THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY

Derivative-Free Optimization of
a Waterjet Inlet Duct Model

Jakob Hultén

Department of Mathematics
Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg, Sweden
Goteborg, October 2000

Derivative-Free Optimization of a Waterjet Inlet Duct Model
Jakob Hultén

(©Jakob Hultén

ISSN 0347-2809/No 2000:61

Department of Mathematics

Chalmers University of Technology and Goteborg University
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-7721000

Matematiskt Centrum
Goteborg, Sweden 2000

Abstract

We apply computational fluid dynamics (CFD) techniques and numer-
ical optimization methods to the engineering problem of optimal design of
a waterjet inlet duct model. The objective function is very time-consuming
to evaluate because it depends on the numerical solution of a turbulent flow
problem. No explicit information is given about the gradient. Such objective
functions demand optimization methods that do not calculate derivatives.

We describe a well-known class of derivative-free methods called positive
basis pattern search methods. Their general convergence analysis requires
the objective function to be continuously differentiable. The necessity of this
condition is shown by an example of a function that is Lipschitz continuous
and for which coordinate search with a fixed step length converges to a non-
stationary point.

A natural question is how many search directions one should have in each
iteration with a pattern search algorithm in R”. Using few directions reduces
the worst number of function evaluations per iteration whereas using many
directions leads to a better approximation of the direction of steepest descent.
We analyze the cases when the search directions constitute a minimal and a
maximal positive basis, and find the latter to be preferable.

A solution strategy, based on computer simulations, is presented for the
waterjet inlet duct design problem. Numerical tests show how a significant
decrease in the objective function is obtained after 10 to 20 function eval-
uations. We also investigate how the sizing of the mesh can be used to
construct surrogate functions (inexpensive models of the objective function),
and discuss how they can be incorporated into the optimization procedure.

Finally, we use some basic theory of positive linear dependence to derive
results about simplices and minimal positive bases.

Keywords: optimal design, derivative-free optimization, direct search, pat-
tern search, positive linear dependence, positive basis, regular simplex, sur-
rogate function, waterjet propulsion, fluid dynamics, parametric model

Preface

About this report and ECMI

This report serves both as a licentiate thesis and the thesis of the ECMI*
post-graduate program in applied mathematics. This five-semester program
includes a block of core courses covering several areas of applied mathematics
and a block of specialization courses within a selected field. One term is
spent at another European university. The final part is to work with a
mathematical problem from the industry.

Acknowledgements

First of all, I thank my supervisor Michael Patriksson at the Department
of Mathematics at Chalmers for always taking his time to discuss problems
and ideas and giving me many helpful comments on the manuscript. I would
also like to express my gratitude to Johan Lennblad at Caran/VM-data who
has been my “industrial” supervisor and a great support through his advises,
discussions and kind encouragement. He was also the initiator of the project.
Many thanks also to Gregory Seil at Kamewa, for patiently sharing with me
his broad knowledge of waterjets and computational fluid dynamics, and
Lennart Berghult, at Kamewa as well, for supporting the project. I thank
Sara Agren for lending me a C++ code she had done which was important
for the geometric modelling of the problem.

Thanks also to my family and my colleagues, in particular my room-mate
Per Horfelt for his friendship and every day company.

First and last I am forever grateful to the Lord Jesus Christ. “He reached
down from on high and took hold of me; he drew me out of deep waters.” 2

!The European Consortium for Mathematics in Industry
22 Sam 22:17

Contents

1 Introduction
1.1 Background Lo
1.2 Theproblem oL
1.3 Design optimization
1.4 Contributions and outline of the report

2 Optimization without calculating derivatives
2.1 Positive basis pattern search algorithms
2.1.1 Definition of the general algorithm
2.1.2 Some properties of the general algorithm
2.1.3 Convergence oie i
2.1.4 Bound constraintso
2.1.5 Examples: coordinate search and the SBA
2.2 Minimal and maximal positive bases in pattern search
2.2.1 A minimal positive basis search algorithm

