for every n € N.
If one has shown that there exists such approximating vectors f, then it is
easily seen that f has the required property.

In order to find the approximating vectors we shall apply the following ele-
mentary geometrical result:

Lemma 8 Let P and ) be orthogonal projections. Suppose that there exists
an ¢ > 0 such that

| Phil=c [ h], heran(Q).

Then for every h € ran(Q) there exists an f € ran(P) such that Qf = h
and || Qf ||z ¢ [| £ |-

Proof: For every h € ran (Q)) we have
(QPh, k) = (Ph, Ph) > ¢ || h|* .
For h € ran (@), h L ran (QPQ), it follows that

0= (QPh,h) >c* || b7
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and therefore h = 0. Thus ran (QPQ) is dense in ran (Q).

Moreover we have for h € ran (@) that

| PRIP= (@Ph,) < | QPHII| A
1
< 11QPh || Ph].

Thus
| QPh||>c || PR .

Thus ran (QPQ) = ran(Q). O

The following lemma gives estimates for the distance of various vectors to
their orthogonal projection onto Nz where FE is any point in any gap J of
the symmetric operator S. It will be important that we get upper bounds
which do not depend on the special choice of the symmetric operator S with

gap J.

Lemma 9 Let S be a symmetric operator in the Hilbert space H. Suppose
that the open interval J is a gap of S. Let E € J, {E;}icr a family in J and
{e;}ier an orthonormal system such that e; € Ng, for every i € I. Let P be
the orthogonal projection onto Ng and Q the orthogonal projection onto the
space

Ho := spane; : i € I}.
Then the following holds.
(i) For all h € Hy we have

| h=Ph< sup |[E — E| || k]| .

1
dist (E, aJ) iel

(i) If
sup |E — E;| < dist(E,0J)
iel
then for every h € H, there exists an f € Ng such that

1
Qf=h I fIP< —op A1

dist (E,0)>
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Proof: (i) Without loss of generality we may assume that the operator S is
closed. Then ran(S — E) is a closed subspace of H and we have

(ran P)* = N =ran(S — E).

Let h € Hy. We choose normalized vectors é; € (ran P): and é, € ran P
such that
h = (&1, h)é1 + (&2, h)é,.

Without loss of generality we may also assume that the supremum of the
numbers |E — E;| where the supremum is taken over all i € I is finite. Since
the operator S* is closed and S*e; = Eje; for every i € I and {e;};cs is an
orthonormal family we get that A € D(S*) and

(5" = E)h[[< 3161?|E_ Ef Al

We choose g € D(S) such that

We have 1
NS=BE )< ——
Thus
(€, k)] = |((S— E)g,h)|
(g, (8" = E)h)|
1
< *— E)h
— dist (E,0J) (s Jhll
1
—_— E—-FE| | h].
dist (8, 07) e B - Bl
Since h — Ph = (€é;, h)é; the assertion (i) is proved.
(ii) is an immediate consequence of (i) and the Lemma 8. O

For every self — adjoint operator A the pure point spectral space of A and
its continuous spectral space are orthogonal. Thus, in particular, non — zero
elements in the continuous spectral subspace of A cannot be approximated
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by vectors in its pure point spectral subspace. The proof of the following
lemma will show that in a sense the opposite is true for the adjoint of a
symmetric operator with infinite deficieny indices.

Lemma 10 Let S be a symmetric operator. Suppose that the open interval
J is a gap of S and the deficiency indices of S are infinite. Let E € J and

1
0<e< % dist(E,0J).
Then for every finite measure p on the Borel algebra of R such that
R\ (E —¢,E +¢)) = 0 there ezists an f with the following properties:

(1)
fe ) DE™).
meN
(ii) For alll,m =0,1,2,... we have

(s.57) = [ #muta)

Remark: The reader might be surprised about the constant 1/96. Actually
the claim of the lemma holds under much weaker conditions on the measure
p. It suffices to require that u(R\ J) = 0 and g has finite moments of
arbitrary order, cf. Corollary 12 below. It is not even necessary that u is
uniquely determined by the sequence of its moments and, in particular, it
is not necessary that the support of the measure p is a compact subset of
J. However, the above hypothesis is convenient and, in particular, one can
check easily that all constants ci, ... ,cg in the proof below are well defined.

