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Abstract

When estimating parameters of the probability distribution of a random 
iable, there are sometimes more observations available on related auxi
variables. The usefulness of these observations is evaluated for the case
a jointly normal distribution is assumed. Focus is put on estimates of extre
distribution quantiles and the derivation of their estimation accuracy. A line
regression model is applied to make use of the auxiliary information. In or
to decrease the mean square error of the 95th percentile estimator by 25%
compared to the case when the auxiliary information is not used, it is fou
that a coefficient of determination, of the regression model, of about 50%
required. Moreover, it is shown how the maximum number of auxiliary va
ables allowed in the model decreases with smaller sizes of the primary 
ple. One application of this result arises in the investigation of severe ser
fatigue load, for instance on an automobile. In addition to a limited num
of thorough service fatigue load measurements, a questionnaire survey
be used to measure fatigue load-related customer characteristics on a 
larger population sample.

Keywords: Customer correlation, fatigue load, fatigue test, reliability,
usage enquiry, multivariate analysis, regression, inverted
Wishart, auxiliary data.
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1  Introduction

The time allowed for the manufacturing industry to develop new products
decreasing continuously, as the competition gets tougher. It is importan
find the optimal design without the need of extra time and cost for redesig
In material fatigue engineering, component strength optimization is som
times exaggerated, due to insufficient knowledge about the service load
conditions and, consequently, high safety factors. Many of the needless
design modifications can be avoided, if the fatigue load in the real custom
environment is well known and the load design requirement is correctly p
Unfortunately, it is often a demanding and expensive operation to acqui
enough information about the service loading, in particular when there ex
a great individual variation in product usage. Also, even with good know
edge about the complex fatigue loading in service, the specification of a l
design requirement is a difficult task.

A natural way to acquire necessary information about the customer fati
load environment is to make field measurements of forces, strains and o
operation-descriptive entities, during a reasonably long time of custome
usage. However, even though onboard data loggers are becoming less an
expensive and, at the same time, more capable in terms of data storage, i
still not be possible to make measurements at a large enough number o
tomers, necessary for good population distribution estimates of loading c
acteristics.

In the automotive industry, as an example, most traditional fatigue design
test procedures are based on intelligent guesswork by experienced engin
Durability test tracks have been developed to replicate some worst-case
ing conditions. Tests made on these test tracks have then eventually bec
standardized verifying tests, by experience from many years of continu
use together with feedback from the service departments. As a conseque
fatigue load specifications often originate from measurements made on t
test tracks. The value of experience must not be underestimated here, bu
a fact that this procedure often yields design loads which have very little
do with the actual customer fatigue load environment. Hence, a high sa
factor is embedded and, consequently, some components become unn
sarily overdesigned. Another issue worth bearing in mind is how the custo
environment and usage change over time and, hence, the need for upd
of durability tests and design requirements.
Evaluation of Estimates of Extreme Fatigue Load 1 of 44
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In the most recent years many automotive manufacturers have made an e
to make their fatigue load design specifications more related to the actual
tomer environment. See for instance Thomas et al. (1999) and Wang et
(1999). Methodologies with names such as “customer correlation” are
becoming more and more well known. The aim of these methodologies i
estimate the fatigue load environment corresponding to a certain time o
usage or mileage at, typically, a 95th percentile (severe) customer.

In this paper the customer correlation notion refers to one specific appro
for the specification of service fatigue load environment, very much influ
enced by ideas from people at the German company LMS Durability Te
nologies (http://www.lmsintl.com). This approach involves an appealing
method to improve confidence, when estimating population distributions
fatigue load measures from service load measurements. The method reli
the existence of auxiliary customer or usage characteristics, which are p
ble to measure more extensively on the customer population compared t
primary fatigue load measures studied. A questionnaire survey is used fo
measurement of the auxiliary data. The critical requirement on the auxili
data is the need for a strong relation to the primary load measures.

A direct field measurement of forces, strains, etc., which later is to be p
processed and reduced to the fatigue load measures already mentioned
course, an inevitable and important part of the method. However, for cost
sons, this time- and instrumentation-demanding measurement can only
made on a limited number of customers. The confidence improvement of
load distribution estimates is accomplished by a questionnaire survey, for
measurement of fatigue-related auxiliary data on the same small custom
sample as well as a great addition of customers (if not the full population)
regression analysis is the statistical tool for the assessment of the auxil
data. The use of a questionnaire, to measure auxiliary data such as indiv
product usage and operator characteristics, is the distinguishing proper
this particular customer correlation approach.

One crucial step in the statistical analysis is to model the relation betwe
some well-chosen fatigue load measures and the auxiliary data from the q
tionnaires. This analysis is based on the questionnaire answers from, and
measurements on, the small customer sample. When the most suitable re
sion model is found and its parameters estimated, it is used to predict the
mary fatigue load measures also for customers from which only questionn
answers are available.

Another important issue, which will be left unresolved here, is how the l
ited customer sample will be drawn. A stratification approach would pro
bly add further efficiency to the method.
2 of  44 Evaluation of Estimates of Extreme Fatigue Load
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The aim of this work has been to investigate conditions necessary for
improved fatigue load distribution estimates, regarding model size, coef
cient of determination, size of the small customer sample, etc. The perf
ance of the method is assessed as the confidence improvement over the
when the auxiliary questionnaire data are not used. If such a confidenc
improvement were to prove negligible, the method would not be very use
of course (or the questionnaire design would have been inadequate).

In this first analysis, the method is evaluated for the simplified case when
auxiliary data are assumed to have the normal distribution, even though
practice this would be far from the truth. Some useful auxiliary characteris
may, for instance, be categorical. The method performance for the case
normal-distributed auxiliary variables will still be of interest, however. W
also limit the investigation to only one unspecified fatigue load measure. T
choice of suitable ways to reduce field data to a manageable number o
fatigue load measures is outside the scope of this paper. However, some
eral principles are given in Section 2, "Customer correlation overview". F
ther, the fatigue load variable is assumed to be linearly dependent on th
auxiliary data, with a normal-distributed random error added. Hence, the
mal distribution is also inherited by the fatigue load variable itself (as th
dependent variable).

In addition to the issues already mentioned, there are many interesting p
lems left for future studies. The already mentioned sampling strategy, w
the small sample is drawn, probably has a great influence on the efficienc
the method. Also, before a conclusive evaluation of the method is poss
the effect of different auxiliary characteristic distributions, other than the n
mal, should be investigated. Finally, since in practice there exists more t
one dimension in the intricate fatigue load space, a multivariate regress
analysis on several load measures, possibly with correlated residual er
could prove powerful.

