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Abstract
In this note, we consider a stochastic model for the spread of an epidemic in a closed
population consisting of two groups, in which infectives cannot move between groups,
but are able to infect outside their own group. Using the matrix-geometric method, we
obtain a recursive relationship for the Laplace transform of the joint distribution of some
interesting quantities. We also derive the distribution of the total observed size of the
epidemic in the case of a general infection mechanism.
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1. Introduction

We consider a stochastic model for an epidemic taking place in a heterogeneous popula-
tion consisting of two groups. The infection can be transmitted both within and between the
groups. ;jFrom the standpoint of the infection mechanism, our model is a special generalisa-
tion of a model considered by Gani and Yakowitz (1995) in the case of a closed population.
Similar models have also been studied by Bailey (1975) (chapter 11) and O’Neill (1995) who
derived a class of results for the probability of ultimate extinction. Here, we use a matrix-
geometric method (cf. Neuts (1981)) similar to that of Booth (1989) to obtain the distribu-
tion of the total numbers of infections that occur in the entire population. The use of the
matrix-geometric method in the study of epidemics was pioneered by Gani and Perdue (1984).

The paper is structured as follows. A formal description of the model is given in section
2. In section 3, we account for the matrix-geometric method and in section 4 we show a
recursive relationship for the Laplace transform of the joint distribution of some quantities
of interest. The total size distribution is discussed in section 5 while section 6 is devoted to
a simple numerical example. Some of the derivations call for tedious algebraic manipulations
that are presented in the appendices.



2. The model

In what follows we consider a model for the spread of an epidemic in a closed population
consisting of two groups of individuals G; and G3. The following notation will be used
throughout the article. X;(¢) and Y;(¢) stand for the numbers of susceptibles and infectives
at time ¢ for the ith group with (X7(0), X2(0),Y7(0),Y2(0)) = (n1,n9,a1,a2). In each group
the rate of infection is related to the number of susceptibles and infectives in the two groups.
Infectives in group G;, ¢+ = 1,2 are removed at rate u; > 0, so the processes is completely
determined by {(X1(t), X2(t),Y1(t),Y2(t));t > 0}. This process is a homogeneous Markov
chain on the state space

S={(z,9,u,v);0<z<n;,0<y<ny, 0<u< N}, 0<v< NS},

where N =n1 4+ a1 —z, and Né’ = ng + ag — y, with the following infinitesimal transitions:

(X1,X2,Y1,Y2) = (X1 —1,X5,Y1 +1,Y7) at rate fx,X,v1Ys, X1 1X2Vi+1Y2
(X1,X2,Y1,Y2) = (X1, X2 — 1,Y1,Y2 +1) at rate fx,x,v1vs,X1 Xo—1¥1Ya 11
(X1,X9,11,Y5) — (X1, X2,171,Y3) at rate fx, x,v1v,
(X1,X9,Y1,Ys) — (X1, X5,Y7 — 1,Y5) at rate Y7

(X1,X0,Y1,Y5) — (X1, X5,Y7,Y5 — 1) at rate s Ys.

with the conventions that f =0 if (,40Lr) ¢S or (i,5,[,r) ¢ S, and

ijlrd’ U
fij00,i—1510 = fijoo,ij—101 = 0. Let

Pijir(t) = P(X1(t) =4, Xo(t) = 5,Y1(t) =, Ya(t) = r), fort>0.
Then the forward Kolmogorov equations take the form

0Py (¢
%7;() = fijirPijir (t) + fijivirajirPijirrr (t) + fijir+1,6j0r Pijir+1(2)
+ fitvji—1rijir Pirji—1r () + fijerr—1,65ir Pij+1r—1(t) (1)

with the conventions that P;j,(t) =0 if (¢,5,1,r) ¢ S and Py, nya,14.(0) = 1.
3. The matrix-geometric method