Proof: We define, by induction, a sequence {f,} converging to a limit f
with the required properties.

n=20

We choose any point E’ € J and any normalized vector e € N and put
fo == n(®)e.
n=>n+1
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Suppose that 2" pairwise disjoint subintervals I1, I, ... , Ion of (E—¢, E+¢),
points E; € I;, j =1,...,2", and an orthonormal system {e;}>", have been
chosen such that

(i) the length of I; equals 2 "' ¢ for every j =1,...,2" and (E —¢, E +¢)
equals the union of these intervals and

(ii) e; € N, for every j =1,... 2™

Let o
In = Z /u(lj)e]"
7j=1
For j = 1,...,2" we choose pairwise disjoint intervals I;;, k = 1,2, such

that I; = I;; U I, and the length of I;;, equals 27" ¢ for £ = 1, 2.

We choose points Ej;, € I, and put, as an abbreviation, for j = 1,...,2"

and £ =1,2
aj = /pu(ly), ok =/ )
and denote by Pj the orthogonal projection onto N, Ejp-

We shall choose, by induction over j, normalized vectors e;, € NEjk such
that with

2
Jrg1 = Z Zajkejk (14)
j=1 k=1
we have for allm =0,1,2,...,
| ™ fag1 = S fu || < c(m)Z’”/‘l (15)

where ¢(m) is a finite constant which does not depend on n.

In order to find such vectors e;; we note that, by the Lemma 9, the linear
mappings Pj; are injective. By hypothesis, the spaces N are infinite di-
mensional for all E' € J and therefore dimNg NV = oo for every finite
dimensional space V. Thus, by induction over j, we can choose an orthonor-
mal system {g;},=1,.. 2» with the following properties:

(i) gj € N, forall j =1,...,2".
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(ii) (gj,e;) =0foralli,j=1,...,2"
(iii) Pjrg; L {e1,...,em}forallj=1,...,2" k=1,2.
(iv) Pjrg; Lgiforall 1 <4,5 <2" i#j, k=1,2.
Now we shall define the e;; by induction.
E
We choose an angle ¢ such that, with
€11 :=sinp-e; +cos@- g, €19 :=COSY - €7 — SN Y - g,

we have
Q161 = Q11€11 + Q12€12.

Let k£ = 1,2. Since |Ey; — E1| < 227" it follows from the Lemma 9 that
|| €1 — P1k€1 ||S 012_n (16)

for the constant ¢; := 2¢/dist(E,0J). Let @ be the orthogonal projection
onto
Hi :=span{ey, ... €, g2, ..., Ggon}.

Since e; L H; it follows from (16) that
| QPer [|< 27
By Lemma 9, this implies that there exists an s, € Ng,, such that
Sk € NEW Qsk = QPeq

and
| s (< 227"
for the constant ¢, := (1 — (2¢)?)/(e + dist(E, 0.J))?)~/2 - ¢;.

We put
dlk = Plkel — Sg-

Then we have
dix € Ngy,  die L Hy
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and
| er —dig [|<es27™

for the constant c3 := ¢; + co.

By Lemma 9, we have
| 91 — Piegn ||< 127"

and, by the choice of the g;, we have in addition that

Pigr L Hi.

By choosing suitable linear combinations of the vectors dix and Pixg; one
can find ey, with the following properties:

eix € NElk, k= 1521 (17)
[ew =1, e Len, (18)
€1k 1 Hl (19)
and
|| €1 — élk ||S 032_n (20)

for the constant cg defined below. In fact, we have
| aer + Bigr — (adii + BPirgr) 11°< 26327 (|af” + [ 6]) (21)
for all @ and (. In particular, with

f11 = singo . d11 + COS © - P11_91,
fi2 :==cos - dia — sin p - Piag,

we have

| €11 = fur [I< ea277, (22)
and

| €12 = fro [|[< ca2™ (23)
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for the constant ¢4 := 2¢3.

