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Abstract

In this report we consider the problem of position tracking of mobile phones.
The Kalman filter, with extensions, is a popular solution to this type of filtering
problems, and we review a recent article by Hellebrandt and Mathar [19] as an
example of a mobile phone tracking application of the Kalman filter.

The particle filters has recently received much interest in nonlinear and non
Gaussian filtering applications. These Monte Carlo based methods provide a
non-parametric approximation to the distribution of the filter state, conditional
on the observations. We give an introduction to the particle filter and propose
it as an alternative to the Kalman filter in positioning of mobile phones.

A simple model of the signal strength fading between mobiles and microcells
in an urban area is developed, and used in a simulation to estimate the position
of a mobile phone using the received signal strength as observation. The perfor-
mance of the Kalman filter and the particle filter is investigated and the particle
filter shows superior performance compared to the Kalman filter both concern-
ing tracking accuracy and global positioning ability. These features makes the
particle filter very attractive for mobile positioning and tracking applications.

Finally, we discuss possible extensions to the simple models of movement
used in the simulations and the combination of different positioning methods to
obtain higher accuracy and reliability in the position estimates.

Keywords: Mobile positioning, tracking, Kalman filter, particle filter, nonlin-
ear filtering, density estimation, signal model.

MSC 2000 subject classifications: 62M20, 62p30
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List of Acronyms

Telecommunication is certainly an area of engineering where abbreviations and
acronyms are frequently used. All such words used in the thesis are introduced
in the text, but for reference they are also presented in this list.

AOA
BTS
FCC
GPS
GSM
LOS
LSC
MLS
Mobile
MPC
NLOS
PDF
PSTN
RAA
SIR
TDOA
TOA

Angle of Arrival

Base Transceiver Station

Federal Commission of Communication
Global Positioning System

Groupe Spécial Mobile or Global System for Mobile communication
Line of Sight

Location Service Client

Mobile Location Solution

Mobile phone

Mobile Positioning Centre

Non Line of Sight

Probability Density Function

Public Switched Telephone Network
Resource Allocation Algorithm

Signal to Interference ratio

Time Difference of Arrival

Time of Arrival
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Chapter 1

Introduction

1.1 Problem Introduction

Tracking of mobile phones has recently received a lot of attention in both media
and engineering science. The possibility to make reliable position estimates
opens doors to many interesting new services that can be offered to the user
by combining a positioning tool with position specific information. Position
dependent information available directly in the mobile phone is thus a hot issue
nowadays.

Reliable position estimates require models of user mobility, but more im-
portant is a good model of the signal propagation and hence much work is put
into this kind of modelling. Several different methods have been proposed for
location estimation using only the information available in the received signal.

There are some constraints to have in mind when designing a position track-
ing algorithm for mobile phones. The tracking must be done in real time and
should not require too expensive hardware changes in the system. It must also
be easy to incorporate new information such as spatial changes in the area,
calling activity in different areas or other relevant information.

1.2 Ericsson’s Solution

Ericsson AB mobile positioning service is called mobile location solution (MLS)
and is a framework where there is room for different positioning techniques, mak-
ing it possible to satisfy different information quality demands and to be flexible
to new positioning techniques. Ericsson has developed the MLS framework to
meet the rapidly changing demand of products and services within positioning.
The design of the system allows development of applications independently of
the mobile positioning system. MLS consists of three subsystems [32].

1. The positioning subsystem consists of a variety of different positioning
methods such as:
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(a) a network based positioning system, which only uses information
available within the cellular network, i.e. time difference between sig-
nals, signal strength, signal angle of arrival or combinations thereof.

(b) a network assisted GPS! system, which uses the cellular network
information to improve the GPS estimates.

(c) other techniques. Here is room for other future or non-standardised
methods such as the SIM card toll-kit.

2. The mobile positioning centre (MPC) is a gateway subsystem in MLS
which retrieves data from the positioning subsystem and converts it to
information for the location service client (LSC). The MPC makes it pos-
sible to monitor the usage of position information hence allowing operators
to charge for them.

3. The LSC subsystem contains applications. There are both internal ap-
plications like emergency services and external applications that could be
provided by the system operators or other application developers.

In this thesis we will deal with problems and methods that concern part la of
the positioning subsystem described above.

1.3 Outline of the Report

In Chapter 2, we give a brief introduction to basic concepts in wireless communi-
cations. Abbreviations are frequently used in the area of mobile communication
and some of them will be defined in this chapter. Different methods for mobile
positioning are presented in Chapter 3. Chapter 4 reviews basic filtering theory
and especially the discrete time Kalman filter which has been used in several
studies of mobile location tracking.

Chapter 5 is devoted to the study of particle filters. First we give an intro-
duction to the SIR filter and then other kinds of particle filters are presented.
Finally, some improvements and implementation issues are discussed.

In Chapter 6 a signal model, that emphasises the shifts between line of sight
and non line of sight conditions, is developed for a Manhattan like area. The
performance of the particle filter is compared with the Kalman filter in a simu-
lation using the signal strength as observations. In the simulations very simple
models for mobile movement is used but in Chapter 7 we discuss more complex
models and also give some hints on how to incorporate, and take advantage of,
different kinds of information in the system. Finally, a summary will conclude
the report in Chapter 8.

1Global Positioning System



Chapter 2

Concepts in Mobile
Communication

In this chapter we review some of the basic concepts in wireless communication
that are used later in the thesis. For the interested reader the books [1] and [30]
give a much more complete introduction to the subject compared to the short
survey presented here.

2.1 Some Basic Concepts

A communication system where the number of users and their locations are
not known a priori is often referred to as a wireless network. In Figure 2.1
a schematic picture of a GSM wireless network is given. The network can
be divided into two parts; a fixed network and a wireless system. The fixed
network provides connections, by cable or microwave link, between the base
transceiver stations (BTS) and connects the wireless network to other networks
as the ordinary public switched telephone network (PSTN) and the Internet.
The wireless system provides connections to the mobile phones moving in the
area, covered by the BTS. For notational convenience we will call the mobile
phones mobiles from now on.

The area around a BTS where the conditions are favourable enough to main-
tain communication between the mobile and the BTS is called the coverage area
of the BTS. The coverage area is often highly non-regular and might contain
holes due to complex signal propagation conditions in the area. This fact causes
problems for the system designer whose goal is to minimise the number of BTS
needed to offer adequate service in the area. The union of the coverage areas
must thus equal the service area! and in reality there must also be some over-
lapping. However, if some areas are more frequently visited by mobiles than
others, it is rather the probability that a randomly chosen user can be provided

1The service area is the area where the operator wants to maintain service.

3
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Wirel ess network
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Databases x
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Figure 2.1: A schematic picture of a wireless network. The mobile wireless
network consists of two systems; a fired and a wireless system.

adequate service that should be optimised, since the number of channels at
each BTS is limited. The latter approach require good models of both calling
intensities, movement and data traffic which makes it an even harder problem.

The traditional picture of a mobile wireless system is a plane covered by
hexagonal cells as in Figure 2.2. A BTS is in the centre of each cell and
the cell borders mark the points where the communication shifts to be more
favourable within the neighbouring cell than in the present. It is important
to remember that the hexagonal cells give a very idealised model of the signal
propagation since the true coverage areas are highly non-regular, but neverthe-
less they provide a useful picture to keep in mind when thinking about wireless
networks. The process when the mobile changes from one BTS to another is
called hand-over and is done automatically in the GSM (Global System for
Mobile communications) system and can be triggered by a number of events.
For example, when there is a major difference in received signal power between
different BTS a hand-over is made if there is a free channel available. The hand-
over is mostly a problem for fast moving mobiles but since it takes up important
system resources, such as time and bandwidth, the number of hand-overs should
be minimised.

In the early days of wireless communication the systems were often range
limited and the noise was a major concern. Today the number of users in the
systems is so large compared with the available bandwidth that the channels
used at one BTS must be reused at another, and thus interference between
the signals using the same channels will be a major concern. The signal to
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Figure 2.2: The hexagonal cell model. A hand-over takes place between BTS 1
and BTS 2. The hexagonal cell model is natural when the signal power is strictly
decreasing with distance, but that is seldom the case in a real application.

interference ratio (SIR) is defined as the ratio of received signal power and
received interference power and is a relevant parameter to study when designing
the system. An interesting fact is that fast decay of signal power increases the
SIR and makes it possible to reuse the frequency spectrum more often which
will allow a higher user intensity. The smallest distance between two BTS using
the same channel is called the reuse distance of the channel.

