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Abstract

Chains of extended jordanian twists are studied for the universal
enveloping algebras U(so(M)). The carrier subalgebra of a canon-
ical chain Fp,_, .., cannot cover the maximal nilpotent subalgebra
Nt (so(M)). We demonstrate that there exist other types of Frobenius
subalgebras in so(M) that can be large enough to include N* (so(M)).
The problem is that the canonical chains Fp,,, do not preserve the
primitivity on these new carrier spaces. We show that this difficulty
can be overcome and the primitivity can be restored if one changes the
basis and passes to the deformed carrier spaces. Finally the twisting
elements for the new Frobenius subalgebras are explicitly constructed.
This gives rise to a new family of universal R-matrices for orthogonal
algebras. For a special case of g = so(5) and its defining representa-
tion we present the corresponding matrix solution of the Yang-Baxter
equation.
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1 Introduction

Quantizations of triangular Lie bialgebras L with antisymmetric classical
r-matrices r = —ry; satisfying the classical Yang-Baxter equation (CYBE)
form an important class of triangular Hopf algebras A(m, A, S, n, €; R), with
R-matrix satisfying the unitarity condition RoR = 1. These quantizations
are defined by the twisting elements F = _ f(1) ® f2) € A ® A that satisfy
the twist equations [1]:

(Fp (AQid) F = (F)yy id ® A) F, (e®id) F=(1d®e) F=1. (1)

The knowledge of the twisting element is quite important in applications
giving (twisted) R-matrix Ry = F»RF ! and twisted coproduct Ax =
FAF L,

The explicit expressions of the twisting elements F were found in [2],
for the carrier algebras L with special properties of their triangular decom-
positions. Such carrier subalgebras are the multidimensional analogs of the
enlarged Heisenberg algebra and can be found in any simple Lie algebra g of
rank greater than 1. In the root system A (g) one can choose the initial root
Ao and consider the set 7 of its constituent roots

T={N, N N+XN =X N+, N +X¢A(9)}
T=n"Unr" ' ={\N}, 7" ={\"}.

The subalgebra L is generated by the elements {F),, E) | A € 7} and the
Cartan generator H), dual to A\g. The solution F¢; of the twist equations
corresponding to the carrier subalgebra L is called the extended jordanian
twist and can be decomposed into the product of two factors, the jordanian
twist ® 7 and the extension ®g:

fgj = (Pg . (Pj = H exp {E)\I ® E)\O_,\/e_%”"O} : eXp{H,\O ® O'/\O}. (2)

Ner!

Here 0, = In(1 + E),).

To construct the twists for the higher dimensional carrier subalgebras L
of g we have to consider the subset A)fo of roots orthogonal to Ay and the
corresponding subalgebra g)%o C g. It was shown in [3] that for the classical
Lie algebras g one can always find a subalgebra g¢; in g)fo whose generators
become primitive after the twist F¢7. Such primitivization of g C gx_1
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(called the matreshka effect) makes it possible to compose chains of extended
twists of the type (2) corresponding to the injections g, C ... Cg1 C go =g,

L1,
FBo<y = [Iven, €xp {EN ® By ye ’ Ag} ~exp{Hy ® oy}

1y o,
HA’E’R’;_l eXp {EA’ ® E)\g_lf)\le 2 /\1(; } * eXp{H)\g—l ® O'Ag_l} . (3)

A B
H)\’E’ITS exp {E/\I ® E)\gi)\/e 20—/\8} . eXp{H)\g ® O')\g} .

In the case g = sl(n) the subalgebras gy (they remain primitive after the
twisting by Fg, ,7, ,) coincide with g)%kfl. The result is that the maximal
canonical chain Fg,_, ... for g = sl(n) is full, its carrier subalgebra contains
all the generators of the nilpotent subalgebra N T (g).

For the orthogonal simple algebras the situation is different. In this case
g)%k_l = g ®sl®)(2) and the coproducts of generators in the space gfk_l\gk are
nontrivially deformed by the twist F¢, , 7 ,. The next extended twist Fg, 7,
does not contain these generators in its carrier space. Such chain cannot be
full .

