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Abstract

When estimating parameters of the probability distribution of a random var-
iable, there are sometimes more observations available on related auxiliary
variables. The usefulness of these observations is evaluated for the case when
ajointly normal distribution is assumed. Focus is put on estimates of extreme
distribution quantiles and the derivation of their estimation accuracy. A linear
regression model is applied to make use of the auxiliary information. In order
to decrease the mean square error of thie @&rcentile estimator by 25%
compared to the case when the auxiliary information is not used, it is found
that a coefficient of determination, of the regression model, of about 50% is
required. Moreover, it is shown how the maximum number of auxiliary vari-
ables allowed in the model decreases with smaller sizes of the primary sam-
ple. One application of this result arises in the investigation of severe service
fatigue load, for instance on an automobile. In addition to a limited number
of thorough service fatigue load measurements, a questionnaire survey can
be used to measure fatigue load-related customer characteristics on a much
larger population sample.
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Introduction

1

Introduction

The time allowed for the manufacturing industry to develop new products is
decreasing continuously, as the competition gets tougher. It is important to
find the optimal design without the need of extra time and cost for redesigns.
In material fatigue engineering, component strength optimization is some-
times exaggerated, due to insufficient knowledge about the service loading
conditions and, consequently, high safety factors. Many of the needless
design modifications can be avoided, if the fatigue load in the real customer
environment is well known and the load design requirement is correctly put.
Unfortunately, it is often a demanding and expensive operation to acquire
enough information about the service loading, in particular when there exists
a great individual variation in product usage. Also, even with good knowl-
edge about the complex fatigue loading in service, the specification of a load
design requirement is a difficult task.

A natural way to acquire necessary information about the customer fatigue
load environment is to make field measurements of forces, strains and other
operation-descriptive entities, during a reasonably long time of customer
usage. However, even though onboard data loggers are becoming less and less
expensive and, at the same time, more capable in terms of data storage, it may
still not be possible to make measurements at a large enough number of cus-
tomers, necessary for good population distribution estimates of loading char-
acteristics.

In the automotive industry, as an example, most traditional fatigue design and
test procedures are based on intelligent guesswork by experienced engineers.
Durability test tracks have been developed to replicate some worst-case load-
ing conditions. Tests made on these test tracks have then eventually become
standardized verifying tests, by experience from many years of continuous
use together with feedback from the service departments. As a consequence,
fatigue load specifications often originate from measurements made on these
test tracks. The value of experience must not be underestimated here, but itis
a fact that this procedure often yields design loads which have very little to
do with the actual customer fatigue load environment. Hence, a high safety
factor is embedded and, consequently, some components become unneces-
sarily overdesigned. Another issue worth bearing in mind is how the customer
environment and usage change over time and, hence, the need for updating
of durability tests and design requirements.
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Introduction

In the most recent years many automotive manufacturers have made an effort
to make their fatigue load design specifications more related to the actual cus-
tomer environment. See for instance Thomas et al. (1999) and Wang et al.
(1999). Methodologies with names such as “customer correlation” are
becoming more and more well known. The aim of these methodologies is to
estimate the fatigue load environment corresponding to a certain time of
usage or mileage at, typically, a 95th percentile (severe) customer.

In this paper the customer correlation notion refers to one specific approach,
for the specification of service fatigue load environment, very much influ-
enced by ideas from people at the German company LMS Durability Tech-
nologies (http://www.Imsintl.com). This approach involves an appealing
method to improve confidence, when estimating population distributions of
fatigue load measures from service load measurements. The method relies on
the existence of auxiliary customer or usage characteristics, which are possi-
ble to measure more extensively on the customer population compared to the
primary fatigue load measures studied. A guestionnaire survey is used for the
measurement of the auxiliary data. The critical requirement on the auxiliary
data is the need for a strong relation to the primary load measures.

A direct field measurement of forces, strains, etc., which later is to be post-
processed and reduced to the fatigue load measures already mentioned, is, of
course, an inevitable and important part of the method. However, for cost rea-
sons, this time- and instrumentation-demanding measurement can only be
made on a limited number of customers. The confidence improvement of the
load distribution estimates is accomplished by a questionnaire survey, for the
measurement of fatigue-related auxiliary data on the same small customer
sample as well as a great addition of customers (if not the full population). A
regression analysis is the statistical tool for the assessment of the auxiliary
data. The use of a questionnaire, to measure auxiliary data such as individual
product usage and operator characteristics, is the distinguishing property of
this particular customer correlation approach.

One crucial step in the statistical analysis is to model the relation between
some well-chosen fatigue load measures and the auxiliary data from the ques-
tionnaires. This analysis is based on the questionnaire answers from, and field
measurements on, the small customer sample. When the most suitable regres-
sion model is found and its parameters estimated, it is used to predict the pri-
mary fatigue load measures also for customers from which only questionnaire
answers are available.

Another important issue, which will be left unresolved here, is how the lim-
ited customer sample will be drawn. A stratification approach would proba-
bly add further efficiency to the method.

20f 44
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Introduction

The aim of this work has been to investigate conditions necessary for
improved fatigue load distribution estimates, regarding model size, coeffi-
cient of determination, size of the small customer sample, etc. The perform-
ance of the method is assessed as the confidence improvement over the case
when the auxiliary questionnaire data are not used. If such a confidence
improvement were to prove negligible, the method would not be very useful,

of course (or the questionnaire design would have been inadequate).

In this first analysis, the method is evaluated for the simplified case when the
auxiliary data are assumed to have the normal distribution, even though in
practice this would be far from the truth. Some useful auxiliary characteristics
may, for instance, be categorical. The method performance for the case with
normal-distributed auxiliary variables will still be of interest, however. We
also limit the investigation to only one unspecified fatigue load measure. The
choice of suitable ways to reduce field data to a manageable number of
fatigue load measures is outside the scope of this paper. However, some gen-
eral principles are given in Section 2, "Customer correlation overview". Fur-
ther, the fatigue load variable is assumed to be linearly dependent on the
auxiliary data, with a normal-distributed random error added. Hence, the nor-
mal distribution is also inherited by the fatigue load variable itself (as the
dependent variable).

In addition to the issues already mentioned, there are many interesting prob-
lems left for future studies. The already mentioned sampling strategy, when
the small sample is drawn, probably has a great influence on the efficiency of
the method. Also, before a conclusive evaluation of the method is possible,
the effect of different auxiliary characteristic distributions, other than the nor-
mal, should be investigated. Finally, since in practice there exists more than
one dimension in the intricate fatigue load space, a multivariate regression
analysis on several load measures, possibly with correlated residual errors,
could prove powerful.

For the automotive industry the particular customer correlation analysis pre-
sented here may turn out to be more attractive in the future. As the cars get
more and more computerized and intelligent there may be fatigue load-
related auxiliary data available for free, at the regular maintenance service
stops. A simple download of objective digital data, from each car on the mar-
ket, would in that case replace or complement the questionnaire survey. For
example, GPS data (geographic positioning data) may be used to divide the
total mileage into covered distances on various road types.
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Customer correlation overview

Customer correlation overview

An overview of the customer correlation approach, influenced by people at
the fatigue engineering company LMS Durability Technologies, will be pre-
sented here. This particular approach was originally suggested for use in the
design process of a ground vehicle and will also in our view be considered as
such, although applicable to most fatigue-loaded products.