An important part of the system is the resource allocation algorithm (RAA)
which describes how access ports, channels and power are assigned. A good
allocation algorithm will assign links between the mobiles and the BTS that
meet the SIR requirements for as many mobiles as possible. The SIR must be
high enough both in the up-link (mobile to BTS) and in the down-link (BTS
to mobile). The largest amount of mobiles that can be handled by the system
is called the system capacity. Unfortunately it is not easy to find an allocation
scheme maximising the system capacity at each instant. This problem is hard
and there is no exact efficient solution available today, as far as the author
knows. A naive complete-search-approach takes too much time since the number
of feasible allocations grows exponentially with the number of mobiles and hence
the algorithms in work today often use some kind of heuristics.
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2.2 Performance Measures

The system capacity, introduced in the last section, is a random variable since it
is dependent, on the number of mobiles and their positions, which naturally are
random. The classical performance measure in teletraffic theory is instead the
maximum rate of calls for which the probability that a newly arrived request
is denied access is kept below a certain level. This probability is called the
blocking probability. The blocking probability is often too complex to use in
mobile communication since it ideally should deal with phenomena like hand-
over and lost calls due to mobility, which would require a very complex model.
Another approach, described in [1], that is a little less complex, is to minimise
the assignment failure rate v defined as

_ E@2)
- E(M)’

where E is the expectation, M is the number of active calls and Z = M — Y
where Y is the number of adequately served calls. For large E(M) the assign-
ment failure rate is a good approximation of the probability that a randomly
chosen active mobile at some instant is not provided a useful channel. The
instantaneous capacity w*(vg) of a wireless system is defined as the maximum
traffic rate w for which the assignment failure rate v can be kept below a certain
level vy,

w*(v) = {maxw : v < vy }.

To get analytically tractable models a Poisson process is often used to model
the rate of incoming service requests and the call lengths are supposed to be
exponentially distributed. These models are today being questioned. The possi-
bility to send different kinds of data through the wireless network using different
kinds of protocols sometimes make the Poisson assumptions strange and raise
many interesting questions.

Baccelli and Zuyev have also studied models based on Poisson assumptions
using point processes and stochastic geometry as tools. They show in [3] that
several performance evaluation problems based on those models can be posed
and solved by computing the expectation of certain functionals of the point
processes analytically. The Poisson process is used both for modelling position
of BTS, road system and traffic intensity. The mobiles can be in two states;
think mode and active mode and the changes are driven by a two state Markov
chain. All other characteristics are then expressed as functionals of these point
processes and depend thus only on the parameters in their distributions. For
example, the distribution of the number of active mobiles in a base station cell
and the rate of mobiles crossing a certain cell border is calculated and analytical
results are given.

The kind of performance measures described above are valuable for an un-
derstanding of what factors that are of importance for the capacity of a system
and what parameters that influence the system in general, but can of course



2.2. PERFORMANCE MEASURES 7

be rather crude since they rely on assumptions and models that are not always
fulfilled.
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Chapter 3

Mobile Positioning and
Tracking

To meet the requirements of standardisation regarding mobile positioning, but
also to offer new commercial services, a variety of positioning methods have
been developed. This section describes why information about mobile position
will be important in the near future, and the methods that are used or are under
investigation for obtaining this information.

3.1 Exploiting Mobile Position Information

Mobile positioning has recently received increased attention in media. Emer-
gency situations are frequently a reason for interest in positioning of mobiles.
Since there has been an explosive growth of the number mobile phone users dur-
ing the nineties, it is almost always possible to get in contact with help services
very fast whenever and wherever there has been an accident. However, it is not
always the case that the caller can inform about location, due to shock or other
reasons. In fact there is indication [31] that as much as 25% of the mobile phone
users do not know their position in an emergency situation and hence there is
a need to automatically position mobile calls to improve security.

There are of course a lot of other reasons to develop a positioning system.
We have organised the major driving forces behind a positioning device for the
mobile cellular network into three groups: legal aspects, commercial possibilities
and system improvements.

3.1.1 Legal Aspects

Legal aspects have been one of the main driving forces behind the positioning
standardisation. In the USA the Federal Communications Commission (FCC)
have with help from other organisations representing different emergency cen-
tres, including fire brigades and hospitals, formulated the requirements in the

9
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standard E-911. In the first phase of the standard the cellular systems must
be able to transmit the ID-number and the cell number of the caller to the
emergency service. This is not yet fully working in all states. In phase two,
with deadline October 2001, the systems should give an estimate of the mo-
bile position (longitude and latitude) with an accuracy of 125 metres in 67% of
the cases. No such methods are implemented today, but that has not stopped
FCC to ask for comments on tightened accuracy requirements and estimates of
vertical position.

3.1.2 System Improvement

There is also a large gain for the system providers and system operators in
knowing the positions of the mobiles. If a model of the cell structure is available,
bad communication conditions can be predicted and a hand-over could be done
in good time without loss of information. The number of hand-overs can also
be reduced which saves valuable time.

It will be easier to construct algorithms that maximises the number of users
in the system when the positions are known. We can for example squeeze in
another user in a full cell by observing that a current user in the cell is moving
into a neighbouring cell, giving the channel to the new user and providing a
new channel in the neighbouring cell to the current user. Another possibility is
to assign channels with different reuse distance to decrease the reuse distance
between channels. A mobile close to the BTS will be assigned a channel with a
small reuse distance and a mobile close to the border of the cell will be assigned
a channel with high reuse distance.

Once position can be predicted with high enough accuracy, the mobiles can
be used as data collectors for the system providers. This information should
be valuable for deciding when and where new investments in the system are of
interest.

3.1.3 Commercial Possibilities

Even if safety is the primary motivation for mobile phone tracking there are also
a lot of possibilities for applications of more commercial kind. Some examples
of them are listed below.

1. Personal tracking.

2. Navigation assistance.

3. Position dependent billing.

4. Mobile yellow pages.

5. Position dependent advertising.

6. Time table information.
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7. Many more.

Considering the possibilities with positioning and mobile Internet the sys-
tem operators will surely have an interesting future with many new business
opportunities.

3.2 Positioning Methods

The different positioning methods can be divided into two groups: network
based solutions and terminal based solutions, depending on if the position esti-
mate computations take place in the fixed BTS network or in the mobile unit.
The BTS network can offer more computer power, but a mobile unit would
increase personal identity security and decrease the network load. We will not
consider this question in this short survey over different positioning methods.
For a comprehensive overview of different location estimate methods see [31].

A lot of simulations and measurements have been done to compare the dif-
ferent positioning methods, but they often give contradictory results. This is
expected since the signal propagation is sensitive to the surrounding environ-
ment. However, excluding GPS (Global Positioning System), the methods based
on signal propagation time are today the most reliable methods.

3.2.1 Angle of Arrival (AOA)

By measuring the angle of arrival of the transmitted signal at two or more dif-
ferent BTS, it is possible to find the position of the mobile by triangulation.
Antenna array BTS is especially suitable for calculating the angle of arrival; see
[25] for an overview of antenna array techniques. The AOA method could be
useful in the future since antenna arrays are planned for future mobile networks,
where their primary task is to provide directional transmission to improve the
capacity of the network. The literature gives contradictory results about per-
formance of the AOA method. For example, Owen et al. [29] gives negative
results for urban location estimation but a company in the US claim on their
homepage that their solution fulfils the requirements of FCC, see [34].

3.2.2 GPS

The GPS system is commonly used for navigation purposes today, but the GSM
system can give additional information to the GPS receivers to obtain better
coverage and accuracy. These methods are very accurate and positioning can be
done within metres precision depending on the type of GPS and the surrounding
environment. The interest has yet been quite low in this kind of solution from
the mobile community since the GPS receivers are relative expensive, require
line of sight (LOS) conditions and can not penetrate buildings well enough for
indoor positioning. The power consumption in the mobile will also increase
which requires more powerful batteries. This might be a problem since there is
a trend of almost ever decreasing sizes of the mobile phones.
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3.2.3 Time of Arrival (TOA) and Time Difference of Ar-
rival (TDOA)

The propagation time from mobile to BTS (or vice versa) is the most commonly
used variable for position estimation today. In the TOA method the propagation
time is calculated by letting the mobile bounce the signal back to the BTS.
This duplex signalling is not efficient, and is the major drawback with the TOA
method. In [13, 14] different algorithms for TOA position location is compared
in a simulation.

The most popular candidate for future position systems seems to be TDOA.
The method measures the relative arrival time from one mobile at three BTS at
the same time (or vice versa). This requires exact synchronisation between the
BTS. The position estimate will be given by the intersection of two hyperboloids
and the solution to the equation system thus have to be found by some kind of
iterative method.

3.2.4 Signal Strength Analysis

Triangulation using received signal strength requires either a very good fading
model or empirical data of the signal strength sampled from all interesting
positions in the area. Both approaches are difficult, but there are benefits using
a signal strength analysis compared with other methods; the signal strength
information can be very useful for the system operator. Empirical models have
been derived by Hata in [16], but these models are of global character and
does not describe the local fading in a urban area well enough for position
location purposes. However, much effort are put into making good signal models
using methods like ray-tracing, geographical information systems and diffraction
models, which might make this approach more attractive in the future. Since
the signal model is only calculated once it is not a time critical step in the
algorithms.

In [18, 19] signal strength analysis is used for mobile tracking. Highly ac-
curate results are reported, but in Chapter 6 we find that the choice of signal
strength decay model is crucial for their results and in more complex situations
the performance is much worse.

3.3 Problems in Location Estimating

Location estimating using the mobile network is very convenient since it takes
advantage of the existing cellular network structure and only requires the signal
as input. Unfortunately it also inherits the disadvantages imposed by the design
of the network.