For the automotive industry the particular customer correlation analysis
sented here may turn out to be more attractive in the future. As the cars
more and more computerized and intelligent there may be fatigue load-
related auxiliary data available for free, at the regular maintenance serv
stops. A simple download of objective digital data, from each car on the m
ket, would in that case replace or complement the questionnaire survey.
example, GPS data (geographic positioning data) may be used to divid
total mileage into covered distances on various road types.
Evaluation of Estimates of Extreme Fatigue Load 3 of 44
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2 Customer correlation overview

An overview of the customer correlation approach, influenced by people
the fatigue engineering company LMS Durability Technologies, will be p
sented here. This particular approach was originally suggested for use in
design process of a ground vehicle and will also in our view be considere
such, although applicable to most fatigue-loaded products.

Customer correlation stands for a methodology for specification of the fati
load environment corresponding to a certain period of time or mileage o
severe customer usage, through acquisition and analysis of fatigue load
from the customer environment. The reason for its existence is the desi
base the fatigue design requirements more on what the product is exper
ing in real life, rather than on conservative judgements by experience. T
latter strategy, on which the automotive industry still more or less relies, le
to needless, costly component modifications and overdesign in general
Usage severity is normally assessed as some extreme population quan
such as the 95th or 99th percentile.

The characteristic property of our customer correlation approach is the us
a questionnaire survey, for one part of the customer environment meas
ment. A questionnaire survey makes it possible to inexpensively acquire d
on some more or less fatigue-related auxiliary variables (customer and u
characteristics), from a relatively large customer sample. Assuming that th
exists a strong relation between the questionnaire answers and the fati
load environment, this relation is estimated and used to make the large-
ple questionnaire data improve the statistical confidence on the final fati
load population distribution estimate.
Evaluation of Estimates of Extreme Fatigue Load 5 of 44
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2.1 Customer fatigue load measurements

As mentioned in the introduction, our customer correlation method mak
use of two different types of customer fatigue load measurements:

• One direct field measurement of suitable forces, material strains and
sibly other usage-revealing entities is made on a small random sampl
the customer/product population.

• One less precise, indirect fatigue load measurement is made on a la
customer sample (if not the full population), in which the small sample
contained. Fatigue load-related auxiliary data (customer/usage chara
istics) are in this case collected, with the help of a questionnaire surv

The direct measurement is made during a long enough period of time to
reduce the random error in the time- (or mileage-)average evaluation of
data. For the case of an automobile, perhaps one year may be an appro
measurement duration. Many different channels should be measured, in o
to capture as much as possible of the complex fatigue-associated loadi
behavior.

Because of the many signals and the long measurement time, the data st
capability is likely to be insufficient for complete time-series data acquisitio
Hence, data reduction, with minimum loss of fatigue-related information
applied already when collecting data. In fatigue load analysis of force o
strain data, the most common means for such a data reduction is extra
and accumulation of rainflow cycles (RFC) into a rainflow cycle matrix (
histogram). Other examples of reduced data formats could be level-cros
diagrams or “time at level” histograms, when the measured signals are 
directly related to material strain.

Further data reduction is applied later, in the post-processing of the meas
data. For comparison of fatigue load characteristics between different us
situations, etc., a reduction to a manageable set of load variables is neces
still without truncating the spanning load space too much. One example
such a data reduction is the cycle-by-cycle accumulation of a fatigue dam
measure, from the cycles in a RFC matrix. For each cyclei in the matrix, with
nominal stress amplitudeSi, a damage valueDi can be calculated by using an
S-N curve (or Wöhler curve). The damage measureD results from a summa-
tion over all cycles, according to the Palmgren-Miner rule (Palmgren, 1924;
Miner, 1945):

, (2.1)D Di
i

∑ 1
NSi

--------
i

∑= =
6 of  44 Evaluation of Estimates of Extreme Fatigue Load



Customer correlation overview

hen
 the
por-
spec-
igue

hod,
age

re-
ults

FC

d sig-
cess-
tical

is a

hich
he

ula-
 with
tinu-
ire
ue is

nter-
uxil-
the
where  is the cycle life, at corresponding constant stress amplitudeSi,
obtained from the S-N curve. The fatigue life is considered exhausted w
D reaches unity. For comparative fatigue load studies, only the slope of
S-N curve is important (and possibly an endurance limit) and entities pro
tional to stress, such as strain or force, may be used instead. In our per
tive, the fatigue load variables are measures used only to put different fat
load sequences on a relative fatigue damage impact scale.

Palmgren-Miner damage summation of RFCs is a well-established met
in metal fatigue engineering, to attain a decent estimate of the fatigue dam
impact for a given fatigue load history. Also when absolute fatigue life p
dictions are concerned, it has been shown to yield relatively accurate res
(Dowling, 1972).

The RFC concept was first proposed in 1967 by Endo (Matsuishi & Endo,
1968). Today there exist several more or less equivalent algorithms for R
counting: See for exampleDowling& Socie(1982);Rychlik(1987);Dreßler
et al. (1997) andJohannesson (1999).

To summarize the processing of force and strain data; one measured loa
nal is instantaneously reduced to a RFC histogram and, in the post-pro
ing, reduced further to a scalar-valued fatigue load variable, whose statis
population distribution (or a specific quantile) is later to be estimated.

The size of the small customer sample, for the direct field measurement,
trade-off between quality (or inference confidence) and cost. Ideally, the
direct measurement should be made on the large customer sample, in w
case the questionnaire survey obviously would add no further value to t
estimation of load variable distributions.

As with all questionnaire surveys, the choice of questions and their form
tions are very important. In order to ensure accurate answers, a survey
personal interviews is desirable. The questionnaire data can be both con
ous and categorical. Despite the vital importance of how the questionna
survey is designed and the processing of questionnaire data, here this iss
left open for later studies and a good survey result is assumed. Another i
esting possibility, which should attract attention, is to use some of the a
iary characteristics for a stratification of the customer population, before
small sample for the direct field measurement is drawn.