The standard p.g.f. methods are now ineffective, as was shown by Bailey (1975) . How-
ever, the Kolmogorov equations can be solved recursively using the matrix-geometric method.
For i =0,...,n1, j = 0,...,n9 and [ = 0,..., N}, let Aéj, Bf;-'l, Dfﬁj and H}j be respectively
the diagonal matrices with r-th diagonal element equal to fiji, u1(l + 1), fiy1ji—1rijir and
fij+ir—1, 7 =0,.., Ng, and let ij be the matrix of the same dimension with (r,r + 1) — th

entries equal to ps(r + 1), r = 0,..,Ng — 1 and all others equal to 0. In addition, take
le](t) = (Pyj1o(t), Pijir (), - .. P’leg—l(t)’Pz’leg (t))T. Equations (1) take now the form
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OPL(t) N o )
gt = A} Pl;(t) + C}; Plij(t) + Di 1, PLL(t) + HLPf L (t) + BiF PN (1), (2)




where P} (t) = (0, (P (t))T)T. '
. N'L
Furthermore, we introduce the column vectors P;;(t) = ((Pg ..., (PZl] Nt,..., (PZJ L)1),
the block matrices D;y1; = diag(DZl~+1j,0 <1< NY, H; = dz'ag(Hfj,O <1 < Nj) and a
matrix Fj; the (,1)-th block of which equals Aéj + ij, 1=0,..,N}, its (I,1 + 1)-th block is
I+1

equal to B;; ", 1 =0, .., Nli“, and all other blocks being equal to zero.

For each matrix A of order (Nf” + 1)(Ng+q +1),for0<p<n;—iand 0 < g <ng—jwe

define an augmented matrix
et o
'A ? = * 7
(P, q) ( 0 4 )

where ©}7 is the' 7€ro matri'x of order g(Ni +1) + p(Ng + 1) — pq, and for each vector U(t)
of dimension (N} +1)(NJ 7?4 1), we also define

Ut,p.q) = (05)T,UT(®)",
where 677 is the g(N{ + 1) + p(N{ + 1) — pg zero column vector, and

5 (t) = (B 0. (PO

Using the previous notation, equations (2) lead to

OP;;(t )
gt( ) _ FiiPyj(t) + Dit1;(1,0)Pi1j (£, 1,0) + Hij Py (D). 3)

To obtain an appropriate form for the above equations which can help us to solve (1), we
investigate the possible relationship between P;(¢) and P;;(t,0,1). For this, let Tj; be the

matrix of rank (N} + 1)(Ng + 1) where

1 ifm=r(N]+1)+kandn=N:+rNJ+k,
(Tij)mm = with0<r <N}, 1<k <N
0 otherwise.
By rearrangement we have P} (t) = T;;P;j+1(t,1,0) and by substitution in (3) we obtain
OP;(t)
ot
for0<i<n; and 0 < j < no.

= F;jP;;(t) + D;11;(1,0)Piy1(t,1,0) + H;T; Pij1(2,0,1), (4)

The limiting distribution of the process can now be studied using Laplace transformation

+o00
Py = [Pt

Equation (4) becomes

~

Pmnz (U) = ('UImnz - Fnlnz)ilEa (5)

and
pij(“) = (vl — Eij)_lDi—l—lj(laO)pi—l—lj (v,1,0) + (vI;; — Ej)_IHijﬂjﬁ’in(v,O, 1), (6)

for 0 <i <ny,0 < j < ny, and i+ 5 # ny + ng, where E = Pyy0,(0) = (0, ..,0, 1)T and I;;
denote the identity matrix of order (N7 + 1)(NJ + 1).

3



4. The solution

First we determine the Laplace transforms of the probabilities P;j;, (v). It can be shown
that Fij(v) = (’UIz'j — Fz'j)_l has the form

ON?
FO@) FO) . . . F2() . F)Vi)
0  Fj(v)
0 0 .
1l lh ING
Fiylw) = Fi) . F©) . B |
0 N N’()

where for 0 <[ < h < N}, Flh( ) is a block of rank Ng + 1. Moreover It can be verified (cf.
the Appendix) that

Cii(v,l,h,r,s) ifo<r<s<NJ
[F'”'l( Nrs = Y . 2 (7)
0 otherwise,
where
h S —1 Zk+1
Cij(valah,ras)_lj’lll : ; rl"l"' Z H H f U, f1,5 42,7 ,]al+kaQ) (8)