In most of the techniques presented above two or more non-serving BTS
are involved in the location procedure which might cause problems due to low
received signal strength at a remote BTS; especially when the mobile is close
to the serving BTS and thus might automatically be forced to transceive at a
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lower power level. This is called the hearability problem. The fast decay of the
signal power is due to the non line of sight (NLOS) conditions and is something
that is highly appreciated for interference reduction making the channel reuse
distance smaller, but it makes triangulation harder.

Another important problem with NLOS conditions is that signals in urban
areas tend to propagate along the streets and timing, signal strength and an-
gle of arrival will differ from what can be expected from a LOS model. The
received signal also consists of several copies of the signal but with different
time delays, magnitude and phase. This phenomenon, when the signal inter-
feres with itself, is called multi-path propagation and is important to include
in a signal propagation model. TDOA reduces this problem since it measures
the time of arrival difference between different BTS and the errors are then
hoped to cancel, but for more accurate results this effect must be included in
the models. For the signal strength this will result in fast fading, which can be
described as the rapid changes of the signal strength due to interference. The
signal strength also heavily depends on how the user directs the antenna and
the very local surroundings. These two phenomena reduces the applicability of
the signal strength analysis.

The geographical positions of the BTS can also be important, especially in
rural areas or along highways where the BTS tend to be aligned which will
reduce the accuracy of the triangulation.

3.4 A Tracking Algorithm

In this section we introduce a position tracking algorithm proposed recently by
Hellebrandt and Mathar [19] as an example of an algorithm for mobile position-
ing. This method will also be used in the simulations in Chapter 6.

3.4.1 Model and Algorithm

The idea is to find the least squares estimate of the position using the received
signal strength from a number of neighbouring BTS and use it as an observation
input to a tracking filter. Of course, the least squares problems will be difficult
to solve since the complex signal landscape will produce a lot of local minima,
but if a good initial estimate is given some faith can be put into the next
step estimate and the least squares minimisation restricted to a smaller area.
This approach is investigated in [18] and [19], where the latter reference uses a
Kalman filter and the former uses linear regression. The Kalman filter proves
to be the more successful approach according to the authors [19].

The method is not restricted to tracking based on signal strength but can be
used for any of the proposed positioning methods in Chapter 3. We introduce
some notation to have a closer look at the prediction algorithm.

Let n be the number of BTS in the area of interest A C R? which is bounded,
and let si(7) be the signal power received at BTS i = 1,... ,n at discrete time
instants k¥ € N. Further, we assume that we know the average signal strength
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(i, 2) measured at time k at BTS ¢ from a mobile in position z € A. The least
squares estimate! is then given by

n

2=argminy_(ri(i,2) - sx(i))* (3.1)

i=1

which gives an estimate of the position z at time t;. The least squares problem
(3.1) is difficult to solve since a large number of local minima are expected. But
since the complexity of the signal landscape gives us no hope in modelling the
signal strength decay with high accuracy it is useful to simplify the least squares
problem. The minimisation problem could be reduced to an exhaustive search
only over a local area grid G C A, given that the initial estimate is reliable.
The size of the local area is determined by an upper limit of the velocity of the
mobile in the area times the sampling time and the size of the grid is determined
by the accuracy requirements and the signal model. We will come back to this
problem in Chapter 6.
The Kalman filter in [19] consists of a linear dynamical system given by

X1 = Xy + TWy, (3.2)
where
X; 0 0 1 h 0O
N E 1 A IS R A
X? 0 A 000 1

and Wy, are 2 x 1 random vectors assumed to be i.i.d. A/(0,C). An observation
model is also presented to complete the Kalman filter. The observations from
the least squares estimates (3.1) are modelled by another linear system,

Y, =MX; + Vg, (3.4)

where

Yl 1 0 0 O

and Vy are 2 x 1 random vectors again assumed to be independent normally
distributed N (0, R).

The movement of the mobile is thus modelled as white Gaussian noise ac-
celeration and the observations are the true position in additive white Gaussian
noise.

1Under assumptions of Gaussian distributions with equal variances this is the maximum a
posteriori estimate.
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3.4.2 Remarks

The least-squares approach followed by a Kalman filter has several good quali-
ties. It is fast and possible to implement for real time usage, because of the local
search and the recursive structure of the Kalman filter. It is also possible to use
theoretical signal propagation models as well as signal strength measurements
as data in the algorithm.

Two major disadvantages with the algorithm is that it is very dependent on
a good initial position estimate and that it is restricted to linear models with
additive Gaussian noise, see Chapter 4. This will cause problems as we will see
later on.
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Chapter 4

State Estimation Theory

In this chapter we will review some basic results from filter theory. The general
filtering problem is first introduced and then the necessary results for an ana-
lytical solution is presented. The well known Kalman filter solution of the linear
filtering problem with additive Gaussian noise is also reviewed as an important
special case of the general filtering problem.

For a more detailed study with proofs we refer to the good introductory
books on filtering by Jazwinsky [22], McGarty [26] and to Durrett [12] for an
introduction to conditional means and martingales, which are important con-
cepts in filtering.

4.1 The General Filtering Problem

The ultimate goal of practically all filtering and tracking algorithms is to deter-
mine the probability density function (PDF) of the objects state vector, given
the observations up to the present time point!. Since this PDF contains all
available statistical information it is the complete solution to the filtering prob-
lem.

To make the filtering procedure effective it is important to have a good model
of the system. Two main restrictions must then be met by the model: first the
model must give an acceptable description of the physical situation, second it
must be mathematically tractable. The latter demand has been taken care of
in the filtering problem by a Markovian approach. The PDF for the next state
of the system is thus only dependent on the present distribution, and does not
depend on its history. The Markovian framework is general enough to model
many interesting physical processes and will be used exclusively in this thesis.

We first define the continuous version of the general filtering problem. Sup-
pose the state vector X; € R™ at time ¢ of a dynamical system is given by the

I The problems of smoothing and deconvolution will not be considered here, but they fit
into the same framework.

17
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stochastic differential equation
dX; = f(Xy, t)dt + ox (X¢, t)duy, (4.1)

where f : R* xRy = R", ox : R* xRy — R"*? and (u¢)¢>0 is a p-dimensional
stochastic process with independent increments. Usually further restrictions are
put on the functions f and ox to assure existence and uniqueness of a solution
to the stochastic differential equation, but we refer to [28].

Also the observations Y; are continuous and given by

dY;g = h(Xt, t)dt + oy (Xt, t)d’l}t, (42)

where h: R* xRy — R™, oy : R* xRy — R™*" and (v¢)¢>0 is a r-dimensional
independent increment process, also independent of (u:);>0. Once again we
refer to [28] for constraints on h and oy for existence and uniqueness.

The filtering problem is now to find the best estimate X; of the state vector
X given the observations {Y;, 0 < s < t} satisfying (4.2). In other words: Find
X, that is measurable w.r.t. J, = o({Ys : 0 < s < t}) such that

E[|X; — X;|!] = inf{E[|X; — Z|?] : Z € L*(P), Z is ); measurable}, (4.3)

where P is the measure of the probability space (2, .4, P).
In some situations a sampling procedure is imposed and then a discrete
model is more natural?,

X1 = f(Xk,k) +Ux(X(k),k)uk, (4.4)

where X}, is a n x 1 state vector at time tj, (nx)r>0 is a white noise, zero mean
sequence with known distribution and independent of current and past states
and fr : R® x N — R” is the state transition function. The observations Y}, of
the system are given by

Y, = h(Xk,k) + Uy(Xk,k)'Uk, (4.5)

where Y}, is a m x 1 vector; (vg)r>0 is a zero mean, white noise sequence with
known distribution, independent of current and past states and also independent
of the system noise (np)r>0; h : R* x N — R™ is the observation function.
This situation will be our main focus in the rest of the thesis. The filtering
problem is the same as before, but with the exception that Vi = o(Y1,... ,Y%)
in condition (4.3). If the discrete model arrives from a discretisation of the
continuous version, some care has to be taken in the discretisation stage.

The general filtering problem could of course be made even more general
since we have assumed additive noise in our models. We would then have arrived
at the following system

Xir1 = f(Xr, kyng)
Yk = h(Xk,k‘,’Uk)

2 All procedures implemented in a computer certainly must be discrete since a computer
operates sequentially in time and memory is finite.
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We will not consider that generalisation here since it makes it hard to develop
general analytical results, but we come back to this kind of generalisations when
we study approximative methods in Chapter 5.

4.2 Optimal Estimates

Consider random variables defined on the probability space (€2, 4o, P) and in
particular those belonging to the Hilbert space L?(Ag) = {Y € Ay : EY? < 0},
equipped with the scalar product E(XY'), where E is the expectation operator
and X,Y € L?(Ap) . Let A be a sub o-algebra such that A C Ag and hence,
L?(A) will be a closed subspace of L?(Ag). Hilbert space theory then gives
existence and uniqueness of a pair of orthogonal projections P and Q,

P L2(Ay) = L2(A),
Q: L%(Ay) = L2(A)*,

such that any X € L?(Ap) can be decomposed as
X =P(X)+ 9(X). (4.6)

The orthogonal projection P(X) of X on A is the stochastic variable Y € A
that minimises the error norm || X —Y||> = E(X — Y)? and is in this sense the
optimal estimator of X in 4. The following theorem determines the orthogonal
projection operator as the conditional mean of X given A, see for example [12].