Customer correlation stands for a methodology for specification of the fatigue
load environment corresponding to a certain period of time or mileage of
severe customer usage, through acquisition and analysis of fatigue load data
from the customer environment. The reason for its existence is the desire to
base the fatigue design requirements more on what the product is experienc-
ing in real life, rather than on conservative judgements by experience. The
latter strategy, on which the automotive industry still more or less relies, leads
to needless, costly component modifications and overdesign in general.
Usage severity is normally assessed as some extreme population quantile,
such as the 95th or 99th percentile.

The characteristic property of our customer correlation approach is the use of
a questionnaire survey, for one part of the customer environment measure-
ment. A questionnaire survey makes it possible to inexpensively acquire data,
on some more or less fatigue-related auxiliary variables (customer and usage
characteristics), from a relatively large customer sample. Assuming that there
exists a strong relation between the questionnaire answers and the fatigue
load environment, this relation is estimated and used to make the large-sam-
ple questionnaire data improve the statistical confidence on the final fatigue
load population distribution estimate.
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2.1

Customer fatigue load measurements

As mentioned in the introduction, our customer correlation method makes
use of two different types of customer fatigue load measurements:

« One direct field measurement of suitable forces, material strains and pos-
sibly other usage-revealing entities is made on a small random sample of
the customer/product population.

* One less precise, indirect fatigue load measurement is made on a large
customer sample (if not the full population), in which the small sample is
contained. Fatigue load-related auxiliary data (customer/usage character-
istics) are in this case collected, with the help of a questionnaire survey.

The direct measurement is made during a long enough period of time to
reduce the random error in the time- (or mileage-)average evaluation of the
data. For the case of an automobile, perhaps one year may be an appropriate
measurement duration. Many different channels should be measured, in order
to capture as much as possible of the complex fatigue-associated loading
behavior.

Because of the many signals and the long measurement time, the data storage
capability is likely to be insufficient for complete time-series data acquisition.
Hence, data reduction, with minimum loss of fatigue-related information, is
applied already when collecting data. In fatigue load analysis of force or
strain data, the most common means for such a data reduction is extraction
and accumulation of rainflow cycles (RFC) into a rainflow cycle matrix (or
histogram). Other examples of reduced data formats could be level-crossing
diagrams or “time at level” histograms, when the measured signals are not
directly related to material strain.

Further data reduction is applied later, in the post-processing of the measured
data. For comparison of fatigue load characteristics between different usage
situations, etc., a reduction to a manageable set of load variables is necessary,
still without truncating the spanning load space too much. One example of
such a data reduction is the cycle-by-cycle accumulation of a fatigue damage
measure, from the cycles in a RFC matrix. For each dyioléhe matrix, with
nominal stress amplitudg, a damage valub; can be calculated by using an

S-N curve (or Wohler curve). The damage meaguresults from a summa-

tion over all cycles, according to the Palmgren-Miner ridalingren 1924;

Miner, 1945):

D = ZDi - ZNL @y

TS
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whereNS is the cycle life, at corresponding constant stress ampitude
obtained from the S-N curve. The fatigue life is considered exhausted when

D reaches unity. For comparative fatigue load studies, only the slope of the
S-N curve is important (and possibly an endurance limit) and entities propor-
tional to stress, such as strain or force, may be used instead. In our perspec-
tive, the fatigue load variables are measures used only to put different fatigue
load sequences on a relative fatigue damage impact scale.

Palmgren-Miner damage summation of RFCs is a well-established method,
in metal fatigue engineering, to attain a decent estimate of the fatigue damage
impact for a given fatigue load history. Also when absolute fatigue life pre-
dictions are concerned, it has been shown to yield relatively accurate results
(Dowling, 1972).

The RFC concept was first proposed in 1967 by ENdquishi & Endo

1968). Today there exist several more or less equivalent algorithms for RFC
counting: See for exampl@owling & Socie(1982);Rychlik(1987);Drel3ler

et al (1997) andlohannesso(i1999).

To summarize the processing of force and strain data; one measured load sig-
nal is instantaneously reduced to a RFC histogram and, in the post-process-
ing, reduced further to a scalar-valued fatigue load variable, whose statistical
population distribution (or a specific quantile) is later to be estimated.

The size of the small customer sample, for the direct field measurement, is a
trade-off between quality (or inference confidence) and cost. Ideally, the
direct measurement should be made on the large customer sample, in which
case the questionnaire survey obviously would add no further value to the
estimation of load variable distributions.

As with all questionnaire surveys, the choice of questions and their formula-
tions are very important. In order to ensure accurate answers, a survey with
personal interviews is desirable. The questionnaire data can be both continu-
ous and categorical. Despite the vital importance of how the questionnaire
survey is designed and the processing of questionnaire data, here this issue is
left open for later studies and a good survey result is assumed. Another inter-
esting possibility, which should attract attention, is to use some of the auxil-
iary characteristics for a stratification of the customer population, before the
small sample for the direct field measurement is drawn.
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2.2 Reference fatigue load measurement

Preceding the customer fatigue load measurement a reference fatigue load
measurement is performed, by engineers on a test vehicle. This initial meas-
urement is more comprehensive in terms of data channels and is supposed to
cover the intricate fatigue load space more or less completely. In contrast to
the customer measurement, the reference measurement is made on many dif-
ferent well-controlled fatigue loading environments separately. For an auto-
mobile, examples of such measurement events could be “five runs on test
track section A”, “ten drives over a curb at 30 km/h”, etc.

The purpose of the reference measurement is twofold:

» For optimal choice of the subset of measurement channels and the data
reduction to fatigue load variables, to be used in the direct customer
fatigue load measurement.

» To create a database of signatures or fingerprints (outcomes of the differ-
ent fatigue load variables), representing all kinds of different usage situa-
tions or vehicle maneuvers (events) imaginable.

A limited number of measurement channels or fatigue load variables, for the
subset of the direct customer measurement, is necessary for practical reasons.
After analysis of the reference measurement data, a suitable subset of data
channels is chosen, such that as much coverage of the fatigue load space as
possible is retained. Suppose for example that there is a group of suggested
load variables with strong correlation, in which case only one of these varia-
bles is picked for the subset.

The database of event signatures will later be used when the estimated mul-
tivariate fatigue load quantile, representing a certain severe customer fatigue
load environment, is converted from numerical values to a more universally
interpretable fatigue load specification. This product-independent load spec-
ification is composed of a combination of events (with multiplicities) from

the database, which makes the result useful for the design of similar products
and not only for the particular model used in the investigation (which is
already on the market, of course).
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2.3

Statistical modelling and inference

After both the direct customer fatigue load measurement and the question-
naire survey are made, the reduced fatigue load variable dependence on the
auxiliary variables, measured by the questionnaire, is estimated from the
small customer sample data. The dependence is modelled by a multivariate
regression model or a general linear model. Alternatively, each dependent
variable is modelled separately, using univariate regression models. Normal-
distributed residual error terms simplify the analysis in both cases. It is diffi-
cult to find the best choice of auxiliary or independent variables to be
included in the model and in what form. The auxiliary variables can originally
be of either continuous or categorical type, but the analysis may also benefit
from conversion of a continuous variable to a categorical one, by discretiza-
tion. If, for instance, the influence on the dependent fatigue load variables is
non-linear and one finds it difficult to make the dependence approximately
linear, by transformation of the independent variable, the discretization may
be justified.