3 Fluid dynamics

3.1 The Navier-Stokes equations
3.2 The Reynolds number L.

3.2.1 Flows with high and low Reynolds numbers
3.3 The boundary layer L.
3.4 Turbulent flow and the Reynolds equations
3.5 Turbulence modelling

3.5.1 Nearwalls
3.6 Cavitation

4 Shape optimization of a waterjet inlet duct model
4.1 Preliminairies e
4.1.1 Water flow in s-shaped pipes

2

10
12
13
14
15
17
17
19
20
20
22

25
25
27
28
28
29
30
32
34

4.1.2 From infinite to finite dimensions by parameterization . 37

4.2 Problem formulation with some comments 38

4.3 Geometric modelling 0oL, 39

4.3.1 The generic pipe geometry 39

4.3.2 Parameterization of the geometry 40

4.3.3 Constraints on the chosen parameters 42

4.4 Grid generationo Lo 44
4.4.1 Computer representation of geometry and mesh with

Gambit 45

4.4.2 Generic meshing procedure 45

4.5 Theflowmodelo oo, 47

4.6 The objective function 48

4.7 The optimization procedure 50

4.8 Numerical results L oo, 52

4.8.1 Simulations for deciding the mesh size 52

4.8.2 Optimizationresults 55

4.9 Concluding remarks and future research 58

5 Positive linear dependence and the regular simplex in opti-

mization 60
5.1 Positive linear dependence and positive bases in R* 61
5.2 The regular simplexin R* 61
A NURB curves 68
A1l NURBcurves 68
A.2 Representation by NURBs 69
B Illustrations of numerical results 71

Chapter 1

Introduction

In this work we consider derivative-free optimization methods, fluid dynamics
and their application to the problem of optimal shape design of a waterjet
propulsion unit inlet model. The model flow performance is determined by
computational fluid dynamics (CFD) techniques. In this chapter, we first give
a background to waterjet propulsion. We then give a preliminary formulation
of the problem and finally a short overview of the report.

1.1 Background

Marine waterjet propulsion is used for the propulsion of many kinds of marine
vehicles, ranging from pleasure boats to hydrofoil ferries. A waterjet drive
principally consists of an inlet duct and a pump. Sea water enters the duct,
the pump increases its momentum and gives a thrust when the water exits
the duct as a jet. This thrust propels the boat. Steering is accomplished
through the deflection of the exiting jet of water in different directions.

In Figure 1.1 is shown a waterjet propulsion unit with a so called ram-
type inlet [28]. It is typically used on hydrofoil crafts but has also been used
on surface-effect ships. There are also units with what is called a flush-type
inlet, which is used on displacement, semi-displacement and planning hulls.

Waterjet propulsion offers, according to [28], some benefits not present
with conventional propeller-driven units. Among these benefits are

e Safety: no externally turning propellers implies a higher safety for
divers etc. With a flush-type inlet there is small risk of damage to
the boat from floating debris.

e Manoeuvrability: a large manoeuvring thrust can be developed even at
low speeds. Jet driven vessels are hence appropriate for use in recovery

4

Impeller blades

Stator vanes

/ Nozzle

Outflow

Air

Inflow

Inlet lip

Figure 1.1: A waterjet propulsion unit with ram-type inlet duct.

operations.

e Environment: reduced underwater noise and on-board noise and vibra-
tions.

e Reduced appendage drag.

Also some disadvantages can be noted. There is a risk for plugging of the
inlet opening because of floating debris. Biological growth within the inlet
duct may reduce the efficiency because of pressure losses. Also, the ingestion
of air into the inlet leads to reduced performance. This is a problem when
designing waterjet propulsion systems for planning hulls.

When designing waterjet propulsion systems one must avoid cavitation
since this leads to reduced thrust or even a stop. Cavitation means that the
internal pressure in the water flowing through the waterjet inlet duct locally
is below the vapour pressure. In an experimental setup, cavitation can be
seen as small bubbles, produced close to the inlet duct walls and spread by the
flowing water into the pump. Cavitation may occur at any speed. A waterjet
for high-speed cruise conditions is designed so that the flow diffuses into the
inlet duct and the pressure in the inlet duct is higher than the free-stream
pressure. Under these conditions cavitation is unlikely to occur unless the
inlet duct has sharp bends. At low speeds, the inlet duct pressure is lower
than the free-stream pressure and this pressure drop increases the risk of
cavitation. The issue of cavitation at low speeds is particularly important
if the maximum in the resistance curve of the ship occurs at a low speed.