Theorem 1 Let X € L*(Ay), then the conditional mean E(X |A) is the stochas-
tic variable Y € L?(A) that minimises E(X —Y)2.

Different kind of subspaces could be of interest for projection, but gener-
ally we want them to be spanned by a set of functionals G : R* — R of the
stochastic observation functions Y7, ... ,Y,, that are measurable on A and square
integrable. We give two examples of natural subspaces to be more concrete.

Example 1 Let N be the Hilbert space of all square integrable, measurable func-
tions of the observations Y (s1,w),... ,Y (sp,w), s; € [to,t], i = 1,...n or limits
of such. N equipped with the usual inner product is a closed subspace of L?(Ag)
and a unique orthogonal projection P : L?(Ao) = N exists.

Example 2 Let £ be the Hilbert spaces of all random variables that are finite,
linear combinations of Y (s;,w), s; € [to,t], ¢ =1,...n or limits of such. Again
a unique orthogonal projection P : L2(Ao) — L emists.

Clearly we have that £ C N C L?(Ap) and hence the projection on N will
result in a smaller error norm than the projection on £. On the other hand, in
Section 4.4 we will review an analytical solution to the filtering problem on £
while there in general exists no analytical solution on N .

If continuous measurements are available some care has to be taken when
studying the conditional mean. If the observation process Y (s,w) is assumed to
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be a separable process it is sufficient to study the process on an countable num-
ber of points rather than on the uncountable number of points in the interval.
Let C; be the o-algebra generated by the random variables Y (¢1,w), ..., Y (¢;,w)
and observe that if f : 49 — R then E(f|C;) is a martingale. The following
martingale convergence theorem is then available.

Theorem 2 Suppose X € L' and C; C C2 C ... be an increasing sequence of
o-algebras and let C, be the smallest o-algebra such that Uzozl C, CCx. Then

lim E(X|C,) = E(X|Csx) a.s. and in L.
n—oo
The conditional mean, and thus the orthogonal projection in the case of
continuous measurements of a separable process, is thus well defined as a limiting
procedure of the case of finite observations.

4.3 Propagating Probability Densities

In the previous section we concluded that the conditional mean E(X (t)|.A) was
the optimal estimate (minimises the mean square error E(X — Y)?) and since

E(X®)A) = /:cpx(w,t|A)d$,

the main concern for this section is to determine the conditional probability
density px (z,t|.A) of the process X at every time ¢.

There is both a differential and integral approach to propagation of the prob-
ability density. The differential approach leads to the Fokker-Planck equations,
which is a parabolic partial differential equation. In this section we will con-
centrate on the integral approach since it is a natural starting point for the
development of the type of approximative methods that will be the main sub-
ject in Chapter 5. Since we consider applications where a sampling procedure
is natural we also restrict the presentation to discrete time which makes the
problem easier.

Using Bayes’ theorem it is possible to develop a recursive procedure for prop-
agating the conditional density. This process proceeds through repeated appli-
cations of prediction and correction. The prediction step uses the dynamical
system (4.4) to predict the next state Xy, using the best estimate X} at time
k. The update stage uses the latest information Yj4 satisfying (4.5) to modify
the prediction step. The procedure is called recursive Bayesian estimation.

Let p(zk|yx) denote® the probability density function for the stochastic state
variable X at time k given the finite sequence of observations Yy, where the bold-
faced k indicates the sequence Yy = (¥;)%_;. We further assume that (Xj)x>o
is Markovian, that we have known parametric forms of the densities p(yx|zk),
P(zk+1|rx) = p(Tr+1|zr) and the initial state density p(zo). The filtering can

3We wright p(zy|yx) instead of px, |v; (Tx|yk) for notational convenience.
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now be viewed as a two-stage recursive procedure. First the current density at
time k is propagated one time step using only observations available at time £k,

(k1 |ne) = / P11 |2) AP @k ). (4.7)

Second, we make an observation Yy, of the system at time k + 1 which can be
included using Bayes’ theorem

P(Yr+1|Trt1)P(Try1|yx)
P(Yra1|yx)

P(@ht1|Yaerr) = ; (4.8)

where
Pl = / (ks |25 ) AP @51 |13, (4.9)

Unfortunately these integrals can seldom be evaluated analytically and hence
we are restricted to numerical approximations, which will be the main subject
in the next chapter. But there is an important special case when it is possible
to find an analytical solution to the filtering problem which is presented in the
following section.

It is important to note that if X}, is a finite set of known discrete points the
problems with the integrals disappear and we get

pErrlye) = D p(@rr |ze)p(@rly), (4.10)

and

P(Yrt1|Tr1)P(Trp1|y)
That PYk+1|Tht1)P(@k41 |Yx)

P(Tht1|Yit1) = 5 (4.11)

In the first step all the points are weighted by the transition probability and in
the second step each step is weighted by the likelihood.

4.4 Discrete Time Kalman Filter

In the special case with linear model and Gaussian distributions it is possible to

derive an analytical solution to the filtering problem. In his paper [23] Kalman

uses the concept of orthogonal projections to derive the minimum mean square

linear filter for the state of a dynamical system. We will follow this work here.
Consider again the linear, discrete time, dynamic model

(4.12)

Xpt1 = <I>(k+1|k)Xk+Fkuk
Y = MpXp+op

where X}, is a n-vector, Y}, is a p-vector and (ux)r>0, (Vk)k>0 are independent
sequences of Gaussian stochastic variables of n- respectively p-vectors. Further,
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My, and Ty, are p X n respectively n X n matrices with real-valued, non-random
elements. The state transition function ®(k|l) is a real valued, n x n matrix
that describes the deterministic transition of the state from time [ to time &,
where k > .

Let H be the space of random n-vectors where the components have finite
second order moment and let H be equipped with a scalar product,

(u,v) = E(u"v),
and norm
llull* = (u,u).

Define the linear subspace )V, C H by
k
Vi={z:2=>) A@i)Y:}, VA(zi)eR>". (4.13)
i=1

The filtering problem is now to find an estimate X r € Wi, of X, that minimises
the expected loss E(X; — Xy)2.

Since H is a Hilbert space, the results from Section 4.2 applies. But we
will not use the concept of conditional PDF; we follow Kalman and work with
orthogonal projections on the linear subspace V. We know from Section 4.2
that the orthogonal projection of X on )} is the optimal estimate when we
use a quadratic loss function. Thus, the optimal estimate is the same as in the
Gaussian case even if we are dealing with non Gaussian noise. This is important
to note since it is then possible to generalise the model (4.12). The assumption of
Gaussian noise in (4.12) is convenient since the conditional mean will be normal
for all times due to the linear models. The filter thus only has to propagate the
mean and the variance of the distribution which makes it a finite dimensional
problem.

The next step is to express the orthogonal projection as a recursive equation
and in terms of our dynamical system. Let the best estimate of X given the
information at time ! be denoted X} and define X} by

X ZXIZE—}—X}C,

where XL € J; and X! € Y;-. This decomposition exists and is unique according
to (4.6).

The predicted estimate of X1 given the information at time k is presented
by the following lemma.

Lemma 1 The predicted optimal estimate of X1, given the data at time k,
18

Xk =8k +1k) X} (4.14)
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This follows since ®(k +1|k) X} € Y by definition (4.13) and E((XfH — ®(k+
1E)XHTY) =0, VY € V.

Using the same kind of orthogonality arguments as above it can be shown
that when the observation Yj1 becomes available the orthogonal projection on
Yi+1 is given by (4.14) and a linear correction term. The discrete time Kalman
filter can then be summarised as:

Theorem 2 The minimum variance estimate for the discrete system (4.12)
can be stated as a difference equation for the conditional mean and the error
covariance. Between observations we have

Xk, = ®(k+1lk)X},
Py = ®(k+1k)Pi@" (k+1k) + T1Qsa Ty,

and at observations

X,’s = Xll:_l—f—Kk(Yk—MkX}:_l),
Pt = PF'- KM P,

where
Ky = Py M (M PET" M + Ry,) ™

is the Kalman gain.
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Chapter 5

Approximative Solution -
Particle Filters

In Chapter 4 we studied how to obtain the conditional density as a function of
time and a recursive, but infinite dimensional, solution was obtained. Practical
filter implementation in a computer calls for methods that are finite dimensional
and hence there is a need for approximative methods. In this section we will
study particle filters as a solution to this problem. These are Monte Carlo meth-
ods and give a non-parametric approximation to the conditional distribution.

5.1 Overview of Different Approximative Solu-
tions

As already mentioned there is in general no analytical solution available for
nonlinear estimation. The extended Kalman filter (EKF) is probably the most
frequently used filter under these circumstances, see for example [27]. In the
EKF the system of equations is linearised around the the most recently pre-
dicted state and an ordinary Kalman filter can be applied. Unfortunately, for
many systems the EKF will often diverge which has led to a number of modi-
fications of the EKF based on improved linearisation techniques or coordinate
transformations.