The canonical twists (3) correspond to Frobenius subalgebras in g de-
scribed by the coboundary bilinear forms w} = >}_, ;,5 ([, ] [4]- In this
paper we show that for the orthogonal algebras these forms can be modified.
The Frobenius subalgebras can be enlarged in order to include all nonzero
root generators from gy, _ \gx-

The problem is how to find the corresponding twists, i.e. to solve the
equations (1) for the subalgebra gfk_l that contains the generators with de-
formed coproducts Ag, . .

In [5] it was demonstrated that under certain conditions (while the co-
products in g are nontrivially twisted by F ) one can find in Uz(g) the
deformed carrier subspace that is primitive and generates a subalgebra of g.
Below we show that this effect is in some sense universal. The corresponding
deformed spaces for orthogonal algebras can be found for any extended twist
Fe, 17, .-As atesult the canonical chain of twists Fp,_, can be extended us-
ing some additional factors (the deformed jordanian twists). For the maximal
value of p the corresponding chain Fg,_, becomes full and the corresponding
carrier space contains all the generators of N*(g).



2 Frobenius subalgebras

We consider the orthogonal algebras g = so (M) of the series By (for M =
2N +1) and Dy (for M = 2N). The root system A(g) will be fixed as follows

Alg) = +e;, te; te, for ¢g=s0(2N +1),
97 te te; for g = so(2N)
i k=1,...,N.

(4)

Let &; ; be the ordinary matrix units,
(i, Eka] = 0jk€in — 6l gy
and M, ; — the antisymmetric ones,
(Mg, Meg] = 06c Mg+ 00aMpc — 6acMpg — SpaMqpc.

The generators of g = so(M) can be realized as follows. The Cartan subal-
gebra H(g) is generated by

? .
Hj = (—§> MQJ',LQJ', ] = 1, ,N (5)
For Cartan generators we shall also use the notation:
1

Hjy(jr1) = (—5) (Maj-125 = Majy1,2j12) - (6)

To the roots of A(so(M)) we attribute the generators

Eivj= 2 (—Maigj +iMoioj_1 + iMai_12; + Mai_12j-1) ;
Ei j =1 (—Myoj — iMyioj_1 + iMai_12) — Moi_12j-1); < i
E_irj =5 (+Maig; — iMaipj1 + iMoi_19; + Moi_12j-1); v
E_ij =5 (+ Mo + iMoinj_1 + iMoi_19; — Moi_195-1);
(7)
and

1 .
E:I:lc = ﬁ (Zl:MQk,ZN—H - ZMQk_1’2N+1) , k < N, for so (2N + 1) . (8)

The Borel subalgebras B(g) are generated by the sets {H;, F;, E;4;} for
g = so(2N + 1) and {H;, E;4;} for ¢ = so(2N). To describe the chains of
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Frobenius subalgebras we shall also need the alternative realization of these
generators through the ordinary matrix units. To get it let us renumerate
the generators:

Aij = —Eiy,
Ai,2N+2—j = —Liyyy, for 80(2N + 1) (9)
Az‘,N+1 = -k,
and
Aij = _Ei—j
’ ’ fo 2N). 10
Ai,2N—|—1—j = —Ei+j,} ' 80( ) ( )

In these terms the Borel subalgebra B(so(M)) is spanned by the set
{Ai ;|7 < j} and we can also use the following matrix realization:

H; = % (Eii — Emsr-ima1-4) 5 ()
Aij=&j — Empr—j,mt1-i-

The canonical chains of twists (3) for orthogonal simple Lie algebras are
based on the sequence of injections

U(so(M)) DU(so(M —4)) D...DU(so(M —4k)) D ... (12)

Each link of such chains (see (3)) contains the jordanian twist ® 7, =exp{H,x®
a/\g} based on one of the long roots:

M =€k 4+ eb (for both Dy and By)). (13)

The hyperplane V)\J,; orthogonal to Ak coincides with the root space of the
0
subalgebra g3, = so (M — 4 (k + 1))@so*1)(3) . For each subalgebra g1 =
0
so(M — 4 (k + 1)) we can again consider independently its root system AF+1
and choose the next initial root to be

k+1 _ k1 | k1
A =el teyt.