IeDh V1 k=0q=i

where f (v, p1, p2,,3,0,7) = (v+pal + por + fijiri1jit1r + fijirij—tr41) "Ly G0 =7, ih—i41 = 8
and

ph-1 _ {G1,09,...yip gy <s8) /r<i1 <@g <...<ip <s} ifl<h 9)
R ) ifl=h
with the conventions that
II4,=1 anle_llfB 0 and A, > 0. (10)
peB

The quantities Cj;(v,l, h,7,s) can be calculated (cf. the Appendix) using the following
recursive relationship, for 0 <! < h < N}

S
S ..
C'L](U l,l,’l" S 2 _' H v ,U17/12713.7517Q)7 (]‘]‘)

and
S

.o 8! ..
C’ij(va la h,’l", 3) = ,ulh‘pzry‘; pﬁ H f(vaﬂlalJ‘Zazajahaq)C’ij (Uala h — ]-7p7 3)' (12)
= q=p

For m,n =0, ..., (N} + 1)(Ng +1) —1, let I,h and r, s be, respectively, the quotient and rest
of the Euclidean division of m,n by NJ + 1. We have

Cij(v, 1, b1, 8) fiy1jn-1sijns ifr <sand [ <h, h>1

. (13)
0 otherwise.

[Fij (U)Di+1j(1a 0)]mn = {



Similarly, if [, h and 7, s — 1 are, respectively, the quotients and rests of the Euclidean division
of m by NJ +1 and n — N} — 1 by N3, then

Cij(v,1,h,7,8) fijrins—1,4jhs fr<s,s>1andl<h

. (14)
0 otherwise.

[Fij (0) Hij Tijlmn = {
Since pijlr (v) and 15i+1jl_1s(v) correspond, respectively, to the (l(Ng + 1) + r)-th elements of
the vectors P;;(v) and Piy1;(v,1,0), while P;j 4151 (v) correspond to the (N} + INj + r)-th
element of 15i+1]- (v,0,1), then, using (5)-(7) and the previous result, we find

~

Pnﬁmlr('”) = Cn1n2('Ual>a1aTa 0'2)1 (15)
]singlr ('U) = Z Cin2 (U, l, h, T, 3) fi+1n2hfls,inzhsﬁ)i+1n2hfls (U)
I<h<N},h>1
R rissaz R (16)
Pnlle(U) = l<;<a Cnlj(va la h, T, 3) fn1j+1hsfl,n1jhspn1j+1hfls('U)
SNnxal

r<s<NJ,s>1

fori=0,..,m —1land j =0,..,n9 — 1, and

Py —jir(v) = > Cing—j (0,1, 0,7, 8) fiting—jh—1s,ins—jhs Pit1ns—jh—15(v)
I<Sh<N'ih>1
r<s<as+j
+ > Ciy (v, 1,07, 8) fing—j1hs—1,ins—jhsPiny—j+1hs—1(V) (17)
I<h NG

r<s<as+j,s>1

fori=0,..,n1—1and j = 1,..,n9. jFrom (15) — (17) we conclude that the Laplace transforms
can be solved recursively.

5. The total size

The asymptotic behaviour of the process {(X1(t), X2(t),Y1(¢), Ya(t));t > 0} can be de-
scribed using (14) — (16), (7) and the identity lim; o Pijir(t) = limv_,o('uf’ijlr(v)). The epi-
demic ends as soon as the numbers of infectives in both group become zero. Let m;; denote
the probability that exactly ¢ and j of initially susceptible individuals ultimately escape the
epidemic in G; and (g, respectively. In order to determine this probability, it is necessary
to calculate the limit lim,_,o(vC;;(v,0,k,0,s)) = C;j(h,s). We show (cf. the appendix) that
such a limit exists and is, for h = 0,

CZ](Oa S) = /J‘;S' H f(ulau‘% iaja 07 Q) (18)
g=1
and for h > 0,
b4 h—1 k41
Cij(h,s) = pipshlst Y S II fuisne,4,5,0,0) D IT TI flwsmesissl+k,q) 5 (19)
0<p<s | g=1 IpEB;,Ls_l k=0 g=ip,,



where

Bl _ {(ipy,-ripgyy) [ P <iipy < oo Slipy_yy <5} ifh>1
bs if h =1,

fp1, payt, 4,0, 1) = (ual + por + fijiri—tjiscir + fijirij—1r+1) "1, ipo = p and ip, = s.
Finally, (15) implies that