Several other methods have also been proposed in the literature. Numerical
integration over a fixed grid of points in the state space has been proposed
in [24]. The Gaussian sum filter is investigated in [2, 20] and methods which
approximates the first two moments of the density is proposed in [33].

These methods are usually far from optimal in high noise environments,
when the observations are highly uncertain or the nonlinear equations are not
smooth enough. Furthermore, in [7] it is concluded that none of the methods is
general applicable on a large enough class of problems, in the perspective of ap-
plications, without much work with tuning of parameters to take account of the

25
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problem specific features. Also, the updating stage often requires a formidable
computational overhead which can be crucial in real time applications.

Recently there has been much work concerned with methods in which the
required probability density is approximated with a set of random samples that
propagate through the state space. These methods have various names depend-
ing on the area of application, such as: Bayesian bootstrap filters, condensation
algorithm, Monte Carlo importance re-sampling filters and Monte Carlo particle
filters. In this thesis we will simply call them particle filters. The particle filters
have been found efficient for nonlinear filtering problems and do not require the
same amount of parameter tuning as the previous approximative methods.

The particle filter has been suggested by various authors independently. One
of the earliest and most well known methods is the SIR (sampling importance
re-sampling) filter presented by Gordon, Salmond and Smith in [15] and by Del
Moral, Rigal, Noyer and Salut in [11] independently.

5.2 Basic SIR Particle Filter Algorithm

The basic SIR point filter algorithm is intuitive and easy to understand even if
the theoretical justifications can be quite involved, see [10, 9] which seems to be
the first rigoroous convergence result. Consider again the system

Xk:+1 = f(Xkak') + ng, (51)
Y = h(Xk,k) + Uk, (52)

where Xy, is the state vector of the dynamical system and Y} is the observation
at time k£ € N. Without loss of generalisation the state vector is assumed to be
two dimensional in the figures to make visualisation easier.

Assume that that the conditional PDF p(z|yx) is known and we want to
approximate p(zp+1|yk+1). The basic idea in the SIR filter is to provide a
Monte Carlo approximation of p(zy|yk) called a random measure and then to
propagate and update it using the Bayesian technique described in Section 4.3
to obtain an approximation of p(zg11|yk+1)-

A random measure (X°(i),q(i))Y, is defined by a set of random variables
(X¢(i))N, called the support and weights (g(i))}¥, which sums to 1. The ran-
dom variables (X§(i))N , will also be called particles or exploring particles. Fol-
lowing the basic idea we approximate p(zg|yi) with a random measure where the
support are i.i.d. random variables (X¢(¢))X,, X¢(i) ~ p(zk|yc) and g (i) = -
The basic SIR particle filter algorithm can now be formulated:

1. Initialisation. The particles X§(1) = z§(1),... ,X§(N) = z§(NV) are
sampled from p(zo) and are all given uniform weight go(i) = %-

2. Prediction. Assume the random measure (Xf(i),qx(i) = %)X, at time
k is known (see Figure 5.1(a)). Propagate the particles according to the
given dynamical system (see Figure 5.1(b)):

Xlg—i-l (i) = f(X} (i), k) + ng.
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The PDF p(zg+1|yx) is then approximated with the random measure
(Xk+1( i),qr(4) = %)X, (see Figure 5.1(c)).

1=
3. Correction. The observation at time k£ + 1 becomes available and the
weights are updated according to (see Figure 5.1(d)):

P(yk+1|~%i+1 (Z))
E;V:1 P(Yr+1 |572+1 (7))

Qe+1(0) = (5.3)

4. Estimation. The conditional mean is approximated by the sum of the
weighted particles,

2

E(XglY1 =91, -+, Y1 = Yrt1) Z k+1 () Z541 (7)) (5.4)

5. Re-sampling. Re-sample N times from the discrete probability distribu-

tion given by (Xg,,(i),Gr+1(¢)); gives the random measure (Xf,,(4),

Q1 (i) = &)X

6. Loop. Return to step 2.

The initialisation- and the prediction-step only require sampling and not
evaluation from the distributions p(z¢) and p(zjy1|x), which makes it possible
to generalise (5.1) to

Xk+1 = f(Xk,k,nk) (55)

The correction step requires that p(yx|zr) is evaluable for every y; and xy.
Note that the position estimation is done before the re-sampling stage not to
introduce an unnecessary source of noise, see [7]. As N — oo the approximation
in (5.4) converges in probability to the conditional expectation, which is proved
in [10].

5.3 Particle Filters

In this section we describe the particle filter algorithm in a more general way,
which will result in a number of different particle filters.

Particle filters can be defined as the class of Monte Carlo filters which re-
cursively approximate the distribution of the random variable X|Yy by the
random measure (X£(i),qx (i)Y, that is

N
P(Xk € d$k|Yk) ~ Z‘SXi(i)qk(i) (5.6)



28 CHAPTER 5. APPROXIMATIVE SOLUTION - PARTICLE FILTERS

* ! Exploring particle

PDF contour lines

(a) Assume that p(zg|yx) is known (b) The particles are propagated one
and let the exploring particles X7 (i) step by the dynamical system (5.1).
(marked * in the figure) be a random

sample from this distribution.

probability mass: q(i), i=1,...,N probability mass: q(i), i=1,...,N
y
X
(c) The PDF p(zr41lyk) is ap- (d) The observation Yi41 = Y41 at
proximated by the random measure time k£ + 1 is used to re-weight the par-
(X5 (4), qr (3) = %){Vzl ticles using the likelihood (5.3).

Figure 5.1: One step in the SIR filtering algorithm. The number of particles in
the figures is small and not representative for a real filtering situation.
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where dx (+) is the point measure with support in X. This is an approximation
in the sense that the random variables X g (i) with associated weights gy (i) are
chosen such that

N N
[ 920 Y- bxzodman) = S o(XgDat) — Blg(X[¥o, 6.1

in probability as N — oo, for measurable functions g where E(|g(X})||Yk) < oo
and E(|g(Xg)?|Yx) < C < oc.

The recursion starts with the Bayesian prediction of the conditional distri-
bution described in (4.7)

p(@hia ) = / Pk |2 AP (e, (5.8)

and applying the random measure gives

N
P(@rsly) & P(errilye) = Y p(@re |2 ()ax (0). (5.9)

i=1

The second step in the recursion is the correction step described in (4.8)

P(Th41]¥kt1) < P(Yh41]Trt1)P(Trt1 Y1), (5.10)
and inserting (5.9) gives the following approximation of p(g+1|yk+1):

N

P(@rt1]Y1ers) X P(Yrt1]Tra1) Zp(xkﬂ |7, (4)) gk (4)- (5.11)

The particle filter now concludes the filtering step by approximating (5.11) by a
random measure (X, ,(4), ge+1(i)),. There are several ways to sample from
D(Tk+1|yx+1) which result in different type of point filters.

5.3.1 SIR Sampling

One of the most frequently used sampling methods is SIR, where a random
measure with uniform weights (X§(4), g (7)), is used to approximate p(zx|yk).
For each of the exploring particles (X¢ (i)Y ; a sample is drawn from p(zy41|z§)
giving new particles (X§¢ +1(0))X, with associated weights Gp-1 (i)

wi11(5)

f, j:17---7N-
Ei:lwk+1(7/)

We1(J) = P(Yr+1|8541(F),  Grt1(d) =
(5.12)

This new random measure is then re-sampled to obtain (X, (¢),qr+1(4) =
%)ZIL The re-sampling stage is important since it redistributes the particles

to areas in the state space with high probability.
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5.3.2 Stratified Sampling

In the basic SIR filter one particle is sampled from each one of the sub-densities
(or strata) in (5.11). An improved SIR filter is proposed in [7] where stratified
sampling is used for variance reduction. Suppose that a PDF consists of N
strata

N
p(z) = Z Bipi(x). (5.13)

Let M; be the number of samples from p;(x), where N = Zfil M; is the total
number of samples drawn from p(z). According to sampling theory there is a
most efficient way to sample from p(z) in order to reduce the variance in the
estimate of [ g(z)p(z)dz: let M; o (;0; where o is the variance of g(x) under
pi(z). In most problems, o; is unknown and instead M; o< §; is chosen. This
method can be used in the SIR filter since (5.11) is a PDF of type (5.13) with

S p@r1]2R)p(Yrtr [Th+1)dTrp
N )
Yoim [ p@rg1|28) Pkt |Thg1)dTpsa

Bi = (5.14)

and

pi(z) = . .
(@) S P(@pi1|2E)P(Yhp1 [Trg1) A g

The authors report significant improvements using stratified sampling on the
bearings-only-problem. Unfortunately, 3; and p;(x) is seldom available and
importance sampling is necessary. Note that choosing one sample from each
strata, as in the basic SIR filter, is also a form of stratified sampling.