Since low speeds may correspond to the ship manoeuvring in a harbour, it
is important to avoid cavitation also at these conditions even for a ship with
a high-speed cruise condition.

As already mentioned, one source to the problem of cavitation is the bends
of the inlet ducting. The purpose of the inlet duct is to lead sea water to the
pump. For technical reasons concerning power transmission, it is preferable
to have the pump above the sea level (as a benefit, the appendage drag is
reduced since a reduced part of the inlet duct will be in the sea). Thus the
inlet duct has to bend; the question is how.

1.2 The problem

This report is about a problem posed by Kamewa, a company in Kristine-
hamn, Sweden, that manufactures, among other things, waterjet propulsion
systems. To design a waterjet propulsion system one has to take many fac-
tors into account such as the shape of the inlet duct, the pump, waterjet-hull
interactions etc ([28]). However, Kamewa formulated the following simplified
problem:

Aim 1: Find a shape of a waterjet inlet duct
model that minimizes the risk for cavi-
tation.

The flow performance of the waterjet inlet duct was to be determined by the
commercial computational fluid dynamics (CFD) program Fluent5.0.
We may divide the problem into three subproblems:

e Geometric modelling: Construct a simplified parametric pipe model of
the waterjet inlet duct geometry.

e Flow modelling: Use CFD techniques to determine the flow perfor-
mance of the pipe model.

e Optimization: Apply an appropriate optimization algorithm to find the
optimal shape of the parametric geometry.

The problem is very complex, mostly because the objective function de-
pends on the solution to the pipe flow problem which, in practice, has to be
found by computationally intensive (time-consuming) computer simulations.

6

The following aim is therefore more realistic than the one above.

Aim 2: Find a robust and efficient procedure that
starts from an initial design and automat-
ically and iteratively searches for a better
one.

By “robust” we mean a procedure that does not break down once in a while
(for example because of instabilities in the computational geometric or flow
modelling) and that gives reliable results. By “efficient” we mean a procedure
that gets close to a local minimum within either a reasonable number of
function evaluations (less than, say, 100) or a reasonable amount of time (a
couple of hours).

1.3 Design optimization

What we have just seen is a typical example of the common engineering
problem of optimal design. Computer simulations is an increasingly impor-
tant and popular tool for solving such problems. Whereas earlier computer
resources were used for the analysis of a single design, the accelerating de-
velopment of hardware and software has made it possible to analyze many
different designs in order to choose the best one. This possibility leads to an
optimization problem where the objective function, because of the inherent
computer simulation, becomes computationally expensive to evaluate, has
almost unknown structure, gives no explicit information about derivatives
and contains high frequency distortions. Hence these problems demand for
derivative-free, or direct, search methods which are optimization methods
that make no explicit use of derivatives.

Engineering practise [2] for tackling these problems has been to evaluate
the function at scattered points in the variable space and use these samples
together with algebraic interpolation or approximation techniques to build
a model, or surrogate, function. Then the optimization is performed on this
surrogate function, which, of course, is comparatively much less expansive
and also provides explicit derivatives. The main question is what to do next,
if the optimum of the surrogate function turns out to be an unsatisfactory
design when evaluated with the actual objective function.

Lately there has been much research on derivative-free methods and on
how to use surrogate functions in the optimization process. For example,
J.E. Dennis and V. Torczon [31] suggest how to use surrogate functions in the

7

pattern search algorithms developed by Torczon in [30]. There is no explicit
discussion of the choice of surrogate function in [31] but it is indicated that
such a function could depend on the mesh size in a pde code, an idea that
will be investigated in this report.

Other surrogate function frameworks for optimization, also built upon
the pattern search method, are suggested in [33] and [3]. The objective
function is regarded as the outcome of a stochastic process, a fiction that
enables the construction of algebraic approximation models from samples
using statistical tools. In [3], some of the function evaluations are done in
order to update the model, a procedure referred to as a balanced search.