The model coefficients are estimated in a standard maximum likelihood fash-
ion, repeatedly with different sizes and combinations of independent varia-
bles. For high precision in the coefficient estimates, a down-sized model is
necessary because of the small sample size. Atthe same time the model needs
to be intricate enough to be able to explain enough variation of the dependent
variables. This dilemma is typical for most regression-model selection pro-
cedures.

In whatever way it is found, the best model is then used to predict the primary
fatigue load measures for customers from which only questionnaire answers
are available. Using all the questionnaire data, an empirical, multivariate dis-
tribution of the fatigue load variables is calculated.
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2.4

Fatigue load specification

The fatigue load distribution estimate, or any quantile values derived from it,
is not very useful by itself, as a fatigue load specification. The numerical
result has a meaning only for the particular product or vehicle used in the
investigation. In order to make the load specification more universal and less
product-specific, the numerical result must be associated with some external
loading environment. For an automobile, for instance, road profile data of a
test track are universal but wheel spindle force data are not. The association
to universal load measures is the main objective for the reference fatigue load
measurement of loading event signatures.

An optimization software is used to test many different combinations of
superposed loading events (with multiplicities) from the event database,
while minimizing some calculated measure of distance to the estimated
severe target environment. When the best possible match is reached the final
fatigue load specification, corresponding to a certain fatigue load severity or
population quantile, has the desired form of superposed, external loading
events.

10 of 44
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Problem statement

In order to be able to use questionnaires successfully for the measurement of
fatigue load-related, auxiliary information, there has to be a strong relation
between how a customer answers the questions and what fatigue load meas-
ures that would be expected if a direct measurement (e.g. of force or strain)
were to take place. The identification of this relation was briefly discussed in
the previous section. Linear regression analysis is used to investigate the
requirement needed on such a relation, to justify the method for varying
regression-model size, coefficient of determination and size of the small sam-
ple. The estimation confidence improvement from the additional auxiliary
datais assessed in relation to the case when only the direct load measurement
data, from the small customer sample, are used.

Consider the linear regression model,

Y=0a+BX+¢g, (3.1)

whereg is a zero-mean, random error or residual term. Further, assume we
have access toobservationsx, y;), from an independently and identically
distributed random sample, and additiondlyvery large) observations &f

only.

In the following, only one scalar fatigue load variabjes the dependent (or
response) variable, is considered. The method evaluation is performed in two
steps. First, a simple regression on one scalar, auxiliary variable, as the inde-
pendent variablX (or predictor), is studied. Later, the analysis is extended

to the case with several questionnaire questions and, thus, a multidimensional
auxiliary variablex.

Now, the main issue is when tiNadditional observations of will be valu-
able for inference statements ab¥utypically, we would like to find theth
distribution quantile/q such that

P(Y<y,) =1, (3.2)

for a chosen value @f of, for instance, 0.95 or 0.99.
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Problem statement

The possible precision improvement is evaluated in this paper only for the
simplified case of normal-distributed auxiliary variab¥e€ven though this

in reality would be far from the truth, it is still interesting to study the method
performance for this case. Further, a normal-distributed random error term is
assumed. Thus, the normal distribution is inherited by the fatigue load varia-
ble Y itself and, consequently, completely specified by the expectation and
variance parameterg,, aog ,only. Alsothe quangiimay be explicitly
expressed as a function of these parameters:

yq = U'Y + ZqOY ’ (3.3)

wherez, is the corresponding quantile for the standardized normal distribu-
tion N(0,1) andoy = ,/0% is the standard deviationYof

Since the normal distribution is imposed on the auxiliary varixbtenly esti-
mators of the meap,  and variancg (or covarignge  , in the case of
multivariateX) are used to improve inference statements alfottually, in

the following analyses these distribution parameters are assumed to be known
exactly, which represents the idealized, limiting condition whien .The
assumption is motivated by the large sample of additional measurements of
Xandthe interestin the method performance when the best possible precision
improvement result is achieved.

12 of 44
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Regression on a scalar, normal auxiliary variable

Regression on a scalar,
normal auxiliary variable

First, the use for the additionBlobservations oK is investigated, wheK is

a scalar random variable. Further, a jointly normal distribution is assumed for
XandY and, henceY may be expressed as in Equation 4.1. The random var-
iable (r.v.)U denotes a standardized normal r.v., independextafidp is

the correlation coefficient betwe&randY.By comparison of this expression

to the regression model in Equation 3.1, the parameters and the random error
term of the model are easily identified. See Equation 4.2.

2 0
Y H Oy POxOy|Q
ON , )
X V] 2 |0
X] |POxOy Oy |U 4.1)
X —
Y Hx

€ = Oy 1—p2EU,

Oy
= p— 4.2)
B PS5,
o = Py —Buy -

Of course, information aboitis of no use ifX andY are uncorrelated, i.e. if

p =0 (and henc@ = 0). In the other extreme situation, wheh= 1, the ran-
dom error term disappears and the linear regression function is obtained
exactly from only two observation pairs. Hence, inferences akdudm the
large set o observations, can easily be transferred to equally well-made
inferences abouX. Also for intermediate correlation coefficients, better esti-
mates ofiy andoy, from the large data set, may be useful to improve knowl-
edge abouY. However, ap decreases so does the possibility of improvement.

Since the random error terrof the regression model has zero-mean, the
expectation o¥ is

My = E[Y] = o +Buy. (4.3)
Conditional onX, we have the regression function

My x = E[Y|X] = a+pX. 4.4)
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4.1

Maximum likelihood estimation of the regression parameters, from the sam-
ple ofn pairs §;, ), yields

2
A'=A+[A3>‘<=‘ DN%}HB)‘( %E (4.5)
a=a = V. i "l .

and

S, 0O o0
B =Y ONB, =0, (4.6)
Six 0 Sod
where
n n
N2 _ _
Sy = Z(xi—xn) ands,, = Z(xi—xn)(yi—yn). 4.7)
i=1 i=1

Estimation of response mean

When the true distribution of is known (or at least very accurately estimated
through the large data set of additional observatipgs) may be estimated,
using the regression model, as

R S .
Hy = G +Buy = 7, + 2 (Ux—%,) - (4.8)
X

The precision of this estimate is evaluated by the size of its variance, when
the small sample is considered unknown.RE.eenote ther-algebra gener-
ated by the r.vXy, X,, ..., X, of the small sample. Then,

Var(iy) = E[Var(uy|F)] + Var(E[p,|F]). .9)
The second term of this expression is zero, siﬁce IS an unbiased estimate

of uy = o+ Buy independent of. Further, since is assumed to be nor-
mal-distributed,

o \2 2
~ o 2 (Mx=Xn) Ol Ge  E[F]Q
Var(py) = E|:O'£%+ S E =5 %H 0 (4.10)
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whereF denotes affr(1, n - 1)-distributed r.v. and the stochastical independ-
ence betweeg, an@ , conditionalfrhas been used. Note that, with
si = Syx/(n—1) as the sample variance ¥f, X,, ..., X,,

S (2 S 2
(Mx—Xn)" _ n(uy-X) /0% 1

= F.
Sxx n(n-1)s/o%  N(n-1)

(4.11)

Forn> 3, the expectation &fis (n - 1)/(n - 3) and withog = 0\2((1 - pz)
the variance expression may be rewritten as

cri(l—pz)%L+ 1. %v(1-p") p-2

- >3, .
n n— 30 n n_3' " 3. @

Var(iy) =

Compared with the alternative mean estinygtes if the regression model
and the knowledge aboktwere not to be used, with varianer,/ n ,theesti-
mation precision is always improved unless t:pi?tlandn are small. More
specifically, the precision improves if

p->—-: , n>3. (4.13)

However, for a noticeable improvement wheis not too smallp? needs to

be, say, at least 0.25. Even if the questionnaire survey is less expensive than
the direct measurement, the cost must be justified by a sufficient estimation
improvement.
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4.2 Estimation of response variance

Next, estimates of the variance¥are considered. If the true distribution of

Xis known, the regression model can be used to estim%ate Bzoi +0?