Let P be the orthogonal projection onto the space spanned by {d2, Pi2g1}-
By (21), we have

Ph|?>(1=¢c-272) || h|? 24
5

for all h in the space spanned by {d1, P11} for the constant c5 := 2¢4/(1 —
C4).

Since (€11, €12) = 0 we have
(fi1, fiz) = (fi1 — €11, fr2) + (E11, fiz — €12).
By (21) - (23), this implies that

[(fi1, fi2)| < - 27" (25)
for the constant cg := ¢4(2 + ¢4).

It easily follows from (21) — (25) that

| fiil|>1—c-27">0

and Pt
11 n
| fiz — (f11,f12)m >1—¢-2">0
for the constant c; := ¢4 + cg(1 — 1) ™' (1 — ¢2)~/2. Thus the vectors
S Jin
11 =
| fi |l

and

fiz = (fur, fi2) H%lf%
| fi2 — (f11,f12)% I

are well — defined and, by (21) — (25), satisfy the conditions (17) — (20) above
with Cg :— 207.

€19

Before we proceed with the step 7 = j + 1 in the induction let us note the
following fact: Since for 7 = 1,...,2" the spaces spanned by e;, g; are two
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— dimensional and pairwise orthogonal we can, in addition to €;; and €1
choose vectors €, 2 =2,...,2", k = 1,2 such that

& € span({e;, gi}),
Qe; = 1651 + Qo€ (26)
foralle=2,...,2" k=1,2 and
(€iks Ejkr) = 04Ok -
j=>47+1

Suppose that for + = 1,...,j and k = 1,2 vectors e;;, with the following
properties are constructed:

€k € NEzk (27)
€1 1 €;2, || €Eik ||: 1. (28)

e L {egw:1<i'<i—1k=120U{es:i+1<i<2"} (29)
Uf{gy i +1 <4 <2}
|| €ik — éik ||S 082—11 (30)
for the constant cg defined above.

Then e;,11 and e are constructed exactly in the same way as e;; and e;s.
Only instead of H; one chooses the span of the vectors ey, €12, ... , €1, €j2,

€j+2; -+ ,€2n,0542;,--. ; gon.

By induction, we get now vectors e, i = 1,...,2" k = 1,2, such that (27)
- (30) hold for alli =1,...,2" k=1,2.

Next we shall show that the inequalities (15) hold. Let m = 0,1,2,..., We
have

” S*mfn—i—l - S*mfn ||2

2”
= || Z (E;”ozjej —_ E;-?ijlejl —_ E;’%Oéjge‘jz) ||2
j=1

on on
= th — 2Re er.
j=1 j=2
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Here we have put as an abbreviation

A — m . v — m . . —_ m . . 2
ti =l Elaje; — Effajie — Ebage)s [
and
j—l 2
m
Ty = E Ez azkezkaEﬂQ]l@Jl +E 2ag2632)
z:l k=1

and used that e;; L eji ifi # jork #k', e; L ejfori# jandfork,k'=1,2
we have e;;, L € if ¢ < 7.

3 2 — 2 -y P = (Vep N 7 -n
Since of; + o? Gy = o, 1€ + ajojo = aye; and |Ej — Ey| < 2627" for

j=1,...,2" k = 1,2, it follows from (30) that
t;<af2 .M 1< <o (31)

for some finite constant ¢(™ which neither depends on j nor on n. Since

2n
S a? = u(R) (32)
j=1

it follows that

2”
Dty < dmp(R)2
j=1

By Schwarz’ inequality and since e; L e; for ¢ # j we have
ril < N Ef'awer + ...+ EF ol e || -
| Ejiogie; +E jaj2e2 — B e | -