On each step we can fix two vector subrepresentations d”(*) in the restriction
( to gk+41 ) of the adjoint representation ady,:

d¥@ c ad

Gk+1 Ik gk+17

a=1,2;
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It is easy to check that the constituent roots form the weight diagrams for
these representations. The representation space for dglg‘fl is spanned by the
generators

{E4, Eq1.} with theroots {ek eF+ef e 7Tk}

for M — 4k = 2N + 1 and
{FEq+r} with theroots {e’; +efe 7Tk}

for M — 4k = 2N. In both cases | =3,..., N.

For the representations dqg};(gi)l and dgl(ci)l ® d;](c’jr)l the following scalar and
tensor invariants, 1%, ,, and I$2°,, (with a,b = 1,2 ), will be used in the
construction of twists and twisted coproducts:

IgN;}l—l = %Eg + Zl]\i:’, (Ea—l—lEa—l) )
I;J%H =FE,® Ey + E{ig (Eqr i ® By 1+ E, 1 ® Epyy), (14)
Ig]/\\flzkl = Ea A Eb + Ell\;3 (Ea—H A Eb—l + Ea—l N Eb+l) s

I3y = Zii?, (BatiEa-t)
L =N (B ® By 1+ Eo 1 ® Epy) (15)
I =y (Fapi AEyy+ Eq i N Eyy) -
The set of initial roots defines a natural gradation in the root space of
the subalgebra N (so (M)) C so (M) :

Pmax

A(NF(so(M)) = U (Mum), (16)

k=0

where pmax = [M/4] + [(M +1) /4].
The inverse of the map defined by the classical r-matrix is the Frobenius
bilinear form. Let us study the Frobenius subalgebras in B(so(M)).

Proposition 1 Let L be a semidirect sum of a subalgebra S and a commu-
tative tdeal N. Then L is Frobenius if and only if the following conditions
hold:

i) L acts transitively on the space N* with the generic point A*;

ii) the stationary subalgebra Sp« = {s € S : A*([s,z]) = 0,forany xz € N} is
Frobenius with a Frobenius homomorphism fy : Sa« — C.
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Moreover, in this case f = fo ® A* is a Frobenius homomorphism for L.

This statement can be obtained as a consequence of the Proposition 1 and
the Remark after it in [6]. Here is how it can be used in the case of orthogonal
simple algebras.

Lemma 1 Let Ly C B(so(M)) be a subalgebra generated by the set
{Hy,Hy, Aij,i =1,2}. Then Ly is Frobenius.

Proof. In L; the following subalgebras can be fixed Ny = {4,,},S; =
{Hy,Hs, Ay ;}. The generators of the dual space Nj can be identified with
the matrices {A;} defined according to the rule (11) and connected with
A, j through the bilinear form < A, B >= tr(A, B) or by a Killing form in
the general setting. Since dimN; = dim$S; it suffices to find a point A* € N7
such that S4- = 0. One can check directly that Aj = E?:_Ql A;q satisfies this
condition. &

This point A§ is not unique. If G(S;) is the subgroup of SO(M) corre-
sponding to the algebra S; then for any g € G(S;) the point Ad*(g)(A§) =
(A})¢ satisfies the condition S(az)s = 0 since S(az) = g_lsAsg = 0. For our
purposes it is convenient to choose Aj = As1 + An—1,1 (One can check that
this point satisfies the conditions of the Proposition 1.)

Lemma 2 Let Lg s be a subalgebra of B(so(M)) generated by the set
{Hy, Aijli=1,...2K;j=1,... M;i < j; 2K < [M/2]}.
Then Lig v ts Frobenius.
Proof. The algebra Lk s has the structure of a semidirect sum:
L, = Sk,u®Ng,ur,
where
N ={{H; li=1,....2K:}{Ai;[i=2,...,2K;j=1,... M;i < j}} .