Tning = 11)141}% Upnlnzoo (U) — C’ILl,nz (a17 a2)

Similarly, from (16) and (17) respectively, it can be shown that for ¢ = 0,...,n; — 1 and
j=0,..,n9 —1.

an N
Tniyj = Z Z Cn1j(h, 5)fnlj—}—lhsfl,nljh,sPnlj—Hh,sfl(O)
h=1s=1
N}
+ Z Cnlj(o, 3)fn1j+1()s—1,n1j05Pn1j+105—1(0),
s=2
ax N X
Ting = Z Z Civm (ha 3)fi—l—lngh—15,in2h313i+1n2h—13 (O)
s=1h=1
N}
+ > Ciny(h,0) fis1nyh—10,imsh0 Lit1nan—10(0),
h=2
and
Ni Nj
Tij = Z Z Cij(hy 8)[fij+1hs—1,ijhs Pij+1hs—1(0) + fir1ja—1s,ijhsFit1ja—15(0)]
h=1s=1
N} N}
+ Y Cij(0, ) fij+10s-1,ij0s Pijr10s-1(0) + Y Cij(R, 0) fit1jn—10,i5m0Lij+100(0).-
522 h:2

These probabilities can be determined using (18) and (19) and by means of the recursive
equations (16) — (17).

6. A numerical example

If py1 = po = 1 and assuming a modified epidemic model (see e.g., O’Neill (1995); Ball
and O’Neill (1993)):

XXV Ye, X1 1% Vi 41, = X1(B11Y1 (X1 4+ Y1) 7 + B Yo (X1 + Vo)1)

XX V1¥e, X1 X 1v1 Ve 41 = Xo(B21 Yo (X1 + Vo) 71 + BoaYa(Xo + Y2) 7).

where for i, j = 1,2 3;; is the rate for a susceptible in group i to get infected by an infective
from group j.



Using the methods presented in this paper it is straightforward to obtain numerical results.

Tables 1-3 illustrate some results using the initial conditions n; = ny = 5, a1 = 0 and
as = 1. The tables have different (811, Bi2, Bi1, P21, P22) values, thus illustrating the effects
upon the total size distribution. Each table displays the final size distribution for a modified
stochastic epidemic.

Table.1
P11 =04, 12 =03, Bo1 =4, B =2
n1 — X(c0)

0.3429 0.0787 0.0396 0.0284 0.0296 0.0812
0.0063 0.0063 0.0065 0.0078 0.0135 0.1110
0.0002 0.0005 0.0008 0.0014 0.0037 0.0948
0.0000 0.0000 0.0001 0.0002 0.0008 0.0684
0.0000 0.0000 0.0000 0.0000 0.0002 0.0459
0.0000 0.0000 0.0000 0.0000 0.0000 0.0290

ny — Xl(OO)

L W N = O

For Table 1 we note that 811 + P21 > P22 + B12 > 1. This implies that the first group acts
as an important source of infection for the population as a whole, but that susceptibles in
this group have few contacts with infectives in both groups (£12 < 1, £11 < 1), so infections
transmitted to group 1, whether from 1 or 2, tend to die out quickly. This is, however,
compensated for since the parameters of the second group are above the threshold.

Table.2
B11 = 0.01, B2 =0.03, B21 =0.5, P2 =5
ny — XQ(OO)
0 1 2 3 4 )

0.2294 0.0491 0.0247 0.0202 0.0319 0.5608
0.0009 0.0007 0.0006 0.0008 0.0018 0.0732
0.0000 0.0000 0.0000 0.0000 0.0001 0.0056
0.0000 0.0000 0.0000 0.0000 0.0000 0.0003
0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ny — Xl(OO)

T W NN = O




On the other hand, for Table 2, we have oo > 1, 812 < 1, Bos+ P12 > 1, and B11+ 621 < 1,
so the parameters of the first group are below the threshold while the parameters of the sec-
ond group are abobe it. In the case of Table 3 all parameters have low values so the epidemic
as a whole dies out quickly with high probability.