By (32) and since (e;,e;) = d;; for all 1 < 4,5 < 2" the first factor on the
right hand side is bounded by a finite constant which neithers depends on j
nor on n. The second factor equals t;/ 2

By (31), (32) and Schwarz’ inequality this implies that

Sl S

for some finite constant ¢, which does not depend on n. Thus the inequality
(15) is proved.
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By (15), the sequence (S*™f,)nen converges for m = 0,1,2,... Let f :=
lim, ,o fn. Since the operator S* is closed we get that f € D(S*) and
S*f = lim,,00 S*f. By repeating this argument, we get that f € D(S*™)
and

S*™f = lim S*™f, (33)

n—oo
forallm=20,1,2,....

Now note that for allm € Nand [,m =0,1,2,... we have

(S*mfn, S*lfn) — / th/J,n (dt) (34)
where

2n
pn =Y _ (I},
j=1

and for the definition of the I; and E; we refer to the first paragraph of
the step n = n + 1 in the above construction via induction. Obviously the
measures [, weakly converge to p and it follows from (33) and (34) that

(5m5,5"0) = [ e uta)

for all ,m =0,1,2,... Thus the lemma is proved. O

Lemma 11 Let S be a symmetric operator in the Hilbert space H. Suppose
that the open interval J is a gap of S and the deficiency indices (n,n) of S
are infinite. Let p be a finite measure on the Borel algebra of R such that
LR\ (E —¢,E +¢)) = 0 for some point E € J and some ¢ < g dist(E,d.J).
Then there exists a closed subspace Hy of H, a self — adjoint operator M in
Ho and a symmetric operator Gy in Hy with the following properties:

(i) S C M & Gy.

(i) M >~ Q,.

(11i) J is a gap of Gy.

(iv) Let (ng,ng) be the deficiency indices of Go. Then ng > n.
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Proof: First we shall consider the case when the deficiency index 7 is strictly
larger than the cardinality N, of the set of integers.

By the lemmata 10 and 6, we can choose a closed subspace H, of H and a
self — adjoint operator M in H, such that

McS* and M ~Q,.
By Lemma 5, the operator Sy, defined by

Sy = S|*D(S)+D(M)a

can be represented as
Su=M® G

for some symmetric operator Gy with gap J. Obviously S C Syp. Thus we

need only to prove that ny > n where (ng,ng) are the deficency indices of
Gh.

Let 2 € C\ R Let g € ran (S — 2)t N Hg. Then (g,(M — 2)h) = 0 for all
h € D(M) since M is an operator in Hy. It follows that g € ran (Sy, — 2)*.
Since Gy C Sy, it follows that

no > dim (ran (S — 2)" NHy).

Since M ~ @, we have, in particular, that Ho ~ L*(R, ). Thus dim#, <
Rg. Since dimran(S — z)* =n > ¥y it follows that

dim (ran (S —2)"NHy) >n—Ry=n

and the lemma is proved in the case when the deficiency index n is strictly
larger than Nj.

Now let n = Ny. Choose infinitely many pairwise different points E,, n € N,
satisfying
e<|E—E,| <& neN,

for some € < g-dist (£, dJ) and put

o
poe=Y 270g,, fi=p+

n=1
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By the Lemmata 10 and 6, we can choose a closed subspace o of H and a
self — adjoint operator M in H, such that

M ~Q; and M cC S*.

Since obviously
Qﬁ = Qu S Qu’
there exist self — adjoint operators M and M’ such that

M=MoeM, M~Q, M ~Q,.

By Lemma 5 and with the notation of this lemma, we have
SCSu=MaG,CSyz=MaM &G, (35)

for suitably chosen symmetric operators G and Go and J is a spectral gap
both of Gy and G.