Evidently Lg ar acts transitively on N ,, with the generic point A7 = A1 +
Apr—1,1. One can easily check that

(SK,M)(A(*)) ={Hi, Aijl1=3,...,2K;i < j}.
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Thus
(SKﬂM)(AS) = LK—1,M_4 C B(SO(M — 4))

Obvious induction shows that Lk s is Frobenius due to the Proposition 1.

)

The algebra L js has the nontrivial second cohomology group H?(L as)-
The latter contains A2 (H}‘{’ M) where Hj ), is the space dual to the Cartan
subalgebra in Ly, Hjp = L NH(so(M)) C B(so(M)). It is easy
to see that all bilinear forms H; A H; are 2-cocycles and not coboundaries.
Here H} € Hy ;. Consequently A ., + (i H A H are the nondegenerate
2-cocycles on L p. The map A% ,, is a Frobenius homomorphism, A% ,, :
Lx .y — C, because A}, ([z,y]) is a nondegenerate bilinear form on Ly 5.
The induction procedure shows that A} ,, can be chosen in the following
form:

A;{,M = (A21 + A43 + A65 .. ) + (AM—l,l + AM_3,3 + AM_5,5 .. ) . (17)

In the case of the orthogonal simple Lie algebras chains of twists (3)
introduced in [3] refer to the Frobenius subalgebras (contained in the cor-
responding B(so(M))) with the coboundary nondegenerate bilinear forms

[4], ,

=Y % (BE) (), (18)

k=0
where p is the number of links in the chain Fp,_, and the parameters v, = 0,1
indicate that we describe here the set of forms. It is obvious that the forms
(18) ignore the subspaces of so(’“)(3) subalgebras that appear on each step of
the sequence of injections in (16). According to the formula (17) to describe
the maximal Frobenius subalgebras in B(so(M)) the following form must be

considered:
wi =3 (e (Bha) = o (BE2) ) (1L ])- (19)

Here both parameters are discrete: 7, d, = 0,1 . (Notice that this does not
lead to the undesirable terms in the corresponding carrier space because in
the Borel subalgebra B(so (M )) (fixed by the choice of {/\’gﬁ) there are no

constituent roots for ef — e§. The form w3 is considered on B(so (M)). In



terms of the integral root system A(so(M)) (not split in the subsystems A®*))

the generators EY?Q and E§’i)2 form the sequence :

{E1+2, Ei 9, B34, B34, ..y Epr1)+(2p+2) E(2p+1),f(2p+2)} R

~ {A1,M—1, A1,2, A3,M—3, A3,4, .. -A2p+1,M—(2p+1), A2p—|—1,2p+21

Thus we come to the conclusion that there must be two sets of chains
of twists for the orthogonal algebras corresponding to the two sets of the
coboundary forms (18) and (19). The first set is the canonical chain of twists
(3), whose twisting element can be rewritten in terms of invariants (14),(15):

1,7

FBosy, = €XD {I]ll/([g)félp (1 Qe 2 1“)} : eXP{ng ® o715}
191 - -

exp {]11\/}@_24(;)_1) (1 ®e 2 1+2)} : exp{Hﬁ;) & Uf+%} :
.. (20)
exp {111\/}@2 (1 ® 6_%0?“)} : eXP{Hfg ® 0140}

_1gk
= ngp exp {Ijll/([@—24k (1 Qe 2 1+2)} : eXP{Hl(ﬁ-)z ® J{C+2}

(here o,; are denoted by of, =1In (1 + E{%) according to (13) and for
simplicity we put v, =1 ).

When dealing with the forms w;t the problem is that in the process of
twisting by a chain (20) the costructure of the subalgebras so*)(3) is con-
siderably changed and the twist equations (1) become extremely difficult to
solve.