NSi
Evaluation of Estimates of Extreme Fatigue Load 7 of 44
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2.2 Reference fatigue load measurement

Preceding the customer fatigue load measurement a reference fatigue 
measurement is performed, by engineers on a test vehicle. This initial m
urement is more comprehensive in terms of data channels and is suppos
cover the intricate fatigue load space more or less completely. In contras
the customer measurement, the reference measurement is made on ma
ferent well-controlled fatigue loading environments separately. For an a
mobile, examples of such measurement events could be “five runs on t
track section A”, “ten drives over a curb at 30 km/h”, etc.

The purpose of the reference measurement is twofold:

• For optimal choice of the subset of measurement channels and the d
reduction to fatigue load variables, to be used in the direct customer
fatigue load measurement.

• To create a database of signatures or fingerprints (outcomes of the d
ent fatigue load variables), representing all kinds of different usage si
tions or vehicle maneuvers (events) imaginable.

A limited number of measurement channels or fatigue load variables, for
subset of the direct customer measurement, is necessary for practical rea
After analysis of the reference measurement data, a suitable subset of 
channels is chosen, such that as much coverage of the fatigue load spa
possible is retained. Suppose for example that there is a group of sugg
load variables with strong correlation, in which case only one of these va
bles is picked for the subset.

The database of event signatures will later be used when the estimated
tivariate fatigue load quantile, representing a certain severe customer fat
load environment, is converted from numerical values to a more univers
interpretable fatigue load specification. This product-independent load s
ification is composed of a combination of events (with multiplicities) from
the database, which makes the result useful for the design of similar prod
and not only for the particular model used in the investigation (which is
already on the market, of course).
8 of  44 Evaluation of Estimates of Extreme Fatigue Load



Customer correlation overview

ion-
n the
e
riate
ent
mal-
iffi-

lly
efit

tiza-
s is
ely
ay

ash-
ria-
l is

needs
dent
ro-

ary
ers

dis-
2.3 Statistical modelling and inference

After both the direct customer fatigue load measurement and the quest
naire survey are made, the reduced fatigue load variable dependence o
auxiliary variables, measured by the questionnaire, is estimated from th
small customer sample data. The dependence is modelled by a multiva
regression model or a general linear model. Alternatively, each depend
variable is modelled separately, using univariate regression models. Nor
distributed residual error terms simplify the analysis in both cases. It is d
cult to find the best choice of auxiliary or independent variables to be
included in the model and in what form. The auxiliary variables can origina
be of either continuous or categorical type, but the analysis may also ben
from conversion of a continuous variable to a categorical one, by discre
tion. If, for instance, the influence on the dependent fatigue load variable
non-linear and one finds it difficult to make the dependence approximat
linear, by transformation of the independent variable, the discretization m
be justified.

The model coefficients are estimated in a standard maximum likelihood f
ion, repeatedly with different sizes and combinations of independent va
bles. For high precision in the coefficient estimates, a down-sized mode
necessary because of the small sample size. At the same time the model
to be intricate enough to be able to explain enough variation of the depen
variables. This dilemma is typical for most regression-model selection p
cedures.

In whatever way it is found, the best model is then used to predict the prim
fatigue load measures for customers from which only questionnaire answ
are available. Using all the questionnaire data, an empirical, multivariate
tribution of the fatigue load variables is calculated.
Evaluation of Estimates of Extreme Fatigue Load 9 of 44
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2.4 Fatigue load specification

The fatigue load distribution estimate, or any quantile values derived from
is not very useful by itself, as a fatigue load specification. The numerica
result has a meaning only for the particular product or vehicle used in th
investigation. In order to make the load specification more universal and
product-specific, the numerical result must be associated with some exte
loading environment. For an automobile, for instance, road profile data 
test track are universal but wheel spindle force data are not. The associa
to universal load measures is the main objective for the reference fatigue
measurement of loading event signatures.

An optimization software is used to test many different combinations of
superposed loading events (with multiplicities) from the event database
while minimizing some calculated measure of distance to the estimated
severe target environment. When the best possible match is reached the
fatigue load specification, corresponding to a certain fatigue load severit
population quantile, has the desired form of superposed, external loadin
events.
10 of  44 Evaluation of Estimates of Extreme Fatigue Load
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3 Problem statement

In order to be able to use questionnaires successfully for the measureme
fatigue load-related, auxiliary information, there has to be a strong relat
between how a customer answers the questions and what fatigue load 
ures that would be expected if a direct measurement (e.g. of force or st
were to take place. The identification of this relation was briefly discussed
the previous section. Linear regression analysis is used to investigate th
requirement needed on such a relation, to justify the method for varying
regression-model size, coefficient of determination and size of the small s
ple. The estimation confidence improvement from the additional auxilia
data is assessed in relation to the case when only the direct load measure
data, from the small customer sample, are used.

Consider the linear regression model,

, (3.1)

whereε is a zero-mean, random error or residual term. Further, assume
have access ton observations (xi, yi), from an independently and identically
distributed random sample, and additionallyN (very large) observations ofX
only.

In the following, only one scalar fatigue load variableY, as the dependent (or
response) variable, is considered. The method evaluation is performed in
steps. First, a simple regression on one scalar, auxiliary variable, as the
pendent variableX (or predictor), is studied. Later, the analysis is extende
to the case with several questionnaire questions and, thus, a multidimens
auxiliary variableX.

Now, the main issue is when theN additional observations ofX will be valu-
able for inference statements aboutY. Typically, we would like to find theqth
distribution quantileyq such that

, (3.2)

for a chosen value ofq of, for instance, 0.95 or 0.99.

Y α β′X ε+ +=

P Y yq≤( ) q=
Evaluation of Estimates of Extreme Fatigue Load 11 of 44
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The possible precision improvement is evaluated in this paper only for t
simplified case of normal-distributed auxiliary variablesX. Even though this
in reality would be far from the truth, it is still interesting to study the metho
performance for this case. Further, a normal-distributed random error ter
assumed. Thus, the normal distribution is inherited by the fatigue load va
bleY itself and, consequently, completely specified by the expectation a
variance parameters, and , only. Also the quantileyq may be explicitly
expressed as a function of these parameters:

, (3.3)

wherezq is the corresponding quantile for the standardized normal distri
tion N(0,1) and  is the standard deviation ofY.

Since the normal distribution is imposed on the auxiliary variableX, only esti-
mators of the mean  and variance  (or covariance , in the case
multivariateX) are used to improve inference statements aboutY. Actually, in
the following analyses these distribution parameters are assumed to be kn
exactly, which represents the idealized, limiting condition when . T
assumption is motivated by the large sample of additional measuremen
Xand the interest in the method performance when the best possible prec
improvement result is achieved.