. as

22 o ol oyl
oo =B 0% +s—-=20, (4.14)
v X sD SWa

where the extra term inside the parenthesis makes the estimator unbiased,
conditional orF, and

Sz_ 1
€ n—

n
.~ A 2
5 z (y; — (6 + Bx;)) (4.15)
i=1
is an unbiased variance estimator for the random error

Again, the precision of the estimate is evaluated through its variance, when
the small sample is considered unknown:

Var(o?) = E[Var(oi‘F)] +Var(E[o5|F]) . 4.16)
The estimatej\z( is unbiased independentlif,afince

2
- A 0 oyl
E[03|F1 = ox(Var(B|F)+p*) + o; - 20
O xO (4.17)
= Bzci + 05 = 0\2(.
Hence, the second term in Equation 4.16 is zero. The conditional variance in

the first term involves the inverse ok&(n - 1)-distributed r.v., denoted below
by X2, since

var(’|F) = E[B*|F1 - (EIF°[F 1)

o> 0o’d o, o0
4 2 Ve € 2 €
=B +6p =—+3 O-M[PB +=—0
Sxx %D 0 X (4.18)
2
_ 4[32 05 + ZDGEE
Sxx %D

and
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2 2 2 2
o o o o
—£ = —; —X 5 = —; }—12. (4.19)

It is easily verified that &l(u, 02)-distributed r.v. has second and fourth
momentsu2 + 02 anqi? + 6u202 + 304 |, respectively. Further, let

2m = n-1. Using integration by parts together wittm), as the gamma
function

F(m) = J’um_le_“du , m>0, (4.20)
0

the first two moments df/x2 are calculated as

17_ 1 U™t 5
E|:—2:| = IL_J Dm—e du
xH QY 2" (m)
” m-1 01 -0 421
= 0- [————Ge T 2
o (M=1)2"T(m)D 0
1 1
= = >
2(m-1) n-3° n>3
and
1 1 1 1
- | z=——F == — >9. .
E[XJ 2(m—2)E[X2} O R
The variance of the residual variance estimafor is
4 2 4
o - 0 2o
Var(s§|F) = —SZVar n-2)s FO= —. (4.23)
(n-2)° O &2 o n-2

Hence, sincq@ ansﬁ are stochastically independent, conditiofal on
Equation 4.16 expands to
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2 2
~ 4 ~2 0 O'XD 2
Var(oy) = E|oyVar(B |F)+ Ol—=—0Var(s.|F)
Y X | O SxxO S|

ap2oxc? 26" 267 5 1 g
= Th-3 (n=3)(n=5) n-20 n-3 (n=3)(n—5)0
4 2 (4.24)

_20.[PBox 1 .n-3__2 ., 1 E
" n-3g o> n-5 n-2 n-2 (n-2)(n-5)q

207 (2B’ on-7) O
= —l+1-—=_ 1 >

=30 o2 -2 m-5)s n>>s.

, 2 2 2 2 22,2 , .
Sinceo; = oy(1-p") and3” = p“0y/ 0y ,the variance expression may
be rewritten as

2,2 4
" 2(1- oy 92p? _ 0
var(o?) = (1-p%) YH2p 2(n-7)

+1- >5. :
3 g2 (m-2@-mg o ¢

The natural choice of alternative unbiased estimat&®of , when the regres-
sion model and the additionAldata are not used, is the standard sample var-
iances? . Sincgn—1)s2/02 is g’(n-1)-distributed r.v.,

Var 2y = VarDD—cy$ 2% = 20:1(

(sy) = m_lﬂ(m—m- (4.26)
Hence, for higher precision of the estimatetnz,f , when using the regression
model and the known variance Xfwe must have

2(n—7) D<n—3
(n=2)(n-5) n-1’

N 2
(1-p) B2 +1-
-p

n>5. (4.27)

The inequality shows that the precision is always improved, also for this esti-
mate, unlesp is close to zero at the same timereis small. The estimation
improvement, in terms of variance reduction for some combinatiop%anid

n, is presented in Table 4.1.
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n=10 n=20 n=30 n=50 n=100
p?2=0.25 -10 1 3 5 5
p?=05 8 19 21 23 24
p2=0.75 45 52 53 55 55
Table 4.1 Reduction of estimator variance in percent, when estimafjng by using the
regression model and knowledge about X. A negative value means increase
in variance.

4.3 Estimation of distribution quantile

If a small bias is acceptable, thieo8390

quantiley,, of the fatigue load distribution, from Equation 3.3, may be esti-
mated as

~ ~ - ~ 2
Yg = Hy +Z,0y = Hy + qu;. (4.28)

The precision of this biased estimate is evaluated through the mean square
error (MSE):

MSE(y,) = E[(Yg—Yq) ]

-~ 2 -~ 2 -~ ~
= E[(Hy—Hy) +Zo(0y = 0y)” +274(ly — Hy) (Ty — Oy)]
~ Z2 ~
= Var(lly) + —LVar(oy) (4.29)
40y,

2 2
_ov(1-P)m-2. 22 1—p2 2(n—=7) 1o
= T3 0w YAt ot mopmog

In the third equality of Equation 4.29 two approximations are involved. First,
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Var(a?) = E[(Gy—0,)%(0y + y)?]
= 40Y [(0Y Oy) %H (crY GY)EZ} (4.30)
:40\2(E[(C;Y_GY)2] :

Also, the expectation of the cross-product term of Equation 4.29 is approxi-
mately zero, since

EL(ky ~ ) (Gy ~ 0y)] = 5=EL(Hy ~ i) (0% ~0?)]
L ) R v (4.31)
= 5o ELELGy ~ )0y -0 |F 1]

and

EL(Hy ~iy)(0%—0?)|F ] =

— N/ A ZD
E[(Yn—G—BXnJ“(B‘B)(“X n))EB ox* s, El_sxxﬂ ZQF}

(Hy - Xn)02E[ B — BR°|F ]

(4.32)
2 2
= (Mx— n)UxEB +SB_S;—_BEB +SxxDD
2 2
= ZB(HX—Xn)—
(n —1)Sx

with expectation zero. The second equality in Equation 4.32 is clear since,
conditional orF, Y,, B ands are all stochastically independent, unbiased
estimators fox + X, B and 08 , respectively.