3 Construction of the full chains of twists

According to the general structure of a chain of twists [3] we can study its
links separately. Let us assume that we have constructed the & — 1 links
of a chain and found the matreshka effect. This means that after the chain
twisting with k& — 1 links we get the subalgebra ¢¥) = so (M — 4k) with
primitive generators. We shall show that it is possible to construct the next
link of the chain so that the twist will correspond to the enlarged form w;f
(see (19)). To start the construction of the k-th link we have to choose the

initial root A¥ (as in (13)) and the subalgebra L ar—s described in Lemma



2 (with 2K = [M/2]). First we apply the following jordanian twist to the
subalgebra L ar_ax:

&5 =exp (Hf+2 ® af+2) . (21)
This results in the following deformed coproducts:

Ag, (HE,) = HE, @ el + 1@ HE,

Ag, E{“H) =Ef,Q® el +1® E¥.,,

Az (Efﬂ) = Bf, ®e% +1® EY,,
l=3,...,N; a=1,2;

For M = 2N + 1 we also get

a

Ay, (EY) = Ef@ciie + 1@ EF,

Notice that the generators {Hf_Q, Ef ,, E§_1} remain primitive.
The second twisting factor must be the full canonical extension [2] for the
jordanian twist ® 7 (21):

0,0 = e (187 (10 H), 22
The successive application of these two factors performs the extended jorda-

nian twisting by the element ®,, @ that leads to the following costructure

n LK,M—4k3

Agog, (Hiyz) = Hfyp ® e +1Q Hy — (1 ® 6_%Ulf+2) L%
Agkjk Hf—2 = H{C—Q ®1+1® H{c—Zv
k
Ag; (Eﬁz) =Ef,®e’+ +1Q® Ef,,,
= B}, ®@e 270 + 1@ Bl

1,k k
= Eé:-l—k: & e2al+2 —+ eal+2 R E§+k’

k
ASka El:l:k

k
Afk Tk E2ik

Agkjk (E{C—Q) =
1
Bt ,@1+1@Ef ,+ (1@e iohe) 9L, + 1}, 4 ® (e - 1),
Agkjk (Eg—l) =
1
BE, 01416 B, + (¢t —1) @ f b + (196 Hn) B2,
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And in the case of M = 2N + 1 for the short root generators we get:

Ef
Ej

=FEre 3% +1® EF,
= Ef ® 2%t 4 %12 @ EX.

Agkjk

AEka

It would be necessary to have the coproducts for some of the invariants
(see (14) and (15))

Akak (IJI\/Ich) =
1 —of 1 181 1ok (23)
Thrap ® €772 + 1@ Tiy_gp + Inp sy (1 Qe 2 1+2) 5
ok
Agkjk (112\/1—4ke 1+2) =

24
B e "l @1+ e @ I3y e ive + 1092, (1 ® eféohz) ) (24)

We have two generators of L a4 that are not yet incorporated in the
carrier subalgebra of the twist: HF , and E¥ ,. The coproduct of the latter
is deformed. So the canonical jordanian factor cannot be used here. In
[5] it was indicated that the reason of the nonprimitivity of the coproduct
Ag, 7. (E{“_Q) is that the generator E¥ , belongs to the long series of the
initial root A\f = e¥ +ek. It was shown there that in such a case the deformed
carrier subspace must exist with primitive basic elements. In our situation
such ”deformed” generators must have the form

k —_ Lk 1
Gle - E172 - IM74k’

. 25
GS = Ef | — I} e 72, (25)

Using the coproducts (23, 24) it is easy to check that both G¥_, and G%_,
are primitive,

Agkjk (Gllc_Q) = Agkjk (E{C—Q) - Agkjk (Ill\/I—AUc)
=GF,01+1QGk,,

Ae, 7, (Gg—l) = A&7, (Eéc—l) — Ag 1T (IJ2\/I—4k) (670’{ch2 ® e"”f+2)
=GE ®1+1QGE ;.

Together with H¥ , the elements (25) generate a 3-dimensional space
V& of primitive elements in the algebra Ug, 7. (so(M — 4k)). Both G%_, and
G% | commute with U (so (M — 4(k + 1))) as well as HF , whose dual vector
is orthogonal to the roots of so (M — 4(k + 1)).
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The subspace V% spanned by {Hf_Q, Gt _,, G’g_l} is algebraically closed:

k k _ k
Hl*Z’ G172 - G1727

k k _ k
H1—2; G2—1 - _G2—1a

k k _ k
GI—QJ G2—1 - 2H1—2‘

Let us denote this algebra by so(clf) (3). Clearly it is primitive, commutes
with U (so (M — 4 (k+ 1))) and is realized on a deformed subspace. (This
space is not orthogonal to Hf ,. Moreover, G5_,,G¥_, are not any longer
eigenvectors of ad H{c+2.)