µY σY
2

yq µY zqσY+=

σY σY
2=

µX σX
2 ΣX

N ∞→
12 of  44 Evaluation of Estimates of Extreme Fatigue Load
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4 Regression on a scalar,
normal auxiliary variable

First, the use for the additionalN observations ofX is investigated, whenX is
a scalar random variable. Further, a jointly normal distribution is assumed
X andYand, hence,Ymay be expressed as in Equation 4.1. The random v
iable (r.v.)U denotes a standardized normal r.v., independent ofX, andρ is
the correlation coefficient betweenXandY.By comparison of this expression
to the regression model in Equation 3.1, the parameters and the random
term of the model are easily identified. See Equation 4.2.

(4.1)

(4.2)

Of course, information aboutX is of no use ifX andYare uncorrelated, i.e. if
ρ = 0 (and henceβ = 0). In the other extreme situation, whenρ2 = 1, the ran-
dom error term disappears and the linear regression function is obtaine
exactly from only two observation pairs. Hence, inferences aboutX, from the
large set ofN observations, can easily be transferred to equally well-mad
inferences aboutY.Also for intermediate correlation coefficients, better es
mates ofµX andσX, from the large data set, may be useful to improve know
edge aboutY. However, asρ decreases so does the possibility of improveme

Since the random error term ε of the regression model has zero-mean, the
expectation ofY is

. (4.3)

Conditional onX, we have the regression function

. (4.4)

Y

X
N

µY

µX

σY
2 ρσXσY

ρσXσY σX
2

,
 
 
 
 

,∼

Y µY ρσY

X µX–

σX
---------------- σY 1 ρ2– U .⋅+ +=

ε σY 1 ρ2– U ,⋅=

β ρ
σY

σX
------ ,=

α µY βµX .–=

µY E Y[ ] α βµX+= =

µY X E Y X[ ] α βX+= =
Evaluation of Estimates of Extreme Fatigue Load 13 of 44
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Maximum likelihood estimation of the regression parameters, from the s
ple ofn pairs (xi, yi), yields

(4.5)

and

, (4.6)

where

 and . (4.7)

4.1 Estimation of response mean

When the true distribution ofX is known (or at least very accurately estimate
through the large data set of additional observations)  may be estima
using the regression model, as

. (4.8)

The precision of this estimate is evaluated by the size of its variance, w
the small sample is considered unknown. LetF denote theσ-algebra gener-
ated by the r.v.  of the small sample. Then,

. (4.9)

The second term of this expression is zero, since is an unbiased estim
of  independent ofF. Further, sinceX is assumed to be nor-
mal-distributed,

, (4.10)

α'ˆ α̂ β̂xn yn=+= N α βxn+
σε

2

n
------,

 
 
 

∼

β̂
Sxy

Sxx
-------= N β

σε
2

Sxx
-------,

 
 
 

∼

Sxx xi xn–( )2

i 1=

n

∑= Sxy xi xn–( )
i 1=

n

∑ yi yn–( )=

µY

µY
ˆ α̂ β̂µX+ yn

Sxy

Sxx
------- µX xn–( )+= =

X1 X2 … Xn, , ,

Var µY
ˆ( ) E Var µY

ˆ F( )[ ] Var E µY
ˆ F[ ]( )+=

µY
ˆ

µY α βµX+=

Var µY
ˆ( ) E σε

2 1
n
---

µX Xn–( )2

SXX
--------------------------+

 
 
  σε

2

n
------ 1 E F[ ]

n 1–
------------+ 

 = =
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whereF denotes anF(1, n - 1)-distributed r.v. and the stochastical indepen
ence between  and , conditional onF, has been used. Note that, with

 as the sample variance of ,

. (4.11)

For , the expectation ofF is (n - 1)/(n - 3) and with
the variance expression may be rewritten as

, . (4.12)

Compared with the alternative mean estimateyn, as if the regression model
and the knowledge aboutXwere not to be used, with variance , the es
mation precision is always improved unless bothρ2 andn are small. More
specifically, the precision improves if

. (4.13)

However, for a noticeable improvement whenn is not too small,ρ2 needs to
be, say, at least 0.25. Even if the questionnaire survey is less expensive
the direct measurement, the cost must be justified by a sufficient estima
improvement.

yn β̂
sX

2
SXX n 1–( )⁄= X1 X2 … Xn, , ,

µX Xn–( )2

SXX
--------------------------

n µX Xn–( )2 σX
2⁄

n n 1–( )sX
2 σX

2⁄
----------------------------------------

1
n n 1–( )
--------------------F= =

n 3> σε
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4.2 Estimation of response variance

Next, estimates of the variance ofYare considered. If the true distribution of
X is known, the regression model can be used to estimate

, (4.14)

where the extra term inside the parenthesis makes the estimator unbias
conditional onF, and

(4.15)

is an unbiased variance estimator for the random errorε.

Again, the precision of the estimate is evaluated through its variance, w
the small sample is considered unknown:

(4.16)

The estimate  is unbiased independently ofF, since

(4.17)

Hence, the second term in Equation 4.16 is zero. The conditional varianc
the first term involves the inverse of aχ2(n - 1)-distributed r.v., denoted below
by χ2, since

(4.18)

and
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. (4.19)

It is easily verified that aN(µ, σ2)-distributed r.v. has second and fourth
moments  and , respectively. Further, let

. Using integration by parts together withΓ(m), as the gamma
function

, (4.20)

the first two moments of  are calculated as

(4.21)

and

. (4.22)

The variance of the residual variance estimator  is

. (4.23)

Hence, since  and  are stochastically independent, conditional onF,
Equation 4.16 expands to
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(4.24)

Since and , the variance expression ma
be rewritten as

, . (4.25)

The natural choice of alternative unbiased estimate of , when the reg
sion model and the additionalX data are not used, is the standard sample v
iance . Since  is aχ2(n-1)-distributed r.v.,

. (4.26)

Hence, for higher precision of the estimate of , when using the regress
model and the known variance ofX, we must have

, . (4.27)

The inequality shows that the precision is always improved, also for this e
mate, unlessρ is close to zero at the same time asn is small. The estimation
improvement, in terms of variance reduction for some combinations ofρ2and
n, is presented in Table 4.1.
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4.3 Estimation of distribution quantile

If a small bias is acceptable, theqbo8390

 quantileyq of the fatigue load distribution, from Equation 3.3, may be es
mated as

. (4.28)

The precision of this biased estimate is evaluated through the mean sq
error (MSE):

(4.29)

In the third equality of Equation 4.29 two approximations are involved. Fir

n = 10 n = 20 n = 30 n = 50 n = 100

ρ2 = 0.25 -10 1 3 5 5

ρ2 = 0.5 8 19 21 23 24

ρ2 = 0.75 45 52 53 55 55

Table 4.1 Reduction of estimator variance in percent, when estimating by using
regression model and knowledge about X. A negative value means incr
in variance.
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(4.30)

Also, the expectation of the cross-product term of Equation 4.29 is appr
mately zero, since

(4.31)

and

(4.32)

with expectation zero. The second equality in Equation 4.32 is clear sin
conditional onF,  and  are all stochastically independent, unbiase
estimators for ,β and , respectively.