A different approach is found in [5], where quadratic models are used in a
trust-region framework. A balanced search is done and the search for points
to update the model are governed by the considerations of strict geometric
properties of the set of model-building points.

An application of design optimization using surrogate functions can be
found in [4] and [6]. There, the algorithms presented in [3] and [5], are
applied to a helicopter test problem with 31 design variables. With the best
methods, considerably improved designs where found after about 100 — 200
function evaluations. This can be compared with a genetic algorithm tested
in [3] that, even though it used many more evaluations, gave a more moderate
decrease in the objective. As already mentioned, the surrogate functions used
are algebraic models constructed from samples of the objective function, but
in [3] it is pointed out that simplified simulations are used since qualitatively
they are enough to reflect the real physical process. It is also noted that a
motivation for using direct methods instead of gradient methods is that the
latter tends to result in refined designs and not radically new ones.

The above mentioned research on how to use surrogate functions in the
optimization procedure has inspired this work. However, instead of using al-
gebraically constructed models we investigate other kinds of surrogate func-
tions. The reason is that the approach using algebraic models treats the
objective as a “black box” whereas we actually do know something about its
structure. Our aim is to construct surrogates based on simplifications of the
computer simulations implicit in the objective.

1.4 Contributions and outline of the report

The rest of the report consists of four chapters. The following two chapters

and the last one are mainly theoretical, while Chapter 4 is more practical.
Chapter 2 is about derivative-free optimization. We discuss a class of

direct methods called positive basis pattern search methods ([18], [30]).

8

Chapter 3 gives a brief introduction to the theory of fluid dynamics. We
derive the Navier-Stokes equations and discuss the modelling of turbulence.

In Chapter 4, which contains the main part of the work done, we use
the theory discussed in Chapters 2 and 3 to model and numerically solve the
problem described above. We also investigate how the sizing of the mesh can
be used to construct surrogate functions. The chapter has been written as a
report to be read by people at Kamewa. We therefore present not only the
final results but also the details about the steps along the way.

Chapter 5, finally, is quite separate from the rest of the report. It is
the most “mathematical” chapter. Inspired by a couple of questions aris-
ing in connection to optimization we apply some theory of positive linear
dependence to regular simplices and minimal positive bases.

There are three main mathematical contributions in this report. The
first is the example in Section 2.1.3 which shows the necessity of the objective
function to be C! for the convergence of pattern search methods. The second
is the solution to the minmax problem in Theorem 9 in Chapter 5. This
problem arises as a natural question concerning the efficiency of a positive
basis in a pattern search method. The third is the construction (at the end
of Chapter 5) of a bounded infinite sequence of distinct regular simplices of
constant size. This shows that the iterates generated by the classical simplex
method [12] do not have the same favourable algebraic structure as those
generated by pattern search methods.

Chapter 2

Optimization without
calculating derivatives

In this chapter we consider so called derivative-free, or direct search, meth-
ods, which are optimization algorithms that do not make explicit use of
derivatives. These algorithms are suitable for the kind of problem given in
the Introduction. We present a class of direct methods called pattern search
methods ([30],[18]), discuss their properties and present a basic convergence
result. We also discuss so called minimal and mazimal positive bases and,
finally, how to use approximations, surrogates, of the objective function in
the optimization.
Consider the general finite dimensional optimization problem

min f (z) (2.1)
where X C R”. Many methods for solving this problem have been presented.
A certain method is often constructed with a certain kind of objective func-
tion in mind, such as the simplex method for linear functions, the conjugate
gradient method for quadratic functions etc. In engineering applications such
as optimal design mentioned in the Introduction, the objective function is of-
ten based on the outcome of complicated computer simulations, which causes
it to have the following properties:

i) The derivatives of f, even if they do exist, are often not available.

ii) f is expensive to evaluate at any point z. (By expensive we mean for
example time-consuming.)

iii) The idealized function f is contaminated with high-frequency, low-
amplitude distortions, originating from small variations and numerical
errors in the underlying computer simulations.