5.3.3 Random Sampling

An alternative sampling method is rejection sampling, which is based on simu-
lating from p(zy|zf,_,) and accepting particles with probability

_ p(yk|zr)
P= @)

where f(z) > p(yk|zr) is the comparison function. Since we do not know
p(yr|zk) a natural choice is

(5.16)

f(x) = p(Yk|Tmaz), Tmaz = arg H;%Xp(ykmk)- (5.17)

One major problem with rejection sampling is that z,,4, can be hard to compute
for high dimensional problems. Another alternative which also produces random
samples is Markov Chain Monte Carlo (MCMC) sampling.

Both of the alternative methods can be very time consuming if there are a
lot of rejections, and the author’s opinion is that the SIR sampling method is
better suited for real time sampling.
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5.3.4 Branching Particle Filters

In this section we will describe a generalisation to the SIR particle were the
particles are allowed to branch in every step. In the SIR filter every particle
at some instant propagates one step through the state space and are then re-
sampled according to how well they match the observation. The branching
process introduces a more complex interaction between the particles to avoid
exploration of uninteresting regions of the state space. The branching particle
filters differ from the SIR filter at two points.

Prediction. For each of the exploring particles (X (i))N,:

1. Initialise M auxiliary particles (X7 (i)) M, with position X @I(0) = Xg(i)
and weight qZJ(z) =gqx(i) for j=1,... , M.
2. Propagate the auxiliary particles one step according to the dynamical

system (5.1) to get (ngl(z))j‘il

Correction. For each of the exploring particles (X (i)Y ;:

1. Choose one of the subsystem of particles (X,‘jfl (1))L; at random with

probability
M a,j
Zj:1 (p(yk+1 |.Z'k+1 (Z)) (5 18)
N ~—M NN .
2im1 21:1 P(Yr+1 |xZ’_f_1 ()
2. Choose one of the auxiliary particles X ,‘;fl (i),j =1,..., M in the chosen
subsystem with probability
% (i
P(Ykt1] k+1() (5.19)

M RIS
2= Pkt |71 (4))

A generalisation of the particle filter can be done by allowing the auxiliary
particles to propagate R steps before they are given weights corresponding to
how well their trajectories fits the observations.

Note that we now have introduced two more parameters, M and R, that
should be set according to some optimality criteria which probably will depend
on the system equations and thus makes the filter more problem specific.

5.4 Time Complexity of SIR Algorithm

Increasing the number of particles IV in the filter will improve the estimates but
of course also increase the computing time. In time critical applications there
will always be a compromise between accuracy and time efficiency and it is thus
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interesting to study the time complexity of one step in the SIR particle filter
algorithm.

If all function evaluations are assumed to take constant time both the prop-
agation step and the update stage in the algorithm will have a time complexity
O(N) in a single processor architecture!. But the re-sampling stage requires
some thought to be done in an efficient way. The naive approach is to simulate
standard uniform variables (u;)Y¥, and then use a binary search to find which
particle, (z;))¥., with corresponding weights (¢;)I¥;, to choose in the i:th stage.
That is, choose particle with index j if

Qj—1 <u; <Qj

where Q; = >7_,qr and Qo = 0. Since the binary search procedure have
time complexity O(log N) the whole sampling procedure have time complexity
O(Nlog N). In [7] an algorithm which results in an O(N') sampling is presented.
Simulate N + 1 exponentially distributed random variables eg, ... ,en and then
calculate the empirical cumulative distribution function (CDF) E; = >°7_ e;.
The two discrete CDF:s E; and @; are then merged together as described in
Algorithm 1.

Algorithm 1 (O(N) sampling)
i=0; j=0;
while j < N loop
if Q;En > E; then
i=1+1; output ;
else
J=i+1;
end if;
end loop;

We can conclude that the one step in the particle filter can be done with
time complexity O(N). Of course, in a time critical situation as mobile tracking
the true computational time is more important, but the O(N) time complexity
shows that the computational burden will not explode in a situation which
requires a larger amount of particles.

5.5 The Number of Particles in the Filter

The possibly large amount of particles needed for a certain level of accuracy
can be very critical in a real time filtering application even if the algorithm has
linear time complexity. The convergence results presented so far are asymptotic
results, and give no hint of how to choose the number of particles in the filter.
However, it is clear that the number of particles IV is dependent on a number

IThe structure of the propagation stage in the SIR. filter is well suited for parallelisation.
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of factors. The dimension of the state vector is important since the components
are often correlated which should require an increased number of particles to
resolve the dependencies. In the case of independent components, N does not
increase with the dimension of the state vector. The SIR algorithm converges
for every time k, but if the convergence is not uniform in time the number
of particles can be expected to increase. In [10] a regularization procedure is
introduced that give uniform convergence. Finally, N will also depend on the
prior p(zk|yk—1) and the likelihood p(yk|zy). If the variance of the likelihood
is small compared to the variance of the prior, i.e. the region of the state
space where the observations are probable are small compared to the region
where the prior is significant, almost all of the exploring particles will receive
a very small weight. If the likelihood falls into a region of low prior density
and hence containing only a few exploring particles, these particles will have
large weight and all the others very small weight and hence a small chance of
being re-sampled. The approximation of the conditional distribution might then
collapse and only be representated by a single value. This phenomena is often
called sampling impoverishment in the particle filter literature.

We have presented particle filters using a constant number of particles, but
that is of course not necessary. Intuitively, it should be wise to have a large
number of particles when the variance of the conditional distribution is large and
then reduce it when it becomes smaller. This can be seen from the Chebychev
bound

1 & c
i=1

where X; are uncorrelated random variables with E(X;) = g and var(X;) < C.
By estimating the variance of the distribution it would be possible to adaptively
change the number of particles, but such estimates can not be based on the
exploring particles.

In [7] a simple method for determining the filter size is proposed that is
based on running the filter independently a number of times on a known trajec-
tory and then compare the variance of the estimated conditional mean within
and between the replicates. But the number of particles should of course be
determined from the observations of its performance on the whole population
of trajectories. However, this method is still useful since it quite often is pos-
sible to distinguish a few examples that should be hard to filter and study the
performance on these.
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Chapter 6

Simulation of Tracking in an
Urban Area

In this chapter we will compare the performance of the Kalman filter and the
particle filter in a simulated urban environment. The Kalman filter has been
proposed for mobile tracking in [19], but depends heavily on linear models for
optimality in the mean square sense (see Chapter 4).

A mobile moving in an urban environment will experience frequent shifts
between LOS and NLOS conditions, communicating with a BTS. This will result
in a highly nonlinear decay of the signal strength. The particle filter turns out
to be the better algorithm under these conditions.

6.1 Simulation Model

In the simulations, signal strength is used as input to the tracking algorithms,
following the approach in [19]. One can argue that a TDOA based input would
have been more realistic since it has been proposed for many systems that
are under development. But an advantage is that the signal strength contains
useful information for the system operator and more advanced and realistic
signal models are under development. However, the position tracking methods
that are investigated in this thesis are of course applicable even in a TDOA
approach and a possible scenario could be to use signal strength models as a
complement to methods based on TOA, TDOA or AOA, (see Chapter 7).

In the simulations presented below we assume that it is possible to make
a model of the signal strength decay for every BTS. The area is discretised
into pixels and for every BTS and every pixel the model gives a value of the
signal strength. This approach is realistic today, since the development of the
database systems has increased the speed of information retrieval. However, it
is not straightforward to discretise the signal strength decay model, since we
must deal with the problem of fast fading and other disturbances, see Chapter
3.

35
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6.1.1 Topology

The two dimensional topology used in the simulations is presented in Figure
6.1. This is of course a very simplified model of a city since we do not include
any altitude information, but it includes the shifts between LOS and NLOS
conditions, which is our main modelling concern in this simulation. We will call
it a Manhattan area because of the perpendicular street crossings.

The area has been divided into uniform pixels which have been included in
a small part of Figure 6.1. The uniform pixel size is not a restriction, but makes
the simulations more convenient. The pixel size is set to 10 x 10 metres and the
total area is 100 x 100 pixels or 1000 x 1000 metres.

Five BTS are present in the area and they are marked with a ’*’ in Figure
6.1. Note that a mobile moving in the area will experience both LOS conditions
and NLOS conditions.

Figure 6.1: City topology. The grey pixels represent buildings and the white
pizels represent streets. The positions of the five BTS are marked with a ’*’ in
the figure. The individual pizels are plotted in a small part of the area.

6.1.2 Signal Model

The signal model determines the piecewise constant signal strength at each pixel,
for every BTS. The model can be derived from measurements, some theoretical
model or a combination of both. The theoretical models have improved a lot
and will probably be relevant alternatives to measurements in the future. An
overview of different models for signal propagation loss prediction is given in
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[17], but here we restrict to a special class of models, since it will be enough for
our purposes.

The Okumura-Hata formula [16] has been used for signal strength modelling
in a number studies, see for example [18]. It is an empirical formula given by

P.=P,—Gp—-Ga—Gr [dB], (6.1)

where P, and P; is the received respectively transmitted signal strength, G 4
is the antenna gain, G is the fading gain which is assumed to be N(0,0?)
distributed and Gp is the distance gain. The attenuation of the signal due to
distance is modelled as

Gp = Ry + 10alog(d) [dB], (6.2)

where Ry is a constant, « is the attenuation factor and d is the Euclidean
distance between BTS and mobile. For LOS with no multipath or reflections
we have the well known quadratic decay of the signal strength and hence o = 2.
The Okumura-Hata model is of global character and it is really only applicable
if the antenna height is higher than the surrounding rooftops and the distance
d is over one kilometre [17]. Thus it will not describe the situation in a city
well enough for position prediction and a more local model must be used if high
accuracy predictions should be possible.