Without the additionaX data, the quantilyaq would be estimated as

Yg = YntZSy, (4.33)

with MSE

EL(Yq—Ye) ] = El(n—by)* + Z(sy—0y)7]

2 2 4.34)
_ Ay = o2 hy %D ‘
Var(yn) + 40’Yvar(SY) O-Ylj'l 2(n ]_)D
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Table 4.2

The precision improvement of the quantile estimator, when the regression
model and the additionXl data are used, is presented in Table 4.2. It is cal-
culated for the quantiles 0.95 and 0.99 in terms of approximate MSE reduc-
tion, for some combinations @f andn. The result shows that the coefficient

of determinatiorp2 has to be almost one half, if a MSE decrease of at least
25% is required. The requirement phbecomes stronger for very small sam-
ple sizex.

n=10 n=20 n=30 n=>50 n=100
p2=025| 0(4) 9 (6) 11 (8) 12 (10) 13 (10)
p2=05 | 22(17) | 30(26) | 32(28)| 34(30) 35(31
02=075| 56(52) | 61(57)| 62(59)| 63(60) 64 (61

Approximate MSE reduction in percent when estimating the distribution
quantile y,, for g = 0.95 and g = 0.99 (the latter result in parenthesis), by
using the regression model and knowledge about X. A negative value means
increase in MSE.

The bias of the quantile estimaﬁg equgjsimes the bias oth , defined
asE[oy] —oy . Forthe square root of any unbiased variance estimator, such
asagy ors, we can derive the relation

MSE(ay) = Var(cy) + (Bias(dy))

E[C;\Z(] —(Eloy])*+ (E[oy] —0y)® (4.35)

—20,Bias(ay) .

Hence, the bias, as defined above, is negative, with an absolute value propor-
tional to the MSE. Since the MSE (ff{ is not easy to calculate, we may
instead use the vgriancemﬁ from Equation 4.25 and the approximation
MSE(ch) =Var(c¢)/(40%) from Equation 4.30. The resulting bias
expression becomes

Var(crf,)

Bias((fY) =— (4.36)

3
8oy

and, consequently,
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Var(ci)

3
8oy

Bias(;?q) =-2z (4.37)

Hence, provided the approximation is not too crude, use of the knowledge
aboutX together with the regression model also reduces the amount of bias,
when the estimation precision is improved. In order to substantiate this con-
clusion, the decisive approximation crudeness is investigated in the follow-

ing.

The approximation error of Equation 4.30 may be calculated exactly for the
standard deviation estimatey . First, the bias,0$ derived.

Since, with 2n=n - 1, X2 = 2ms¥0? is x4(2m)-distributed, it is also gamma-
distributed a$ (m, 1/2) and, hence?/2 ~I(m, 1). Thus,

o mL 10 BN
F " 2ex rHn+3 oo
= = (4.38)
[ } I F(m) r(m) Fm=1p
] |
and, since
2
Elsy] = ﬁE[ E}, (4.39)
the exact bias expression is
Bias(s,) = —oyl— |—2— DED
= — 4.40
Sy 4o i o ,—En e (4.40)
D 0o

The relative approximation error Mar(s\z() = 40$MSE(SY) is expressed
analytically below, as a function of the sample sizin Figure 4.1 itis shown
graphically that this error goes to zeroreiscreases and is less than one half
percent fom > 27.
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-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

relative approximation error

-0.035

_004 1 1 1 1 1 1
5 10 15 20 25 30 35 40

sample size n

Figure 4.1 Relative error of the approximatiMar(sﬁ) = 40$MSE(SY) , defined as in
Equation 4.41, as a function of the sample size n.

4G$MSE(SY) - Var(s\z()

Relative error=

Var(si)
(4.41)
80 Bia
= A S(SY)—l = 4(n- 1)[1 D—D—
Var(s) _1 ,—[ﬂ 1ED
As defined, the relative error appears to be negative, i.e.
Var
(SY) > MSE(sy) . (4.42)
0Y

Thus, the approximate expression for the bias,ofequivalent to the expres-

sion in Equation 4.36 (for the estimato;{; ), always overestimates the
amount of negative bias. It is reasonable to believe that the relation in
Equation 4.42 is also valid witk, replaced bny . Hence, the amount of neg-
ative bias ofcfY is most likely bounded by the approximate bias of

Equation 4.36. Further, a precision improvement for the variance estimate
suggests that the approximation error decreases, since the bias is always neg-
ative and the bounding variance expression approaches zero. Hence, when the
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estimation precision is improved by the regression model and addional
data (i.e. whervar(sg) > Var(ag) ), itis also reasonable to believe the state-
ment already made that the MSE and therefore also the amount of bias will
decrease.

4.4 Alternative regression parameter estimators

Before we go on with the next example and introduce multiple independent
variables, it could be argued that our knowledge aKaltould be used to
get a better estimate Bf instead 08, /S, , namely

[3AD = lz (4.43)
(n—1)oy

However, conditional of, this is no longer an unbiased estimatg8oAs a

consequence, it yields inference statements abwith lower precision,

since the second terms of the variance expressions in both Equation 4.9 and

Equation 4.16 are no longer zero. This is shown below only for the alternative

mean estimatg, U = Y, + BL(py — X,)) .

EludF] = E[Vn|F]+(ux—>‘<n)E[éE|F]
(4.44)
= o+ BXy + (g — X n>F3 .
X

Note that

2 2

SXD 2 Sy
COVD(m (ux—Xn)—g = —E[(Xn—Hx)1E| 5

2
Ox

= —Var(X,) (.45)
Ox

and

[ _ siD cHx = Xnf E(n 1)SXD2
Var%(px—xn)c_iD {D n—1 DD 0 E}
(4.46)
\(/ar(X)n)(Z( 1) +(n-1)3 = —-——Var(Xn)
n—1
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which makes the variance of the expression in Equation 4.44 non-zero for
p #0. Hence,

- 02 o n+1 .
Var(E[uylF 1) = BVar(X)L + -5 -2
(4.47)
: ZBzoi B 2p20$
" n(n-1) n(n-1)"

The first term of the variance ﬁfY , from Equation 4.9, does not change
much with the different parameter estimaf¢ . Since the stochastical inde-
pendence betweeY,, afidl s still valid, the conditional variangs,of

is calculated as

F) = Var(Y,|F) + G————0 Var(Sy|F)

Var(u O
n-1)oy0

o

2 NV n
Opy—X, _
€4 BHX_”ZD Z (X —Xn)ZVar(£i|F ) (4.48)
N Qn-1)o50.%
2 < 2
_ O—EEH.+ N(Uy — Xn)? _syO
N0 (n-1)ok o%0

with expectation

2 2
- oy (1-p?) 1 oy (1-p?)
0 = X O-Z¥
E[ Var(uy |F)] - %Hn—lﬂ —1 (4.49)

Hence, the total, unconditional variancepéﬂ IS
Var(p,D) = E[Var(uYD|F )] +Var(E[uYD|F D

_oW-p)0  14p? O 50
N0 (h-1)(1-p)0

Compared to the original result in Equation 4.12, the variance of the alterna-
tive mean estimator increases when

2
1+p 2>n13’ wsn)
(n-1)(1-p7) "7

i.e. unless botp? andn are small. The relative increase, defined as
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Var(pD) — Var(p. —-34 2 0
) (Hy) _ n S+ 1*p 0-1, (4.52)

Var(yy) =20 (n-1)(1-p*)C

is shown graphically in Figure 4.2, fpl2 = 0.25 p,2 =05 and
2
p~ = 0.75.