Another subalgebra which remains primitive after the composition ®¢, ® 7,
of twists (21) and (22) is so (M — 4 (k + 1)) (due to the matreshka effect).
We come to conclusion that the twisted Ug, 7, (so (M — 4k)) contains the
primitive subalgebra g)fg

Usea, (s0 (M = 4k)) D g = so (M — 4 (k + 1)) @ sofy(3).
Its Borel subalgebra is L a—a(e+1) ® B(sogc)(?))) and it is Frobenius (see
Section 2).
Remember that the subalgebra gjk has a structure of direct sum. Fur-
0

ther, twisting by the next factors (such as ®¢, , @7 ) can not affect the

primitive subalgebra sogf )(3). Each step produces (in the corresponding g/%,g)

the additional subalgebra sogf) (3), k=1,...,p. The primitive subalgebras
that can be found in an orthogonal algebra after the chain twisting (20) with
p links contain not only so (M — 4 (p+ 1)) but also a direct sum of p copies
of so¢(3):

Usoy (50 (M) 2 D = &}, 50 (3).

The main consequence is that in the twisted Ug,_, (so (M)) one can per-
form further twist deformations with the carrier subalgebra in D . The most
interesting among them are the jordanian twists defined by

@?k = exp (Hf,z ® 02) (26)

that can be attributed to any number of copies sog(3) . Here ¥ =In(1 +

G’f_Q). Thus in the general expression for the twisting element (20) one
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can insert in the appropriate £ places the additional factors which are the
jordanian twisting elements on the deformed carrier spaces. This means that
we can perform a substitution

(I)gk(I)jk = (I)gkq)gkq)ljlfc = (I)gk
exp élzl\/}@—24k (1 ® 6_501”)} -exp{Hf,, ® 0,5} =

exp (Hf , ® 02) " €Xp {Izl\/}@—24k (1 ® ei%alf“)} " €Xp (H{€+2 ® 01f+2)

Thus the full chain has the following form

Fg0<p = Hg:p (I)gk =
ngp €xp (H{Cq ® UZ) " €Xp {IJ\I/}@E% (1 ® 67%0{6“)} -exp{H{,, ® 07, }.
(27)
This result means that we have constructed the explicit quantizations
with a triangular R-matrix

Rgo<p = (ng*P)m (fg‘)*”)_l

for the following set of classical r-matrices:
a k k k k 172
TGosp = D_ M (H1+2 NEY 5+ &Hy o NEY 5+ IM74k)
k=0

Here all the parameters are independent and continuous. Elementary compu-
tations show that these full chains (27) correspond to the coboundary forms
(19). To illustrate these quantizations we present in Appendix the matrix
Rg,., for the algebra so(5) in the defining representation.

In Section 2 we proved that adding (;;H; A H; to the forms of type (19)
we obtain new non-degenerate 2-cocycles, which are not coboundaries. We
can also construct the corresponding twists for these modified cocycles:

Notice that the subalgebras sogc ) (3) commute not only with so (M — 4(k + 1))
but also with any {Eﬁgz\s < k} . This means that after having twisted
U (so(M)) by the chain (27) we obtain p + 1 pairs of commuting primitive

13



elements {Jf 008k =0, ... ,p}. Therefore we can apply the Reshetikhin
twist

Or =exp (G0 Q0j), o0;€ {af+2, oklk=0,... ,p} ) (29)

to the algebra Ug,_, (so (M)).
Thus the element
@ng0<p

defines also a twist for U (so (M)). It leads to the deformed Hopf algebra
URrgo, (50 (M)) with the universal element

RRrgos, = (¢R7g0<p) (7:90@)71 (@r)™

and the classical r-matrix

"RGo<y = k=0l (wa A E{c+2_+ EHE o NEF 5+ 111\/?240
+ Ef,jzo;i;ej GiiEg A\ E};

21

EfaEf € {E{c+25E{C—2|k = Oa . 7p} .