When modelling radio-wave propagation in urban areas it is important to
distinguish macrocells from microcells. The antenna in a macrocell is often
located on the top of tall buildings, giving them many metres clearance above
the urban skyline. The signal thus passes above the surrounding buildings and
enters the streets via reflections and diffraction. Macrocells used in relatively
open urban areas have been modelled by Okumura-Hata formula and by multiple
diffraction models, see [4] for an example. In microcells the antennas are often
mounted on the side of buildings, under the urban skyline. The signals main
propagation is around buildings and along streets, so under these conditions the
streets can be modelled as waveguides connected via street crossings [21]. In
this simulation we study microcells in the Manhattan area.

In the simulations a simplified version of the model described in [5] is used.
It concentrates on the shifts between LOS and NLOS conditions, but does not
include important characteristics like dual slope behaviour. We will only con-
sider isotropic antennas (G4 = 0). The received signal strength P, at the BTS
is modelled by

P, =P, — 10a log(df") + N(0,0%) [dB], (6.3)

where P, is the transmitted signal strength, K is a constant, « is the attenuation
factor and d,, is a NLOS distance which tries to incorporate the behaviour of
the received signal strength under NLOS conditions in the model. The NLOS
distance is defined by the recursion

{ dn:dn—1+cn+ﬂnDn TL#O
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where n is the number of 90° turns, C), is a variable modelling the loss due to
direction change, 8, is a multiplying factor and D,, is the Euclidean distance
between turn n—1 and turn n. Since we have discretised the bounded Manhattan
area in Figure 6.1, d,, can only take a finite number of values.

The signal model given by (6.3) for a BTS at position (10, 10) in the Man-
hattan area is shown in Figure 6.2, where the rapid decay of the received signal
strength with distance, at NLOS can be seen. It is apparent that the received
signal strength from a mobile inside a building is considerably lower than from
outside. Berg [6] reports measurements where differences inside buildings com-
pared to the level outside is from 30 dB up to 55 dB, which is used in the
model.
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Figure 6.2: Signal strength landscape from BTS (10,10). Note the rapid decay
of the signal strength when there is NLOS conditions.

Data from mobile signal strength measurements in an (sub-)urban area [35]
is shown in Figure 6.3. A mobile is moving along a path shown in Figure 6.3(a)
and the received signal strength has been sampled. In Figure 6.3(a) the signal
strength is plotted as a function of spatial coordinates and in Figure 6.3(b) as
a function of time (or sample). Some of the shifting of the signal strength in
Figure 6.3 is possible to relate to shifting LOS and NLOS conditions given the
map in Figure 6.4, but much better models are possible if altitude information
is available.

The fading characteristic of the measurements can be compared with the
characteristics of the model in Figure 6.7. The figures indicate that the model
is not unrealistic containing the rapid shifts of signal strength between LOS and
NLOS conditions, but this is of course a hand waving argument.
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Figure 6.3: Measurements of received signal strength [db] from mobile moving in
urban area with shifting LOS and NLOS conditions. Data from Ericsson [35].
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Figure 6.4: A map over the Kista area where the measurements have been made.
The BTS is mounted close to the start and of the movement. It should be possible
to recognise the mobile route by comparing the map with Figure 6.3(a).
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Data from slowly moving mobiles [35] has been used to estimate the standard
deviation o of the fast fading. We found that 6 = 6 [dB], but the estimate is
suspected to depend heavily on the local environment.

6.1.3 Position Tracking Methods

The performance of the Kalman filter described in [18] and in Chapter 3 is
compared to the basic SIR particle filter described in Section 5.2.

We will use two different state propagation models for the dynamic system
in the Kalman filter case. The model in the filter called Kalman1 includes only
the space coordinates in the state vector

S ) ()
= + Wy, 6.5
(i) =(5)~w o

where Wj ~ N ([0,0]%, diag(6,6)). In Kalman2 the velocity coordinates are
included

X1 1 h 00 X} 00
X, (o100 || X 10
2o [Tloo 1w || x2|T]oo]|We (6:6)
X2, 000 1)\ % 0 1

where Wy, ~ N([0,0]7, diag(1,1)).

The particle filter does not include any velocity coordinates in the state vec-
tor as a first approximation and the velocity components are, as in the Kalmanl
case, modelled as white noise. If the exploring particles at time k is X (), the
exploring particles at time k£ + 1 is a random sample from rectangular uni-
form distributions p(zr+1|zf,(¢)) with centre points X (i) = xf,(¢). Figure 6.5
shows the distribution used in the simulations, with a variance comparable with
Kalmanl.

The models for mobile movements used in these simulations are as simple as
possible, but more advanced models are proposed in Chapter 7.

The observation model in the SIR case is a straightforward use of the signal
model (6.3), where the received signal strength at the five BTS in the Manhattan
area are assumed to be independent. This is a faster and more direct model
than the observation model (3.4) in the Kalman filter, where the local least
squares estimate of the position is treated as the observation in order to find
the observation matrix M. The least square estimate has been calculated
over a 8 x 8 pixel grid, centred around the previous position estimate, and the
observation noise is N'([0,0]%, diag(3,3)). Both the the size of the least squares
grid and the variance of the observation should ideally be a function of the signal
noise, but are assumed to be constant.

The models in the simulations are thus not exactly equivalent which reflects
the fact that the particle filter is more general than the Kalman filter and does
not need to be tuned to the specific problem to such an extent as the Kalman
filter.
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Figure 6.5: Propagation model for the particle filter. The position of a particle

at time k is marked with a black pizel. The propagation of this particle is a

random sample from the uniform distribution over the rectangle marked by the
grey pixels.

6.2 Simulation 1 - Tracking Properties

In this simulation we investigate what effects the nonlinear signal landscape will
have on the tracking algorithms. The initial position is supposed to be known,
and only the tracking performance is studied.

6.2.1 Scenario

A mobile moves in the Manhattan area from left to right as presented in Figure
6.6. The speed is one pixel/second which corresponds to 36 km/hour. The
signal strength sampling rate is one sample/second which is rather low!. A
higher sampling rate would of course improve the estimates.

The received signal strength from one of the BTS as a function of time is
presented in Figure 6.7. There are two peaks in the received signal strength cor-
responding to LOS conditions at the two street crossings during the movement.
The transceiving BTS position is (50, 50) in Figure 6.6, which can easily be seen
by comparing the plot of the received signals strength with the movement.

Tn the GSM system a test signal, that can be received by all the BTS is sent out every
0.48 seconds.
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Figure 6.6: The mobile moves from position (1,30) to position (70,60) following
the line.
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Figure 6.7: The left plot is the noisy (o = 6) received signal strength [dB] for
the BTS in position (50,560) as a function of time, and the right plot is the
undisturbed signal.
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The initial distribution for Kalman2 is A/ (2, C2) where

1
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M2 = 30
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and N (u1,Cy) for Kalmanl and the particle filter where

u1=(310), clz(gg). (6.8)

The filters are initiated with the true initial positions which is very advantageous
in nonlinear tracking, but this is of course a rare event in a mobile tracking
application.

6.2.2 Results

If exact information about initial position is available the Kalman filters work
satisfactory when low power noise is added to the signal, see Figure 6.8. But as
the noise level is raised the Kalman filters loose accuracy and often get stuck
close to the initial point as in Figure 6.9.

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Figure 6.8: For low noise levels the Kalman filter works satisfactory. (a) Posi-
tions predicted by the Kalman filter and (b) error in the z- and y-direction in
pizel units (o0 = 2).

Inspired by the FCC standard (presented in Chapter 3) we define a per-
formance measure to compare the particle filter and the Kalman filters in the
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(a) (b)

Figure 6.9: For higher noise levels the Kalman filter often get stuck close to the
initial point. (a) Positions predicted by the Kalman filter and (b) error in the
z- and y-direction in pizel units (c =6).

simulation. Let T, denote the number of estimated trajectories in the simu-
lation, where the Euclidean distance between the position at time k and the
true position at this time does not exceed 200 metres for any & in the sampling
interval, and let the tracking success ratio R be defined by

T,
R, = 5 (6.9)

where S is the total number of simulations. In Figure 6.10 we present the result
of S = 100 simulations for each noise level o. The particle filter consists of
N = 200 particles in these simulations, but with a larger number of particles
the result of course becomes better.

6.3 Simulation 2 - Initial Conditions

In Simulation 1 we started the filters in the true position, but in a mobile track-
ing application this is seldom the case. An important feature of a good tracking
filter is thus the adaptability to inaccurate initial conditions. In this simulation
we will compare the performance of the filters when the initial distribution is
biased.
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Figure 6.10: The success ratio plotted for o = 1,...,12. The particle filter
performs better than the Kalman filters for all o.