— rho®=0.25
\ - — tho®=05

0.71 \ — rho®=0.75
0.6f \ i
0.5 : R
0.4r S i
03 B '\_ i
0.2 —~ - - . i
0.1} -~ _ _ T

0.8

relative variance increase

_O. 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50

sample size n

Figure 4.2 The relative increase in variance, when using the alternative estimaltor
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Regression on a multivariate,
normal auxiliary variable

The previous example is now extended so that several independent variables
are considered. The statistical model is from now on a multiple regression
model,

Y =0a+B'X+¢g, (5.1)

where andX are column vectors of dimensiomndX is multivariate nor-
mal-distributed. The error termis still a zero-mean, normal-distributed r.v.
and, hence,

" 2 5./|E
[Y} ON Y}, Oy Oxy E (5.2)
X Mx] |Oxy Zx |0

Ther + 1 byr + 1 covariance matrix is partitioned with respect to the inde-
pendent and dependent variables, soIhatndoy, stand for thebyr
covariance submatrix of and the column vector of the covariance between
Y andX, respectively. The linear regression functimp‘x = a+pB'X ,with
coefficients

B = Z;(loXY (5.3)
and
o = py—P'uy, (54)

has minimum mean square eréf(Y — a—b’'X)2] , among all linear predic-
torsa+ b'X (Johnson & Wichern, 1992). Now, the correlation betwéand

this linear regression function is quantified by the multiple correlation coef-
ficient

Oy TG
XY #x Oxy
Py(x) = T- (5.5)
Y
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5.1

Estimation of response mean

Since the regression coefficients are not known, they need to be estimated
from the small sample of size The unbiased maximum likelihood estimator
of the regression function is

Myix = Yot Sy'Sop(X=%;) = ¥+ B'(X=%)), (5.6)

where the notation comes from the partition of the unbiased sample estimator
for the covariance matrix <{1y X’]' , from Equation 5.2,

2 '
s =[S S, (5.7)
S S

When the true distribution of is known, the mean responge may be esti-
mated as

LIY = yn + ﬁ'(Ux _)_(n) : (5.8)

The precision of th@y estimate is again evaluated by its variance. First, note
thaty, andB are still stochastically independent and fhat may be written
as

B=Sss, = ‘%i : (x—>‘<)(0(+[3'>‘<+B'(x—>‘<)+s)E
= 58 = Szzm_li; i i 5

- s;églj—l_zl((xi—x>(xi—x>'s+(xi—x>si)§ 59
201 o O
= B+ Y (6-Rel
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Hence, conditional oR,

Cov(B|F) = E[(B-B)(B-B)'|F]

1 ol m O
= E[S;D (X; = Xn)& M sj(Xj—Xn)’[SgﬂF
(n-1)° q; Dq; 0
n (5.10)
1 10 o 2 o ,D ~1
- (n—1)28225;(xi — Xn)Elg; [F1(X; = Xn) 5,
O_2
—1
= n_slsZZ'
Using Equation 4.9, the variance may now be calculated as
— —1 —
- - Xp)' - X)d
Var(iiy) = E 05%_]._'_ (Hx n)n%i(Ux n)D:|
il O (5.12)

o; . E[T’
- F%l ¥ n[— 1]E
whereT? has the Hotelling? distribution with parametersandn - 1. See
Mardia et al (1979) for more on multivariate analysis. Since
F={(n-r)/((n- l)r)}T2 has arf(r, n - r) distribution, with mean
(n=r)/(n-r-2),and 05 = 0\2((1 - p\z((x)) , the variance expression may
be rewritten as

2
~y _ O rE[F]O
varliy) = H+ Ty
(5.12)

2 2
_ 9v(1-Py(x) G =2

, n>r+2.
n n—-r—2

With r = 1 we see that we have the same variance as in Equation 4.12, as
expected.

The variance in this example is reduced by the regression model and the
. S 2 .
knowledge ofX, compared wittVar(Y,) = oy/n , if

p\z((x)>nL_2 , n>r+2. (5.13)

Hence, for a larger regression model size, a higher multiple correlation coef-
ficient is required.
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5.2

Estimation of response variance

Using the multiple regression model of Equation 5.1, the varian¥aésofal-
culated as

0\2( = B'ZB+ 05 (5.14)

and one natural choice of variance estimator would be

05 = B’Zxﬁ + sﬁ. (5.15)
However, conditional oR, this estimator is biased. The natural choice of con-

ditional unbiased variance estimator, derived below, is used instead.

One important feature of the trace operator, in linear algebra, is that for two
matricesA andB, such that the sizes éfand the transpose Bf(or vice versa)
are identical,

tr{ AB} = tr{ BA}. (5.16)

Using this result, we have

E[B'ZBIF] = tr{ Z,E[BB'|F I}
tr{ £y (Cov(B|F ) + BB')}

2
O 1 ,
St { 5,5y} + BE,B.

(5.17)

Hence, the suggested conditionally unbiased estimator for the varia¥d® of

2 _ aie ALl 1 -1
0y = BEB+ s H - —5t{ xS}

(5.18)
Sie AL 2 -1
= B EB+s(1-t{W}),
where ther xr random matrix
~1/2 ~1/2
has the standardized Wishart distributidh(l,,n—1) . Here, as well as in

the following, |, denotes the xr identity matrix.

The suggested variance estimator is again evaluated through its variance, as
in Equation 4.16. In this multivariate example the calculations require some
results on an inverted Wishart-distributed random matrix, for instance the first
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two moments. Compare the invert)e%idistributed r.v.involved in the simple
regression example. The following lemma is given and proved by Das Gupta
(1968).

Lemmab5.1 (Das Gupta, 1968)Let Sbe amr xr random matrix distributed
according to the Wishart distributiov, (%, m) , wherank(Z) = r . Then,

(a) E[S] = mz
1, _ 1 -1 .
(b) E[ST] = e r—lz Jf m>r+1 (5.20)

m-—1 51
(m=r)(m-=r-2)(m-r-=3) '’

(c) E[S'zs?] = m>r+3

In our calculations the inverted standard Wishart-distributed matrix also
appears in the conditional covariance of the random véglfozﬁ ,

2

1/24 O 1/2.11/2 2, -1
Cov(Zy B|F) = I Sy T = oW (5.21)

By the spectral decomposition theorem we can write

Cov(zy BIF) = a?W™ = 2T AT, (5.22)
whereA is a diagonal matrix with positive random elemeytandr is an
orthogonal random matrix. Conditional Bphowever, boti\ andl" are
given, asSy,is given. With the transformation to a vector with stochastically

independent componemnts = F’Zi{zﬁ , conditionalFon

r
Var(B'=,B|F) = Var(n'n|F) = Y Var(ng|F). (5.23)
K=1

Again, as in Equation 4.18, we have that the variance of a squNfpdo?) -
distributed r.v. is#202 + 204 . Conditional oR n ON(u, 05/\—1) , Where

My = T'Z °B. Thus,

r
Sie 5 _ 2.2 (-1 4, -2
Var(B'ZxBIF) = 5 (4oghy (Al + 208 )
k=1

_ ~ (5.24)
40§tr{ MMy A 1} + chtr{ A 2}

402p sy "W sy 2B + 20t tr{ W}
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with unconditional expectation, f>r+4 |

N 205 (n-2)ra>
E[Var(B'Z,B[F)] = n—r—Z%BIZXB+(n—r—l)(n—sr—"r)E
2(1—pZ ) 0y 202 _ 0 29
_ Y() Ty Py (n=2)r a.
n-r—2 Eﬂ'_pi(x) (n-r=-1)(n—-r-4)q

In Equation 5.25 we have used the equaliies,3 = pi(x)o\z( and
2 2 2
0z = (1-py(x)O0y-

The following Lemma 5.2 is given and proved by von Rosen (1988) and will
be shown useful in the subsequent calculations, involving the second term of
the variance estimator in Equation 5.18. However, first the stacking operator
(vec), the Kronecker product and the commutation matrix (also called the
permuted identity matrix) are defined.