10

Most methods for (2.1) make explicit use of the gradient of f. Thus
these methods do not seem well suited for our problem because of i) but we
still have the possibility to compute some numerical approximation to the
gradient. This, however, is not a good idea because of iii). If § is the error in
f and h the step length, the error in such an approximation is proportional
to §/h. Errors in f are blown up in the gradient which may cause gradient
methods, relying only on the gradient search direction, to deteriorate. On the
other hand, even if the effect of iii) is small we still have an argument against
gradient methods: since they use only one search direction (the negative of
the gradient in the case of minimization) at each iteration, the optimization
may easily get stuck in local minima.

Direct search (or derivative-free) methods proceed just by evaluating f at
certain points. We will see that even so, they can be what is called gradient-
related (Section 2.1.2). Apart from being well suited for our problem these
procedures are attractive also because they are often easy to understand and
to implement. Following the nice overview of direct search methods made by
Powell [27], we may distinguish at least six different kinds of direct search
methods: approximation methods, simplex methods, random methods, dis-
crete grid or pattern search methods, line search methods and conjugate
direction methods. Without going into any details we now briefly discuss the
first four of them.

Approximation methods use algebraic approximations of the objective
function. The approximations may for example be linear as in [26] or quadratic
as in [5]. The purpose of using algebraic approximations is to make careful
and systematic use of all available information about f, which consists of
the values of f at previously visited points. Thus these methods seem very
well suited for our problem. A drawback, however, is the lack of a general
convergence theory.

Among the simplex methods we find contributions from the early devel-
opers of the field, such as the method by Hext, Himsworth and Spendley [12]
and the very popular algorithm by Nelder and Mead [24]. These methods
often use only rank order information (and not quantitative differences in
function values at different points) to find the next iterate and could there-
fore be suspected to be less efficient than the approximation methods just
mentioned. The convergence properties are either not well known or known
not to be desirable as is the case for the Nelder-Mead algorithm. McKinnon
[23] showed how the Nelder-Mead algorithm converges to a nonstationary
point in a case when the objective is convex (and hence continuous).

Simulated annealing and genetic algorithms are methods that introduce
a random element in the optimization procedure. They are often easy to
implement, do not get stuck in local minima and may sometimes be shown

11

to have a kind of convergence to a global minimum. It clearly seems, though,
that one may have to pay for this in the number of function evaluations, see
for example [4]. Intuitively, it is not appealing to evaluate randomly chosen
points if the objective function is very expensive.

In discrete grid or pattern search methods the search is done on a fixed
grid of points, such as a lattice. Reducing the step length means proceeding
the search on a scaled version of the original lattice. Powell [27] explains how
the restriction of the search to a discrete grid may lead to an inefficiency in the
optimization. This inefficiency depends on how the optimum is related to the
lattice, in combination with other properties of the objective function under
consideration. Apart from this, pattern search methods have many desirable
properties. Because they investigate more than one search direction in each
iteration (in contrast to gradient methods), they are not as likely to get stuck
in local minima. They include many well known algorithms, for example
coordinate search and the algorithm by Hooke and Jeeves [15], are easy to
understand and implement and have recently been given a general form by
Torczon in [30], where she also presents a general convergence theory. This
general formulation leaves a great freedom in the design of specific algorithms.
For example, one may easily construct algorithms that make use of surrogate
functions ([3],[4],[10]).

We consider this to be enough motivation for a more detailed presentation
and study of pattern search algorithms.

2.1 Positive basis pattern search algorithms

In the following we present a simplified version of the positive basis pattern
search algorithm given in [18]. It is a class of algorithms developed for the
unconstrained problem

min f(z) (2.2)

reR?

where f has the properties i), ii) and iii) listed in the beginning of the chap-
ter. In [20] they are extended to linearly constrained problems. The positive
basis pattern search algorithms are natural extensions of those in [30] because
the search directions in the so called pattern matrix do not have to consist
of an entire basis {v;}", for R* together with the opposites {—v;}" ;, but
just a positive basis (Appendix). It leads to a possible decrease in the max-
imal number of function evaluations per iteration, which might be desirable
because of the property ii).