Without the additionalX data, the quantileyq would be estimated as

, (4.33)

with MSE

(4.34)
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The precision improvement of the quantile estimator, when the regressi
model and the additionalX data are used, is presented in Table 4.2. It is c
culated for the quantiles 0.95 and 0.99 in terms of approximate MSE re
tion, for some combinations ofρ2 andn. The result shows that the coefficien
of determinationρ2 has to be almost one half, if a MSE decrease of at le
25% is required. The requirement onρ2 becomes stronger for very small sam
ple sizesn.

The bias of the quantile estimate equalszq times the bias of , defined
as . For the square root of any unbiased variance estimator, s
as  ors, we can derive the relation

(4.35)

Hence, the bias, as defined above, is negative, with an absolute value pr
tional to the MSE. Since the MSE of  is not easy to calculate, we ma
instead use the variance of  from Equation 4.25 and the approximati

 from Equation 4.30. The resulting bias
expression becomes

(4.36)

and, consequently,

n = 10 n = 20 n = 30 n = 50 n = 100

ρ2 = 0.25 0 (-4) 9 (6) 11 (8) 12 (10) 13 (10)

ρ2 = 0.5 22 (17) 30 (26) 32 (28) 34 (30) 35 (31)

ρ2 = 0.75 56 (52) 61 (57) 62 (59) 63 (60) 64 (61)

Table 4.2 Approximate MSE reduction in percent when estimating the distribution
quantile yq , for q = 0.95 and q = 0.99 (the latter result in parenthesis), b
using the regression model and knowledge about X. A negative value m
increase in MSE.
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Hence, provided the approximation is not too crude, use of the knowled
aboutX together with the regression model also reduces the amount of b
when the estimation precision is improved. In order to substantiate this 
clusion, the decisive approximation crudeness is investigated in the foll
ing.

The approximation error of Equation 4.30 may be calculated exactly for
standard deviation estimator . First, the bias ofsY is derived.

Since, with 2m= n - 1, χ2 = 2ms2/σ2 is χ2(2m)-distributed, it is also gamma-
distributed asΓ(m, 1/2) and, hence,χ2/2 ~ Γ(m, 1). Thus,

(4.38)

and, since

(4.39)

the exact bias expression is

(4.40)

The relative approximation error of is expressed
analytically below, as a function of the sample sizen. In Figure 4.1 it is shown
graphically that this error goes to zero asn increases and is less than one ha
percent forn > 27.
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Figure 4.1 Relative error of the approximation , defined as 
Equation 4.41, as a function of the sample size n.

(4.41)

As defined, the relative error appears to be negative, i.e.

. (4.42)

Thus, the approximate expression for the bias ofsY , equivalent to the expres-
sion in Equation 4.36 (for the estimator ), always overestimates the
amount of negative bias. It is reasonable to believe that the relation in
Equation 4.42 is also valid withsYreplaced by . Hence, the amount of neg
ative bias of  is most likely bounded by the approximate bias of
Equation 4.36. Further, a precision improvement for the variance estima
suggests that the approximation error decreases, since the bias is alway
ative and the bounding variance expression approaches zero. Hence, whe
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estimation precision is improved by the regression model and additionaX
data (i.e. when ), it is also reasonable to believe the sta
ment already made that the MSE and therefore also the amount of bias
decrease.

4.4 Alternative regression parameter estimators

Before we go on with the next example and introduce multiple independ
variables, it could be argued that our knowledge aboutX should be used to
get a better estimate ofβ, instead ofSxy/Sxx , namely

. (4.43)

However, conditional onF, this is no longer an unbiased estimate ofβ. As a
consequence, it yields inference statements aboutYwith lower precision,
since the second terms of the variance expressions in both Equation 4.9
Equation 4.16 are no longer zero. This is shown below only for the alterna
mean estimate .

(4.44)

Note that

(4.45)

and

(4.46)
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which makes the variance of the expression in Equation 4.44 non-zero 
. Hence,

(4.47)

The first term of the variance of , from Equation 4.9, does not chang
much with the different parameter estimator . Since the stochastical in
pendence between and is still valid, the conditional variance of
is calculated as

(4.48)

with expectation

. (4.49)

Hence, the total, unconditional variance of  is

(4.50)

Compared to the original result in Equation 4.12, the variance of the alte
tive mean estimator increases when

, (4.51)

i.e. unless bothρ2 andn are small. The relative increase, defined as
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is shown graphically in Figure 4.2, for ,  and
.

Figure 4.2 The relative increase in variance, when using the alternative estimator
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5 Regression on a multivariate,
normal auxiliary variable

The previous example is now extended so that several independent varia
are considered. The statistical model is from now on a multiple regress
model,

, (5.1)

whereβ andX are column vectors of dimensionr andX is multivariate nor-
mal-distributed. The error termε is still a zero-mean, normal-distributed r.v
and, hence,

. (5.2)

Ther + 1 byr + 1 covariance matrix is partitioned with respect to the ind
pendent and dependent variables, so thatΣX and  stand for ther by r
covariance submatrix ofX and the column vector of the covariance betwee
YandX, respectively. The linear regression function , wit
coefficients

(5.3)

and

, (5.4)

has minimum mean square error , among all linear pred
tors (Johnson & Wichern, 1992). Now, the correlation betweenYand
this linear regression function is quantified by the multiple correlation co
ficient

. (5.5)
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5.1 Estimation of response mean

Since the regression coefficients are not known, they need to be estima
from the small sample of sizen. The unbiased maximum likelihood estimato
of the regression function is

, (5.6)

where the notation comes from the partition of the unbiased sample estim
for the covariance matrix of , from Equation 5.2,