Table.3
B11 = P2 = 0.5, P10 =0.1, B =04
ny — XQ(OO)
0 1 2 3 4 5

0.6667 0.1333 0.0518 0.0243 0.0123 0.0065
0.0214 0.0156 0.0109 0.0076 0.0053 0.0040
0.0039 0.0043 0.0039 0.0033 0.0028 0.0027
0.0011 0.0016 0.0018 0.0018 0.0017 0.0020
0.0004 0.0007 0.0009 0.0010 0.0011 0.0013
0.0001 0.0003 0.0005 0.0006 0.0008 0.0010

ny — Xl(OO)

T = W N = O

7. Discussion

We have used the matrix-geometric method to study the behaviour of a stochastic model
of an epidemic in a population consisting of two interacting groups. In some instances this
method seems to be more tractable than direct analysis. In particular this is the case of the
derivation of the results of section 3. In section 4 we were able to obtain a recursive relation
for the Laplace transform.

Some comments are in order concerning the comparison between the matrix approach we
have adopted and other methods. In the process of showing a simple connection between the
Gontcharoff polynomials and the total size distribution Ball and O’Neill (1997) considered a
simple infection mechanism. The method presented in this paper reduces this assumption to
what might be called the general infection mechanism. On the other hand in a computer pro-
gram, round-off errors occurring in the computation of the two-type Gontcharoff polynomials
would manifest themselves in the successive steps and would be magnified. In our approach
round-off errors would occur in the computation of the quantities C;;, but the round-off error
occurring from the computation of one C;; does not affect the computation of any other Cjj,
(1,7 #14',7') and hence round-off errors are not magnified.



Appendix
In what follows we give proofs of certain facts needed in the article.

Proof of (7) and (8)

For i = 0,...,n1,§ = 0,...,ng and [ = 0,..., N}, let Hy;, Cy,

matrices with rth diagonal element equal to fijiij—1r+1 and po,, 7=0,.., NJ, and let AV

be the matrix of rank NJ 4+ 1 with (r,7 + 1)—th element equal to 1 and all others equal to 0.
We also define the matrix of rank (N7 + 1)(N3 + 1)

respectively, be the diagonal

0L 0 . . . . 0
0 I
I
I 0
R
0 . . . . . .0

where I; denotes the identity matrix of rank Ng + 1.
By using the matrices defined in the section 2, we take

Bij = diag(Bl;,0 <1< NY)
and

Z;; = diag(Z}

where l l l l
l Vai l l T rai l I7

the last equation being true because C’fj = Ajééj.

Since AY; = —BY — Hy; — Cy; — DY then vli; — Fyj = vlij + Zij + Bi; — Ay Bij and it follows
that

J
(A.l) Fij (’U) = [UIij + Zij + Bij — AijBij]_l

= [(wlij + Zij + Bij)(Lij — (vLij + Zij + Bij) ™) Dij By ™
= [Iij — (UIZ']' + Zi; + Bij)fl Aij Bij]il(’UIij + Zij + Bij)fl.

The off-diagonal form of A;; and the upper triangular form of M;;(v) = (tIij + Z;j + Byj) ™"
imply that (M;;(v) Ay Bij)! = 0 for all integers [ > N{. Hence

Ny
[Iij — Mij(v) Aij Bij] =Y _[Mij(v) Aij Bij]' = Rij(v).
=0

Let RZ” and lejh(v) be, respectively, the (I, h)-th blocks of the matrices R;;(v) and M;;(v) of
ranks NJ + 1. Since for k = 0, ..., N{ the (I, h)-th block of [M;;(v) Ai; Bij]* is equal to

M (v) B MU () B L MU TR () BUEF if B = 1+ k and 0 otherwise,
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then, for 0 <1< h < N},

h—1 h—1
(4.2) R (v) = [] MEw)BE = T] (Mij(v) Aij Byy)H+1.
k=l k=l

The diagonal form by blocks of Z;; implies that Mlljh(v) = 0 if [ # h, thus, for each I,h =
O, ") N{’