Let A = [a;] be anmx n matrix and; thejth column ofA. Then, vecq)
isthe resultingnnx 1 column vector when stacking the colummsarf top
of each other;

ve(A) = [al' a, ... an’].

Further, letB be ap x g matrix. Then the Kronecker prodéct] B is
defined as thenpx nq matrix

AOB = [aijB]-

The mnx mn commutation matriK,, is defined as

whereH;; isanmx n matrix with a 1 in positiof) and zeros elsewhere. Mag-
nus & Neudecker (1979) give useful results on the commutation matrix. For
instance,

tr{K, = 1+d(m-1,n-1), (5.26)

whered(m, n) isthe greatest common divisomo&indn. Now we can state
the lemma.
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Lemma 5.2 (von Rosen, 1988):et SO W,(Z, m) . Then

E[S'0S™] = ¢(Z 0 Z7) +cveq(Z )veq(= ™) 627
5.27
+e K, (o™,

Wherec;1 =(m-r(m-r-1)(m-r-3) andc; = (M—r—2)c,.

Using the stochastical independence betvx[&zen sand , conditiofRailue
precision of the variance estimaié of Equation 5.18 can finally be calcu-
lated as

Var(a%) = E[Var(a5|F)] + Var(E[c5|F )
4 (5.28)
A 20, 1.2
= E[Var(B’ZXmF)+n_r_1(1—tr{W })]
In our caseV OW.(I,,n—1) andfon>r+4 we have, since
(tr{W-1})2 = tr{Ww-1 0 w-1},
E 1,12, _ ~1 -1 -1
[(1-tf{W })] = 1-2t{ W "]} + tr{ Ef]W "O W 7]}
2r '
= —n_r_2+tr{cllr2+c2vec(lr)vec(lr) +c2KrrIr2}
2r 2 (5.29)
e B LI U
A | + (n—r—3)r2+2r
n—-r—2 (n—=r=)(n-r-2)(n—-r—-4)"
Hence, forn>r+4 |
S 2(1=p ) oun 202 0
Var(o\z() = nf\;(i()z = pY;X) -lr(n—rgnl;(zn)ir—4)D
Eﬂ-_pY(X) 0
2(1=p2 1) O 2,0 O
N Pv(x) \(Eﬁ—Br—Z+ (n-r-gri+2r I .

n-r-=2 gn-r=1 (n_r-1%n-r-40

2 (2 4 2
_ 2(1-py(x) GYE 2py

n—-r—-2 2

ad
(04 1-a(n, nNgd,
EIL—F’Y(X) .

where

Evaluation of Estimates of Extreme Fatigue Load 33 of 44



Regression on a multivariate, normal auxiliary variable

) = (r+1)(n —(4r+5)n+3r(r +3))+4
(n—r—l) (n—=r-4)

a(n, r (5.31)

Notice that forr = 1 (and henqez\z((x) = p2 ) the precision expression
reduces to the simple regression expression in Equation 4.25, as expected,
since

2(n=7)

RGO

(5.32)

For higher precision in the proposed estimatoroff)r (again compared to
sf(), when using the multiple regression model and the known covariance of
X, we must have

n—-r-—2
-1

O
(1—p\z((x)) BM +1-a(n, r)%<

_pwm

, h>r+4., (5.33)

The improvements in terms of variance reductions as a function of model size
r, compared tc)/ar(sf,) when thé data are not used, are shown graphically

in Figure 5.1,forp$(x) =05 ,pi(x) = 0.75 and for two different sample
sizesn = 30 andh = 100 . Foran optimal variance reduction and for fixed
n, it is shown that there has to be a trade-off between a high multiple corre-
lation coefficient and a small regression model size, since the correlation
increases with the model size.

Note that the model sizehere refers to the dimension Xfor, equivalently,

the number of predictors. A different and maybe more common interpretation
of regression model size is the number of regression parameters, which in our
case i +1 with the paramei@radded.
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Figure 5.1

5.3
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function of the regression model size, compared to when only Y data are

analyzed.

Estimation of distribution quantile

Finally, the quantilg/y is estimated as before in Equation 4.28, but with the
new mean and variance estimators. The precision of the quantile estimate is
evaluated through the approximate MSE. The same approximations as in
Equation 4.29 are still valid. For instance, the expectation of the cross-prod-
uct term vanishes approximately also in this multivariate case. Compare

Equation 4.31 and Equation 4.32.

EL(Hy ~ i) (0% —0?)|F] =

E[(B-B)' (Hy—Xn) OB I B +s2(1-t{W}) — ) |F]

= E[(B-B)'(Hx— Xn) (B'Z,B|F] (5:34)
= E[(B-B)' (1 —Xn) OB-B) Zx(B-B)|F]
+ 2E[(B—B)' (y — Xn) B —PB) ZyB|F]
Evaluation of Estimates of Extreme Fatigue Load 35 of 44



Regression on a multivariate, normal auxiliary variable

First, the initial term itself, in the resulting expression above, is shown to be
zero. With the Mahalanobis transformation of the centered estimator vector
[3 B, or actually a transformation tﬁéz only, the transformed zero-mean
vectorz = 512/2([3 B) has, conditional df stochastically independent

and normal-distributed components. Thus,

E[(B-B) (Hx—Xn) OB—B) Zx(B-B)|F]
E[Z Szé/z(“x Xn) EZ'SZ;/Z x52§/22||:] (5.35)

E[Zal¥BzF] = ZkaibjkE[ZiZjZk|F] =0,
T,

wherea = [a] = S,5 “(Hy—X,) andB = [byl = S 5485

The second term in Equation 5.34 has the unconditional expectation zero,
since

E[E[(B—B)' (kx—Xn) (B -B) ZxB|F 1]
= E[(ux—Xn) E[(B-B)(B-B)'|F1ZxB]

(5.36)
2
Y \'/ —1 —
=E n_sl = Xn) Szzzxp’} =
Hence, forn>r+4 and(n, r) as given in Equation 5.31,
2 ~
~ -~ Zq 2
MSE(y,) = Var(py) + ——EVar(oY)
40y
(5.37)

C’\((1 pY(X))E(n 2),
n—-r—2

2
_p DD
qmvoo —ZY(X)(l—a( n r))%-

Compared to the MSE in Equation 4.34, when the additimta are not
used, the approximate accuracy improvement for the quantile estig;bator is
shown graphically as a function of the model siZzEhe 0.99 quantile func-
tion is calculated for two different sample sizes 30 anet 100 , and
two different multiple correlation coefﬂmentp,((x) =05 and

pY(X) = 0.75. See Figure 5.2. An analogous graphical result for the 0.95
guantile is presented in Figure 5.3. When the method performs well, the less
extreme quantile result shows a slightly higher accuracy improvement for
similar conditions. This accuracy difference is visualized more clearly in
Figure 5.4, for the intermediate sample size 50

36 of 44

Evaluation of Estimates of Extreme Fatigue Load



Regression on a multivariate, normal auxiliary variable

70 T T T T T T T T T
60 1
8501 T~ ]
IS5 N - — h0®=0.75, n=100
S 401 N — — 1ho®=0.75, n=30
° N 2
9] N ~— rho"=0.5, n=100
©30r~ — - — - \\ - tho?=0.5, n=30
8 -
S 20f \ . - B
\
101 \ 1
_ \
0 L L L | L L A L L
2 4 6 8 10 12 14 16 18 20
model size r
Figure 5.2 MSE reduction, in percent, for the proposed 0.99 quantile estimator, as a
function of the regression model size, compared to when only Y data are
analyzed.
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Figure 5.3 MSE reduction, in percent, for the proposed 0.95 quantile estimator, as a
function of the regression model size, compared to when only Y data are
analyzed.
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Figure 5.4
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MSE reduction, in percent, for the proposed quantile estimators and sample
size n =50, as a function of the regression model size, compared to when only

Y data are analyzed.