. (5.7)

When the true distribution ofX is known, the mean responseµY may be esti-
mated as

. (5.8)

The precision of theµYestimate is again evaluated by its variance. First, no
that and are still stochastically independent and that may be writ
as

(5.9)

µY X
ˆ yn s21′S22

1–
X xn–( )+ yn β̂′ X xn–( )+= =

Y X′ ′

S sY
2

s21′
s21 S22

=

µY
ˆ yn β̂′ µX xn–( )+=

yn β̂ β̂

β̂ S22
1–
s21 S22

1– 1
n 1–
------------ xi x–( ) α β′x β′ xi x–( ) εi+ + +( )

i 1=

n

∑ 
 
 

= =

S22
1– 1

n 1–
------------ xi x–( ) xi x–( )′β xi x–( )εi+( )

i 1=

n

∑ 
 
 

=

β S22
1– 1

n 1–
------------ xi x–( )εi

i 1=

n

∑ 
 
 

.+=
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Hence, conditional onF,

(5.10)

Using Equation 4.9, the variance may now be calculated as

(5.11)

whereT2 has the HotellingT2 distribution with parametersr andn - 1. See
Mardia et al. (1979) for more on multivariate analysis. Since

 has anF(r, n - r) distribution, with mean
, and , the variance expression ma

be rewritten as

(5.12)

With r = 1 we see that we have the same variance as in Equation 4.12, 
expected.

The variance in this example is reduced by the regression model and th
knowledge ofX, compared with , if

. (5.13)

Hence, for a larger regression model size, a higher multiple correlation c
ficient is required.

Cov β̂ F( ) E β̂ β–( ) β̂ β–( )′ F[ ]=

1

n 1–( )2
-------------------E S22

1–
Xi Xn–( )εi

i 1=

n

∑ 
 
 

ε j X j Xn–( )′
j 1=

n

∑ 
 
 

S22
1– F=

1

n 1–( )2
-------------------S22

1–
Xi Xn–( )E εi

2 F[ ] Xi Xn–( )′
i 1=

n

∑ 
 
 

S22
1–=

σε
2

n 1–
------------S22

1– .=

Var µY
ˆ( ) E σε

2 1
n
---

µX Xn–( )′S22
1– µX Xn–( )

n 1–
----------------------------------------------------------+

 
 
 

=

σε
2

n
------ 1 E T

2[ ]
n 1–
---------------+ 

  ,=

F n r–( ) n 1–( )r( )⁄{ }T
2=

n r–( ) n r– 2–( )⁄ σε
2 σY

2 1 ρY X( )
2–( )=

Var µY
ˆ( )

σε
2

n
------ 1 rE F[ ]

n r–
---------------+ 

 =

σY
2 1 ρY X( )

2–( )
n

--------------------------------- n 2–
n r– 2–
-------------------- ,⋅= n r 2 .+>

Var Yn( ) σ= Y
2

n⁄

ρY X( )
2 r

n 2–
------------ ,> n r 2+>
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5.2 Estimation of response variance

Using the multiple regression model of Equation 5.1, the variance ofY is cal-
culated as

(5.14)

and one natural choice of variance estimator would be

. (5.15)

However, conditional onF, this estimator is biased. The natural choice of co
ditional unbiased variance estimator, derived below, is used instead.

One important feature of the trace operator, in linear algebra, is that for
matricesAandB, such that the sizes ofAand the transpose ofB (or vice versa)
are identical,

. (5.16)

Using this result, we have

(5.17)

Hence, the suggested conditionally unbiased estimator for the variance oY is

(5.18)

where the  random matrix

(5.19)

has the standardized Wishart distribution . Here, as well as
the following,Ir denotes the  identity matrix.

The suggested variance estimator is again evaluated through its varianc
in Equation 4.16. In this multivariate example the calculations require so
results on an inverted Wishart-distributed random matrix, for instance the

σY
2 β′ΣXβ σε

2+=

σY
2̃ β̂′ΣXβ̂ sε

2+=

tr AB{ } tr BA{ }=

E β̂′ΣXβ̂ F[ ] tr ΣXE β̂β̂′ F[ ]{ }=

tr ΣX Cov β̂ F( ) ββ′+( ){ }=

σε
2

n 1–
------------tr ΣXS22

1–{ } β′ΣXβ .+=

σY
2̂ β̂′ΣXβ̂ sε

2 1
1

n 1–
------------tr ΣXS22

1–{ }– 
 +=

β̂′ΣXβ̂ sε
2 1 tr W

1–{ }–( )+ ,=

r r×

W ΣX
1 2⁄–

n 1–( )S22( )ΣX
1 2⁄–=

Wr I r n 1–,( )
r r×
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two moments. Compare the invertedχ2-distributed r.v. involved in the simple
regression example. The following lemma is given and proved by Das Gu
(1968).

Lemma 5.1 (Das Gupta, 1968):Let S be an random matrix distributed
according to the Wishart distribution , where . Then

(5.20)

In our calculations the inverted standard Wishart-distributed matrix also
appears in the conditional covariance of the random vector ,

. (5.21)

By the spectral decomposition theorem we can write

(5.22)

whereΛ is a diagonal matrix with positive random elementsλk andΓ is an
orthogonal random matrix. Conditional onF, however, bothΛ andΓ are
given, asS22 is given. With the transformation to a vector with stochastical
independent components , conditional onF,

. (5.23)

Again, as in Equation 4.18, we have that the variance of a squared
distributed r.v. is . Conditional onF, , where

. Thus,

(5.24)

r r×
Wr Σ m,( ) rank Σ( ) r=

a( ) E S[ ] mΣ=

b( ) E S
1–[ ] 1

m r– 1–
---------------------Σ 1– if m r 1+>,=

c( ) E S
1– ΣS

1–[ ] m 1–
m r–( ) m r– 1–( ) m r– 3–( )

-----------------------------------------------------------------------Σ 1–
m r 3+>,=

ΣX
1 2⁄ β̂

Cov ΣX
1 2⁄ β̂ F( )

σε
2

n 1–
------------ΣX

1 2⁄
S22

1– ΣX
1 2⁄ σε

2
W

1–= =

Cov ΣX
1 2⁄ β̂ F( ) σε

2
W

1– σε
2ΓΛ 1– Γ′ ,= =

η Γ′ΣX
1 2⁄ β̂=

Var β̂′ΣXβ̂ F( ) Var η′η F( ) Var ηk
2 F( )

k 1=

r

∑= =

N µ σ2,( )
4µ2σ2 2σ4+ η N µη σε

2Λ 1–,( )∼
µη Γ′ΣX

1 2⁄ β=

Var β̂′ΣXβ̂ F( ) 4σε
2µη k,

2
λk

1– 2σε
4λk

2–+( )
k 1=

r

∑=

4σε
2tr µηµη′Λ 1–{ } 2σε

4tr Λ 2–{ }+=

4σε
2β′ΣX

1 2⁄
W

1– ΣX
1 2⁄ β 2σε

4tr W
2–{ }+=
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with unconditional expectation, if ,

(5.25)

In Equation 5.25 we have used the equalities  and
.