N Ih hh .
R (v)MM(v) ifl<h
A3 Fih(p) =S RE(0) ME (v) = " " -
(A4.3) Z]( ) ];) U( ) £ () 0 otherwise.
Now, for [ = 0, ..., N?, we have
Mij(w) = (vl + Zij + Bij) ™" = (t1j; + Zj; + By;) ™

— = A
= [vlj+Cij + Dl + Bl + Hyj — 8Oy
_ i ——
= [j = Yj;(0)] " (v + Cy + Di; + Bl; + Hy;) ™"
where Yzl](v) = (vl; + 621- + Déj + ij + ﬁéj)_l A 623'- But

vlj + 62]- + Dl + Bl + F'lij = diag(v + por + il + fijiri—vjirir + Figirij—1r+1,0 < 7 < NJ),
hence

(UIj+6§j+D§j+B§j+H§j)_l = diag([t+por+ul+ fijiri—tjirir+ fijirij—r1] 50 < < NJ).
The off-diagonal form of Ajéﬁj implies that [Yzlj(v)]r = 0 for all integers r > Ng . Hence,
using the same technique as above we obtain, for r < s,

| s—1

_ 8! _
[I; — V() = s S [T + pog + pal + Fijiqi—rjivrq + fijigij—1ig+1) ™"
L

with all other elements being equal to zero. It follows that
(A4) MY, = s S T (v + pog + gl + fijigitjivrg + Fijigij—tigr1) "+ ifr <s
. wire 0 otherwise,

hence from (A.2) we deduce that,

h—1

R0l = [n MJ;%)BM
k=l rs
Ni  Ni N}

= D D> > IMG@)B i [M T (0) By iy [M T (0) B s

i1=043=0 ip_;_1=0

= > > > MBI B i IMY ()]s (B s

=T i2=%1  fp—1-1=Cp——-2

s s s - hls h—1 tk+1
= Z Z Z leugfrm H H f(vaula/"Zaiajal+kap)
11=Tr2=t th—|-1=th—1-2 k=0 p=ip,
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where i = r and i,_; = s.
Finally, by substituting (A.4) and the above equation in (A.3), we obtain, if r < s

[Fil]h(v)]rs = Z[th rk[ ]ks

= Z[RZL( rkNQ k" H v+ pop + lf’lh + fzghp,z 1jh+11p + fZ]hp,Z] 1hp—|—1) !

p=k
h—li
(A.5) = 3 ety S Hzﬁlf('u i,j,1 + k,p)
. = o . Jo5 /l2 l' ' . s M1, U2,%, 7, P
r<i1<i2<.<ip—<s k=0 p=iy,
where 4o =7 and 45_;41 = s O
Proof of (12)
iFrom (A.2) and (A.3) we have
rh—1
[Fies = | ] (M3 () Ay Bz‘j)kkHMi’;’h(U)]
L k=1 rs
rh—2
= | TI (Mij(v) 25 Big) ¥+ (M (v) A Bij)h_thi’;'h('U)]
L k=1 rs
"h—1
= [0 2 mo g st
L k=1 TS
s [h—1 ot
> lH(M,-j(U) Nij Big) e pfim 1 (U)B;;.h] [B;;hM{;h(v)]ps
p=r Lk=l

™
s

= X My (B [FE)

p=r
(A.4) and (7) complete the proof.

™

Proof of (13)

For m,n = 0, ..., (Ni + 1)(N§ +1) — 1, let I, h and 7, s be, respectively, the quotient and
rest of the Euclidean division of m,n by N3 + 1. We have
[Dit1;(1,0)]mn = [Di+1j(1a0)]1(N{'+1)+r,h(1vg+j)+5
= [Dit1;(1,0))%
[DZ+1]]7'5 ifl=hand!>1
= [(911]0] ifl=h=0

0 otherwise
because
(U
D;15(1,0) = ( " ) :
0 Dty

11



S0

firtji—1rijir ifl=handr=s
Dis15(1,0)]mn = ! .
D151, 0)lmn { 0 otherwise . (+)