If again a 25% MSE decrease of the quantile estimate is required, to justify
the cost of a questionnaire survey, the coefficient of determinaﬁ@;a) has
to be at least one half. However, if the sample sigevery small (say

n = 50 or less), this coefficient of determination must be attained with only
a few independent variables in the model.
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Preliminaries on general
auxiliary variable distribution

One natural way to proceed, after the present analysis, would be to release
the normal-distribution restriction on the auxiliary variakl&Vhen this
restriction is dropped the existing response mean and variance estimators, as
well as allF-measurable results, are still valid. However, all the unconditional
performance results change and a new quantile estimator must be proposed.
For a general statistical distributiéi(x) of the auxiliary variableX, theqth
quantileyy may be written as

Yq = arg{y: E[P(Y< Yy X]=a}. 6.1)

Conditional onX, the fatigue load is still normal-distributed, as long as the
regression model residuals normal-distributed. Hence,

O Y ~Hv x O
Yq = argoy: E[CD } =4q0 (62)
q 0 O O, O 0

WhereuY‘ x = a+BX is our regression function from Equation 4.4.

Since the true regression function and residual variance is not known, the
parameters must be replaced by their point estim|afe§, =a+ @X and
S, from the small customer sample. However, conditionaXpthis replace-
ment makes the normal distribution functidu) invalid, as

_(Y—pyxra—a+(B-p)X)/a,
B s./ 0,

Ce(X) (6.3)

has the studentisdistribution withn—r — 1 degrees of freedom. The func-
tion ¢(X) compensates for the excessive variance of the numerator, as it
should be unity to make the expresstatistributed. Sinc& is stochastically
independent of the small sample data, and therefore also independent of
andp ,

- _ 1 (X=%)S5(X-%,)
Var((Y —py )| X) = oi%l.+ﬁ+ n_21 o

(6.4)

Compare the resultin Equation 5.10 and Equation 5.11. Apparently, the func-
tion ¢(X) must equal
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X — % —1 X — % -1/2
c(X)=%l+%+( X”)nsz_zl( X”)E : (6.5)

Consequently, one natural suggestion for estimating the qugpisie

~

- —Hy|x O O
Vg = argEV J’FtB— Eb(X)%ldFN(X) = qg, (6.6)

whereF (u) is the cumulative distribution function for thgr—r — 1) dis-
tribution.

Taking also the direct load measurement on the small sayplatb
account, a similar quantile estimator may be formulated as

n

~ O “Y\x O O O
E(X)MF (X)) +w Y I, cn0=q0 6.7)
g N jZl lyj<vtg 0

Yoo = arggy v ND J'Ft

wherew is a weight constant\l is the size of the full population (or number
of questionnaire replies) when the small sample is excluded, and the indicator
function

| ot ify;<y .
{Yj<y}_Ep ifyjzy' (6.8)

WhenFy(X) is the non-parametric, empirical distributionXfEquation 6.7
may be rewritten as

D ~ D
Al —Hy, U
AR arg[y vy NDZ FtB——————— [t(x,)D+WZ Ly, <y}D qD (6.9)
D D

If one finds it appealing to add weight to each direct measurement, for accu-
racy reasons, the weight constaris assigned a value greater than one. With
w = 1 all measurements have the same weight.

The precision of the quantile estimators above presumably depend on the
auxiliary variable distributioffry(X). Its evaluation remains as a challenge for
the future.
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Summary and conclusions

Results of estimation precision for population distribution parameters and,
more importantly, extreme distribution quantiles have been presented for a
univariate r.v. representing a certain scalar fatigue load measure. This fatigue
load variableY is for cost reasons only possible to measure directly on a small
sample of the population. In order to improve inference confidence, a less
expensive measurement of fatigue load-related, auxiliary variables is per-
formed on a much larger sample. In fact, data on the auxiliary variables are
assumed to be extensively acquired on the full population, by means of a
guestionnaire survey. Hence, the true population distribution of the auxiliary
r.v.is assumed known, so our results reflect the estimation precision when the
best possible measurement of the auxiliary variables is achieved. The difficult
issues regarding the questionnaire design and other questionnaire survey pol-
icies are not dealt with here.

As an application we may think of some degree of fatigue loading of an auto-
mobile and its distribution over the customer population. Knowledge about
the population distribution of such a load variable would be of great value in

the design process of a new car model.

A regression analysis is performed to estimate the indispensable influence of
the auxiliary data on the fatigue load response variable, using data from the
small sample. The random residual error of the regression model is assumed
to be normal-distributed. If the relation between the fatigue load vaiNable
and the vector-valued auxiliary variabtas shown to be strong enough, the
estimated model and the auxiliary data are used to include the full population
in the inference about the distribution of the fatigue load variilae

resulting estimator precision improvement, compared to whenYotdya

from the small sample are analyzed, is what we use to quantify the method
performance. For varying correlation betweeandY and for varying sizes

of the small sample and the regression model (dimensidi), dfie precision
improvement is presented graphically. In this report, the result is limited to
the case when the auxiliary rX.is normal-distributed.

The investigation shows that better estimates about the distributibaref
possible, provided the questionnaire answers capture the customer fatigue
loading behavior well and enough variation in the fatigue load variable can
be explained with a multiple regression model of limited model size. In par-
ticular when the sample sizas very small, too many independent variables

in the regression model lead to insufficient improvement or even a loss of pre-
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cision. If a 25% decrease of the mean square error (MSE) of the quantile esti-
mate is required, to justify the cost of a questionnaire survey, the coefficient
of determinatiomf((x) hasto be at least one half. However, if the sample size
is as small ag = 50 or less, this coefficient of determination must be
attained with only a few independent variables in the model. See Figure 5.2
- Figure 5.4.

One natural way to proceed, after the present analysis, would be to release
the normal-distribution restriction on the auxiliary variaklaVhen this
restriction is dropped the existing response mean and variance estimators, as
well as allF-measurable results, are still valid. However, the quantile estima-
tor and all unconditional results must be replaced. As befaitenotes the
o-algebra generated by the auxiliary r.v. in the small sample.

As already mentioned in the introduction, a stratification of the population
could be beneficial. A better regression model estimation may be possible if
stratified sampling is used, for the direct customer measurement. Further, the
extension to several fatigue load variables is natural. One difficulty that most
likely would turn up in the arising multivariate regression analysis is the mod-
elling of covariance structure for the random residual vector.
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