The following Lemma 5.2 is given and proved by von Rosen (1988) and w
be shown useful in the subsequent calculations, involving the second ter
the variance estimator in Equation 5.18. However, first the stacking oper
(vec), the Kronecker product and the commutation matrix (also called th
permuted identity matrix) are defined.

Let be an matrix andaj the jth column ofA. Then, vec(A)
is the resulting column vector when stacking the columns ofAon top
of each other;

.

Further, letB be a  matrix. Then the Kronecker product  is
defined as the  matrix

.

The  commutation matrixKmn is defined as

whereHij is an matrix with a 1 in positionij and zeros elsewhere. Mag
nus & Neudecker (1979) give useful results on the commutation matrix. F
instance,

, (5.26)

where is the greatest common divisor ofmandn. Now we can state
the lemma.

n r 4+>

E Var β̂′ΣXβ̂ F( )[ ]
2σε

2

n r– 2–
-------------------- 2β′ΣXβ

n 2–( )rσε
2

n r– 1–( ) n r– 4–( )
---------------------------------------------------+ 

 =

2 1 ρY X( )
2–( )

2
σY

4

n r– 2–
---------------------------------------

2ρY X( )
2

1 ρY X( )
2–

---------------------- n 2–( )r
n r– 1–( ) n r– 4–( )

---------------------------------------------------+
 
 
 

.=

β′ΣXβ ρY X( )
2 σY

2=
σε

2 1 ρY X( )
2–( )σY

2=

A aij[ ]= m n×
mn 1×

vec A( ) a1′ a2′ … an′ ′=

p q× A B⊗
mp nq×

A B⊗ aij B=

mn mn×

Kmn Hij Hij ′⊗ ,
j 1=

n

∑
i 1=

m

∑=

m n×

tr Kmn{ } 1 d m 1– n 1–,( )+=

d m n,( )
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Lemma 5.2 (von Rosen, 1988):Let . Then

(5.27)

where  and .

Using the stochastical independence between and , conditional onF, the
precision of the variance estimate  of Equation 5.18 can finally be ca
lated as

(5.28)

In our case  and for  we have, since
,

(5.29)

Hence, for ,

(5.30)

where

S Wr Σ m,( )∼

E S
1–

S
1–⊗[ ] c1 Σ 1– Σ 1–⊗( ) c2vec Σ 1–( )vec Σ 1–( )′+=
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4
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2

+= .

W Wr I r n 1–,( )∼ n r 4+>
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r
2 c2vec I r( )vec I r( )′ c2Krr I

r
2+ +{ }+=

1 2r
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2
c2r c2r+ + +=

1 2r
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n r 4+>
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2
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(5.31)

Notice that for  (and hence ) the precision expression
reduces to the simple regression expression in Equation 4.25, as expec
since

(5.32)

For higher precision in the proposed estimator for  (again compared
), when using the multiple regression model and the known covariance

X, we must have

(5.33)

The improvements in terms of variance reductions as a function of model
r, compared to when theX data are not used, are shown graphical
in Figure 5.1, for , and for two different sample
sizes, and . For an optimal variance reduction and for fix
n, it is shown that there has to be a trade-off between a high multiple co
lation coefficient and a small regression model size, since the correlatio
increases with the model size.

Note that the model sizer here refers to the dimension ofX or, equivalently,
the number of predictors. A different and maybe more common interpreta
of regression model size is the number of regression parameters, which in
case is  with the parameter α added.

a n r,( ) r 1+( ) n
2 4r 5+( )n– 3r r 3+( )+( ) 4+

n r– 1–( )2
n r– 4–( )

----------------------------------------------------------------------------------------------- .=

r 1= ρY X( )
2 ρ2=

a n 1,( ) 2 n 7–( )
n 2–( ) n 5–( )

---------------------------------- .=

σY
2

sY
2

1 ρY X( )
2–( )

2 2ρY X( )
2

1 ρY X( )
2–

---------------------- 1 a n r,( )–+
 
 
  n r– 2–

n 1–
-------------------- n r 4 .+>,<

Var sY
2( )

ρY X( )
2 0.5= ρY X( )

2 0.75=
n 30= n 100=

r 1+
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Figure 5.1 Variance reduction, in percent, for the proposed variance estimator , a
function of the regression model size, compared to when only Y data ar
analyzed.

5.3 Estimation of distribution quantile

Finally, the quantileyq is estimated as before in Equation 4.28, but with th
new mean and variance estimators. The precision of the quantile estima
evaluated through the approximate MSE. The same approximations as
Equation 4.29 are still valid. For instance, the expectation of the cross-p
uct term vanishes approximately also in this multivariate case. Compare
Equation 4.31 and Equation 4.32.

(5.34)
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2 1 tr W
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First, the initial term itself, in the resulting expression above, is shown to
zero. With the Mahalanobis transformation of the centered estimator ve

, or actually a transformation by only, the transformed zero-me
vector  has, conditional onF, stochastically independent
and normal-distributed components. Thus,

(5.35)

where  and .

The second term in Equation 5.34 has the unconditional expectation ze
since

(5.36)

Hence, for  and  as given in Equation 5.31,

(5.37)

Compared to the MSE in Equation 4.34, when the additionalX data are not
used, the approximate accuracy improvement for the quantile estimator
shown graphically as a function of the model sizer. The 0.99 quantile func-
tion is calculated for two different sample sizes, and , an
two different multiple correlation coefficients,  and

. See Figure 5.2. An analogous graphical result for the 0.9
quantile is presented in Figure 5.3. When the method performs well, the
extreme quantile result shows a slightly higher accuracy improvement f
similar conditions. This accuracy difference is visualized more clearly in
Figure 5.4, for the intermediate sample size .
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Figure 5.2 MSE reduction, in percent, for the proposed 0.99 quantile estimator, as
function of the regression model size, compared to when only Y data ar
analyzed.