The dimensions of the nilpotent subalgebras Nt (so (M)) in the sequence
gfg C g;H C...C gfg C g are subject to the following simple relation:
0

dim (N (so(M))) — dim (N* (so (M — 4))) =2 (dim d%,;_yy +1) . (30)

Taking this into account we conclude (from the formula (16)) that the chains

(27) are full. Furthermore, this means that for p = pmax = [M/4]+[(M + 1) /4]
the corresponding carrier spaces contain all the generators of the nilpotent

subalgebra N* (so (M)). When M is even-odd one can always find in so (M)

one independent Cartan generator which cannot be included in the carrier

subalgebra of a chain. When M is even-even or odd the total number of jor-

danian twists in a maximal full chain Fg,_ ... is equal to the rank of so (M).

Thus in the latter case the carrier subalgebra is equal to the Borel.

4 Conclusions

The family of explicit twisting elements was constructed for the universal
enveloping algebras A = U(so(M)) (series B, and D) with full nilpotent
subalgebras N* (so (M)) included in the corresponding carrier spaces.
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There is a variety of applications for explicitly known twisting elements
F. Using a particular (e.g. fundamental) representation for one of the factors
of A® A we get from the universal R-matrix the L-operator of the FRT-
formalism and this results in explicit relations among the generators of the
original universal enveloping algebra and the FRT-generators of the twisted
one.

Twisting of the coalgebra in A induces changes in Clebsch-Gordan coeffi-
cients of bases in the tensor products of irreducible representations cy ® dyy .
The evaluation of these coefficients is given by the direct action of the matrix
F ( F is the value of the twisting element in the corresponding representation:
F =cy @ dw (F) ) on the original CG coefficients [7].

Due to the embedding of the simple Lie algebras g into the corresponding
Yangians (as Hopf subalgebras) U(g) C Y(g) [8] the Yangian R-matrix Ry
can be twisted by the same F defined for g [9, 10]. As a result for the case of
orthogonal algebra g = so(M) the R-matrix (in the defining representation
d C Mat(M, C) ® Mat(M, C) ) will be changed:

ud (fm.'/_‘-_l) + P — #M/?d (le) KCd (f_l)
(Here u is a spectral parameter and the operator I is obtained from the
permutation P by transposing its first tensor factor.) For the canonical
chains F = Fp,,, the deformed solutions of YBE were given in the explicit
form in [11]. Similarly to the case of canonical chains the twists Fg,_,, produce
the sets of deformed Yangians and the new integrable hamiltonians (cf. the
sl(2) -case [7]).
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6 Appendix

Here we take g = so(5). This is the simplest case where the full chain differs
nontrivially from the canonical one [3] and the deformed carrier space is used
to construct the twist:

exp (HD ,©01) - exp {117 (19.¢ 30)}exp(HE, 0 00,0 OV

-1
Consider now the corresponding R-matrix Rg,,, = (fgo @)21 (.7:90 {p) in

the defining 5-dimensional representation d of so(5). This means that we use
the following matrix realization for the generators of B(so(5)):

H; =3 (Eii — Emtr—imr1-3)

Ai,j = 5i,j - 5M+1—j,M+1—z'; (32)

i,j=1,...,5.

As a result we get the solution of the matrix Yang-Baxter equation that can
be written in terms of tensor products of 5 X 5 matrix units &; ;:

d (Rg,.,) = Rg, =

029 (%(51,1 — &0+ Eia—Esp5) + i(54,5 — &) — %51,5) +
(—i(51,4 + &) — %51,5) +

(

(i(52,5 —&14) + %(51,1 + &0 — Euu — 55,5)) +

(—i(54,5 + &) — i51,5) +

Ein+Ep—E4s—E5)® (%(51,4 - 52,5)) +

E11—Ep+E14—E55)® (%(51,2 - 54,5)) +

E1a—Es5+E24) ® (%51,5) +

E14)® —i&,s — 52,5) +

E15) ® —%(51,1 —&0) + %52,4 + %52,5 + i51,4 + igl,S — %54,5 + %51,2) .
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