6.3.1 Scenario

A mobile is stationary in the Manhattan area at position (30, 70), see Figure
6.11, and the signal strength sampling rate is again one sample per second. The
initial distribution for Kalman2 is assumed to be N (uz, Cs) where

(6.10)

O O O
o OO
- o O o

The initial distribution for Kalman1 is assumed to be A (1, C1) where

30 225 0
“1_(30)’ Cl_( 0 225)' (6.11)

In Figure 6.11 circles which contains 39% and 86% of the probability mass in
the space domain is marked. The true position is thus not very probable. The
particle filter is initialised by sampling N particles from A (u1,C1).
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Figure 6.11: The mobile is stationary in the position marked with a diamond
and the initial Gaussian distribution is biased. The circles contains 39% and
86% of the probability mass in the space domain.

6.3.2 Results

In this simulation we want to investigate if the filters locate the mobile and how
long time it takes. Hence we define a convergence ratio R, by

(6.12)

where T,(k) is the number of independent simulations where the estimated po-
sition are within 50 metres from the true position at time &, and S is the total
number of simulations. The results of S = 100 simulations for each algorithm
are presented in Figure 6.12.

6.4 Discussion and Conclusions

It is clear from the results of the simulation that the particle filter is superior
to the Kalman filter given the signal model and signal environment used in the
simulations. We will summarise the simulations by emphasising some important
factors that distinguish the filters.

6.4.1 Representation of Distributions

The Kalman filter only propagate the mean and the covariance of the conditional
distribution assuming it is Gaussian which might be highly misleading. The
particle filter propagates an approximation of the whole distribution and is
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Figure 6.12: The convergence ratio T.(k) as a function of time (sample) k. The
particle filters show a higher convergence ratio than the Kalman filter for both
N =300 and N = 600.

thus not restricted to Gaussian distributions as seen in Figure 6.13 where the
distribution adapts to the street structure.

In Figure 6.14 the distribution is bimodal due to symmetry at the middle
BTS, which is the most informative since it is the nearest and have LOS condi-
tions. Since the Kalman filter assumes an unimodal Gaussian distribution the
risk that it makes a erroneous choice in a street crossing substantial.

In a mobile positioning application it is important to use all the information
available in the conditional distribution and not only the expectation. The true
position in Figure 6.14 is around (50,30) but the conditional distribution also
have a second mode around (30,50). Only presenting the mean in a situation
like this is a waste of information and can also be totally misleading, even if
it is the optimal minimum variance estimate. Taking the whole conditional
distribution under consideration gives much more information and should be
used by the positioning system.

6.4.2 Initial Estimates

The dependence on a good initial estimate is crucial for the Kalman filter. But
in reality good initial estimates are seldom available, and often the uncertainty
can be very large. In Simulation 2 we simulated a situation where the initial
distribution was misleading (see Figure 6.11). Since the mean value of the
distribution was on the wrong side of the LOS street (-, 50) for BTS (50, 50), it
is difficult for the Kalman filter to pass this street and the filter often gets stuck.
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Figure 6.13: Approzimation of p(x|yk) with the particle filter. The conditional
distribution is centred around the true position (40,30) and adapts well to the
street crossing.
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Figure 6.14: Approzimation of p(x|yk) with the particle filter. The conditional
distribution is bimodal since the signal model is symmetric for the BTS in posi-
tion (560,60). The true position is (50,30).
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The particle filter is better suited for this situation because the random sample
from the initial distribution will, with probability depending on the number of
particles, include some particles close to or on the right side of the LOS street
for BTS (50,50). This is a very useful feature, that is of great importance for
global positioning problems. In [8] for example, the SIR filter is used to track a
mobile service robot in a museum under very uncertain initial conditions, with
successful outcome.

6.4.3 Nonlinear Signal Landscape

An important condition for the optimality of the Kalman filter is a linear model.
This is not the case in an urban area and not in the signal model used in the
simulation, as shown in Figure 6.2. The effect on the Kalman filter can be seen
in Figure 6.8 where the predicted positions often changes from inside a building
to outside. This is due to the erroneous assumption of linear signal landscape. If
the observation does not match the predicted position the Kalman gain matrix
will modify the position under linear model assumption. In a nonlinear signal
landscape the result can be totally misleading.
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Chapter 7

Enhanced Models

7.1 Model Extensions

The model is one of the main components in a successful tracking procedure.
We have already mentioned that it is important that it does not only give a good
description of the physical situation but also that it is mathematical tractable.
The model must also provide a good balance between the complexity and the
possibility to make inference from the observations. These obvious reflections
are important to have in mind when developing models.

A natural extension to the simple propagation models used in the simulations
is to let the model of the mobile movement change with position and time. For
example, the models should of course be different if the mobile is moving on the
city square or on a train out from the city; rush hour traffic models should differ
from more low traffic models and so on. The dependence on state and time in
the model is straightforward to implement in the particle filter. This also holds
for the Kalman filter but with the usual restriction to linear models.

It could also be fruitful to include the velocity in the state vector also in the
particle filter. The velocity information can be used for hand over predictions,
which can increase the system capacity. It is straightforward to use a continuous
velocity distribution but it might also be relevant to distinguish between a finite
number of states. For instance, the mobiles movements can be classified as:
stationary, walking, driving a car in different speeds depending on road or using
the subway. Increasing the dimension of the state vector by including velocity
components will increase the number of particles needed to approximate the
distribution in most cases, due to new correlation structures.

7.2 Combinations of Positioning Methods
Different positioning methods all have their pros and cons. The signal strength

measurements that we have used as input in the simulations suffer from fast
fading. There are also many different factors that influences the signal strength
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but are impossible to include in a model, such as if the mobile is held close to
the head or in the air, if the mobile is in a crowded place or not, etc.

TDOA, TOA and AOA are not dependent on the signal strength explicitly
but they all suffer from multipath effects even if the errors might cancel out to
a certain degree assuming similar NLOS conditions to each BTS in the TDOA
case. One major problem in common for all of the methods is the hearability
since is certainly not always possible to detect a signal at three or more BTS
at the same time. In Figure 7.1 we observe how the initial PDF is spread out
if only one isotropic BTS detects the signal in the TOA case. A signal strength
model combined with the TOA method could have resolved this problem better
depending on the symmetry conditions in the signal strength model. Note that
the particle filter is useful for positioning under these conditions.

Figure 7.1: Initial distribution for the position of a mobile when only one
isotropic BTS detects the signal in the TOA case.

In a close future there will also be a demand for positioning in the height
dimension, which calls for improved techniques. A combination of the methods
seems very appealing since it would both increase the accuracy in positioning
and also give information about future trends in signal strength for the mobile
at different BTS. An open question is how to combine the observations, which is
much an engineering problem. However, the particle filter gives much freedom
for different solutions and they should all be straightforward to implement.



Chapter 8

Summary

To conclude the thesis, we briefly review the thesis and comment on the results
from the simulations.

Recently there has been much interest in the area of mobile positioning, only
using information from received signals. In Chapter 3 we reviewed some of the
different methods used in positioning. A TDOA approach seems to be the most
promising, but a combination with methods like TOA, AOA and signal strength
should be preferable since it can reduce hearability problems, and also provide
useful additional information to the system operator. If the signal strength
analysis shall be a useful tool in the future, better signal propagation models
need to be developed. A combination of theoretical models and measurements
could be fruitful.

Since the mobiles are not stationary, and a recursive estimation procedure is
preferable, the Kalman filter has been proposed as a solution in a recent study
[19]. However, the Kalman filter is restricted to linear models and Gaussian noise
and a more general but approximative class of filters has been investigated. This
class is called particle filters, and in Chapter 5 an introduction to the particle
filters is given. In contrast to other approximative methods a particle filter does
not need any problem specific adjustments, it can be applied to a wide class of
nonlinear filtering problems.

In Chapter 6 we compared the performance of the Kalman filter and the
SIR particle filter on tracking in a simulated Manhattan area. A nonlinear
signal strength propagation model based on [4, 5] has been developed and used
in the simulations. Simulation 1 compared the ability to track the moving
mobile, given the true initial position, under different noise levels. Simulation
2 investigated how the filter managed to track a stationary mobile when the
initial distribution was biased. The particle filter was superior compared to the
Kalman filter in both simulations.

The particle filters seem like a very relevant tool for mobile tracking mainly
because of four reasons:

1. They are general enough to handle a large class of filtering problems.
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2. They deal with uncertain initial conditions in a robust way.

3. They are intuitive and easy to implement in a computer and to extend as
the models are improved.

4. They contain more information than methods that only propagates the
first moments of the conditional distribution.

There are several questions that remain unanswered and are open for fur-
ther research. The actual running time has not been investigated since no time
optimised implementation has been done; it would probably be efficient to im-
plement the SIR filter for parallelisation. The particle filter converges to the
conditional mean as the number of particles goes to infinity, but how many par-
ticles are needed to reach a certain accuracy at a certain time point and how will
the number of points depend on the dimension of the state vector? The latter
question will of course depend on the correlation between the components in the
state vector. Future research could also involve the problem of both tracking
the mobile and updating the signal model at the same time. A model of how
small changes in the position and in the signal model changes the positioning
error must then be developed.
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