Since Gy is symmetric and has a gap it has a self — adjoint extension G.
By (35), M' @ G is a self - adjoint extension of Gy and, since M’ =~ Q,,
each of the infinitely many points F,, n € N, inside the gap J of G is an
eigenvalue of M’ and therefore also of the self — adjoint extension M’ & G
of Gy. Thus the symmetric operator Gy must have infinite deficiency indices
and the lemma is also proved in the case when the deficiency indices of S
equal Ny. O

It is now easy to complete the proof of Theorem 1. Let (n,n) be the deficiency
indices of the symmetric operator S. We have already completed the proof
of the theorem in the case when n is finite, cf. the considerations following
the proof of Lemma 5.

Next consider the case when n = N,. Since the operator A5** is self — adjoint
there exists a family {y;}scr of finite measures yu;, @ € I, on the Borel algebra
of R such that

A% ~ (B Q,,. (36)
el

Since the spectral projector Eaauz(R '\ J) corresponding to A5** and R\ J
equals zero we have

w(R\J)=0, iel.
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Since, by hypothesis, A5"* is a self — adjoint operator in an Hilbert space with
dimension less than or equal to n and here n = Xy all but at most countably
many of the measures u; equal zero.

We can choose pairwise disjoint Borel sets By, k € N, such that
J=|JB: and By C(Ex—epErter), keN
keN
where for every k € N both Ey € J and g, < dlst (Ex,dJ). Since obviously
Q“ - @ QlBk H
keN

(15 denotes the characteristic function of B) for every finite measure y on
the Borel algebra of R satisfying p(R\ J) = 0 we may assume that I = N for
the index I in the representation (36) and that for every n € N there exists
E, € J and ¢, < gdist (E,8J) such that

fin(R\ (Ep = n, By + €2)) = 0.

By Lemma 11, there exist closed subspaces H; andjjlg of H, a self — adjoint
operator M, in ‘H, and a symmetric operator Gy in Hy such that the following
holds:

(i) H =M, D Hs.
i) SC MeaG;.

iii) My ~ Q-
iv) J is a gap of G;.

(
(
(
(v) The deficiency indices of G; are infinite.

Since
SCMioG C(MeG)" =M G CS”

the operator G7 in 7:[2 is a restriction of S*.

By replacing # by H» and S by G4 in the above considerations, we get that
there exist closed subspaces Hy and Hs of H, and a symmetric operator G
in Hs with the following properties:
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(i
(i
(iil) M =~ Qp,.-
(iv) J is a gap of Gb.
(v

) The deficiency indices of G5 are infinite.

Note that
M, C S§*

since

GlCMQ@GQC(MQ@GQ)*:MQGBG;CGTCS*.

By repeating the above arguments, we can prove, by induction, that there
exist closed subspaces H,, and self — adjoint operators M, in H,, n € N, with
the following properties:

(1)

M, ~Q,,, neN (37)

(iif)
M, cS* forall neN.

Obviously

M::@Mn

neN

is a self — adjoint operator in the closed subspace

%0 = @%n

neN

of H and, by (37) and since

A;uw ~ @ Qun’

neN
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we have that
M ~ AT,

Since M,, C S* for all n € N and S* is closed we have
M C S*.

It follows now from Lemma 5 that S has a self — adjoint extension A such
that
Ay~ AT,

Thus the theorem is also proved in the case when n = N;. The proof in
the case when n > N; is the same. One has only to work with transfinite
induction instead of induction. O

Corollary 12 Let S be a symmetric operator in the Hilbert space H. Sup-
pose that the open interval J is a gap of S and the deficiency indices of S
are infinite. Let p be a measure on the Borel algebra of R such that

u(R\J)=0 and /tQ”,u(dt) <oo, n=0,1,2,...
Then there exists an f such that f € D(S*™) for all m € N and

(S*™f, 5" f) =/tm“u(dt), m,1=0,1,2,...

Proof: By Theorem 1, there exist a self — adjoint extension A of S and a
unitary transformation U such that

Ay =U'Q,U.

Since S C A= A" C 5" and A; C A we have AT C S* for allm € N. It
follows that for f := U'1 (1 being the function which equals 1 everywhere)

(S*™f,57F) = (A7f, AL f)
= (Qr1,QL1)

= /tm“u(dt), m,01=0,1,2,...
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