We also have,

Fhw)ps if1<h
s = o ssracntonss = | b0 " e

Using (*) and (**), we obtain

[F3j(0) Dit15(1,0)lmn - = [Fij(”)DiHj(l’0)]l(N§+1)+r,h(N§+1)+s
= [Fij(v)Diy1;(1,0)]7%
= [F}}(v)[Di15(1,0)]"",,
[Fh(v)DPlrs i h>1and I =h
= { [F9)0Y],, ifh=1=0
0 otherwise
_ [F(0)]ps[DF5)ss ifh>1and 1 =h
0
Cij(t, 1, hy1,8) fiy1jh-1s4jis ifl < h,and h > 1
= 0<r<s< Ng

0 sinon.

otherwise

Proof of (14)

As before we let [, h and , s — 1 be, respectively, the quotients and rests of the Euclidean
division of . by N3 + 1 and n by Nj + 1,

_ hy ,
[Hijlmn = [Hij]z(zvg+1)+r,h(zvg+1)+s

= [Hzl]h]rs
B [H}],s ifl=nh
0 otherwise

_ fijrtr—1gjr Em=n=I1Nj +1)+r,1<r
0 otherwise.

Now, if [, h and r,s — 1 are, respectively, the quotients and rests of the Euclidean division of
m by N3 +1 and n — N{ — 1 by NJ, we have
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(Ni+1)(Nj+1)-1

(HijTijlmn = > (Hijlmk [ Tijlkn
k=0
= [HZ]]mm[Tm]mn
_ fz'j—l—ll'r—l,ijlr if m= l(Ng + 1) +7r,n = Nf + lNg +rand1<r
0 otherwise.

Finally, we obtain

55 ()i 1y mneng 1) s Jis+ihs—vigns m = UNG +1) +r,
n= N +hNJ+s
and s > 1

0 otherwise

[Figh(U)]TSfij—}—th*l,ijhs ifm = l(Ng + 1) +r,n= Nf + hNg +s. ands>1

[Fij(v)HijTijlmn =

{ 0 otherwise
Cij(t,1,h,r,8) fijsihs—1,jhs £ m=1(N§ +1) +7r
andn:Nf—{—hNg—Hﬂ
withr <s,s>1

0 otherwise
O
Proof of (17) and (18)
Let h > 1 and s > r. From (A4.2) and (A.3), we have
h—1
[Fif ()]s = KH(MU(U) A BZ-]-)’“’““) Mi’}-h(v)]
k=l rs
h—1
= ZZ[ v) Dij Bi) ' ey l IT (M5 (0) Ay Bij)kkH] (M (v)]gs
g=r p=r k=i+1 -
h—1
= Z[ v) Dij Bi)"™ e [ I f;(v) Ay Bij)™* | (M (0)]gs
k=I+1 rq
h—1
+ Z Z [(Mij(v) Dij Big)"™ iy [ IT (Mij(v) 25 Bz‘j)kk“] (M (0)]gs
g=r+1p=r+1 k=I+1 g
h—1
= Z[ v) Aij Big) 'y [ I (Mij(w) 2ig Bij)™ | IME ()]s
k=I+1 rq
s h—1
+ Z [ Az] Bz]) ]TPZ l H (Mz'j('u) Az'j Bz’j)kk+1] [Mhh( )]
p=r+1 q=p | k=I+1 pq

13



but, if r < s, we have by using (A.4), that,
S
[(Mij(v) Dy Bij)* ™y = pa(l+ D H [t + pal + paq + fijigi—jiiq + fijigij—tig+1]

Hence, if (I,7) = (0,0) and h > 0, we obtain

(A-6) [F5" (v)]os

S p
{[Flh( 0s + > ubp! T[] (v + pok + fijini—1jivin + fijlk,ijuk+1)_1[Fi1jh]ps}
p=1 k=1

s D
M1 _
== {Z php! T (v + pok + fijiriovjiir + figinij—unsr) ' [F" (’v)]ps} :

¢ p=0 k=1

In addition, we see from (A.5), that limt_)o[ﬂljh(v)]m exists if (I,7) # (0,0). Therefore, using
the second and third members in (A.6) it can be shown that lim; o (tC;;(¢,0, R, 0,s)) exists
and is equal to (19). Finally (18) is easily obtained by passing to the limit in (8) when
h=r=0. O
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