Figure 5.3 MSE reduction, in percent, for the proposed 0.95 quantile estimator, as
function of the regression model size, compared to when only Y data ar
analyzed.
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Figure 5.4 MSE reduction, in percent, for the proposed quantile estimators and sam
size n = 50, as a function of the regression model size, compared to when
Y data are analyzed.

If again a 25% MSE decrease of the quantile estimate is required, to ju
the cost of a questionnaire survey, the coefficient of determination
to be at least one half. However, if the sample sizen is very small (say

or less), this coefficient of determination must be attained with on
a few independent variables in the model.
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6 Preliminaries on general
auxiliary variable distribution

One natural way to proceed, after the present analysis, would be to rele
the normal-distribution restriction on the auxiliary variableX. When this
restriction is dropped the existing response mean and variance estimato
well as allF-measurable results, are still valid. However, all the uncondition
performance results change and a new quantile estimator must be propo
For a general statistical distributionFN(x) of the auxiliary variableX, theqth
quantileyq may be written as

. (6.1)

Conditional onX, the fatigue loadY is still normal-distributed, as long as the
regression model residualε is normal-distributed. Hence,

, (6.2)

where  is our regression function from Equation 4.4.

Since the true regression function and residual variance is not known, t
parameters must be replaced by their point estimates,  a
sε, from the small customer sample. However, conditional onX, this replace-
ment makes the normal distribution function  invalid, as

(6.3)

has the student’st distribution with  degrees of freedom. The func
tion  compensates for the excessive variance of the numerator, as
should be unity to make the expressiont-distributed. SinceY is stochastically
independent of the small sample data, and therefore also independent 
and ,

. (6.4)

Compare the result in Equation 5.10 and Equation 5.11. Apparently, the f
tion  must equal

yq arg y : E P Y y X≤( )[ ] q={ }=

yq arg y : E Φ
y µY X–

σε
-------------------- 

  q=
 
 
 

=

µY X α βX+=

µY X
ˆ α̂ β̂X+=

Φ u( )

Y µY X
ˆ–

sε
--------------------- c X( )⋅

Y µY X– α α̂– β β̂–( )X+ +( ) σε⁄
sε σε⁄

----------------------------------------------------------------------------------- c X( )⋅=

n r– 1–
c X( )

α̂
β̂

Var Y µY X
ˆ–( ) X( ) σε

2 1 1
n
---

X xn–( )S22
1–

X xn–( )
n 1–

------------------------------------------------+ + 
 =

c X( )
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. (6.5)

Consequently, one natural suggestion for estimating the quantileyq is

, (6.6)

where is the cumulative distribution function for the dis
tribution.

Taking also the direct load measurement on the small sample {yj} into
account, a similar quantile estimator may be formulated as

, (6.7)

wherew is a weight constant,N is the size of the full population (or number
of questionnaire replies) when the small sample is excluded, and the indic
function

 . (6.8)

WhenFN(x) is the non-parametric, empirical distribution ofX, Equation 6.7
may be rewritten as

. (6.9)

If one finds it appealing to add weight to each direct measurement, for a
racy reasons, the weight constantw is assigned a value greater than one. Wi

 all measurements have the same weight.

The precision of the quantile estimators above presumably depend on t
auxiliary variable distributionFN(x). Its evaluation remains as a challenge fo
the future.
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 
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7 Summary and conclusions

Results of estimation precision for population distribution parameters an
more importantly, extreme distribution quantiles have been presented fo
univariate r.v. representing a certain scalar fatigue load measure. This fat
load variableYis for cost reasons only possible to measure directly on a sm
sample of the population. In order to improve inference confidence, a le
expensive measurement of fatigue load-related, auxiliary variables is pe
formed on a much larger sample. In fact, data on the auxiliary variables
assumed to be extensively acquired on the full population, by means of
questionnaire survey. Hence, the true population distribution of the auxili
r.v. is assumed known, so our results reflect the estimation precision when
best possible measurement of the auxiliary variables is achieved. The diffi
issues regarding the questionnaire design and other questionnaire surve
icies are not dealt with here.

As an application we may think of some degree of fatigue loading of an a
mobile and its distribution over the customer population. Knowledge ab
the population distribution of such a load variable would be of great value
the design process of a new car model.

A regression analysis is performed to estimate the indispensable influenc
the auxiliary data on the fatigue load response variable, using data from
small sample. The random residual error of the regression model is assu
to be normal-distributed. If the relation between the fatigue load variableY
and the vector-valued auxiliary variableX is shown to be strong enough, the
estimated model and the auxiliary data are used to include the full popula
in the inference about the distribution of the fatigue load variableY. The
resulting estimator precision improvement, compared to when onlyY data
from the small sample are analyzed, is what we use to quantify the met
performance. For varying correlation betweenX andYand for varying sizes
of the small sample and the regression model (dimension ofX), the precision
improvement is presented graphically. In this report, the result is limited
the case when the auxiliary r.v.X is normal-distributed.

The investigation shows that better estimates about the distribution ofY are
possible, provided the questionnaire answers capture the customer fati
loading behavior well and enough variation in the fatigue load variable c
be explained with a multiple regression model of limited model size. In 
ticular when the sample sizen is very small, too many independent variable
in the regression model lead to insufficient improvement or even a loss of
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cision. If a 25% decrease of the mean square error (MSE) of the quantile
mate is required, to justify the cost of a questionnaire survey, the coeffici
of determination has to be at least one half. However, if the sample s
is as small as  or less, this coefficient of determination must be
attained with only a few independent variables in the model. See Figure
- Figure 5.4.

One natural way to proceed, after the present analysis, would be to rele
the normal-distribution restriction on the auxiliary variableX. When this
restriction is dropped the existing response mean and variance estimato
well as allF-measurable results, are still valid. However, the quantile estim
tor and all unconditional results must be replaced. As before,F denotes the
σ-algebra generated by the auxiliary r.v. in the small sample.

As already mentioned in the introduction, a stratification of the populatio
could be beneficial. A better regression model estimation may be possib
stratified sampling is used, for the direct customer measurement. Further
extension to several fatigue load variables is natural. One difficulty that m
likely would turn up in the arising multivariate regression analysis is the m
elling of covariance structure for the random residual vector.

ρY X( )
2

n 50=
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