12

2.1.1 Definition of the general algorithm

The main ingredients in the general pattern search algorithm are a pattern
matriz P, € R™Pk (the index k indicates that it may depend on the itera-
tion), whose columns constitute the possible search directions, an exploratory
moves algorithm that suggests a step and an algorithm for updating the pat-
tern and the step length. Given a step length Aj, a step s is defined as
any column of ApP,. To indicate that a vector s is a column of a matrix
P, we use the notation s € P. The general pattern search algorithm goes as
follows:

Algorithm 1. (The general pattern search algorithm for unconstrained op-
timization.)

Let xo € R* and Ay be given. For k=10,1,--- do

1. Compute f(xy).

2. Use the exploratory moves algorithm to determine a step sy € AgPy.

3. If f(xx + sk) < f(xy), let xgy1 = xp + sk. Otherwise, let Ty = xy,.

4. Update the pattern Py, and the step length Ay.

To define a specific pattern search algorithm one has to define a specific
pattern Py, an exploratory moves algorithm and how to update the pattern
and the step length. We now give necessary conditions for how this should
be done in order to guarantee convergence according to Theorem 1.

The pattern Py is the matrix product of what the basis matriz B and the
generating matriz Cy. We require B € R™*" to be invertible and C} € Z™*Pk,
pr > n + 1. The columns of C} are partitioned as

Cy = [I' Ly 0],

and I' is required to be a positive basis for R*. The 0 just means a column
of zeros. We have P, = BCy = [BI' BLj, 0] and we call BT the core pattern.
The conditions on the exploratory moves algorithm are that s, € ApPy
and if there exists a core pattern step y € ABT such that f(zy +vy) < f(zk)
then f(xr + sg) < f(zk)-
We either leave the step length unchanged or half it. In [18] the step
length is allowed to vary more freely. The condition for reducing the step

i

length is “no decrease in the objective function during the iteration”.

Algorithm 2. (The algorithm for updating the step length.)
If f(ze + sk) > f(ax) then Agyy = 52k, Otherwise, Ay = Ay.

13

2.1.2 Some properties of the general algorithm

The general pattern search algorithm 1 is a gradient-related adaptive grid
method which only require simple decrease in the objective function, i.e.
f(@re1) < fl2)

The simple decrease condition, which follows directly from the definition
of the algorithm, should be considered in contrast to sufficient decrease,
which is usually required for the convergence analysis of gradient-related
methods.

The condition s, € AgP; on the exploratory moves algorithm ensures
([30]) that the iterates x) lay on differently scaled versions of the lattice gen-
erated by the columns of B and translated by x,. The scaled lattices are
nested in the sense that finer lattices contain coarser ones. In this sense pat-
tern search methods are adaptive grid methods. Let us consider the following
example in R?:

B =T (the identity matrix), C; =[] —I0], Cy = [1 -1 00] .

1 0 -1 0

This pattern is illustrated in Figure 2.1. We see how A, B generates a lattice
on which to search for the next iterate. C' determines the possible steps
(indicated by arrows) to take from the current iterate.

We note that the only condition on the part L of the generating matrix
is to have integer entries. We have been quite restrictive with the possible
steps from the current iterate in our example. However, L; might consist of
an arbitrarily large (but bounded) part of the lattice.

The fact that I' is a positive basis guarantees the existence of a lower
bound on the angle # between the negative gradient and the best search
direction. If we for an arbitrary fixed vector x define

€Tre y
cos(f) = max ,
O =58 il
we have the bound ([18])
1
cos(f) > K——= (2.3)

ny/n’

where the constant K > 0 depends on I'. Hence the pattern search methods
are gradient-related: there will always exist a search direction d € I' that
captures a certain part of the steepest descent direction.

We note how the bound (2.3) gets worse with n, indicating a loss of
efficiency for the pattern search algorithms with increasing dimension. If

14

Xk

Figure 2.1: The dashed lines represent the lattice generated by A;B when B = I. The
generating matrix C determines the possible steps from the current iterate
Tg-

' = [I — I], we have from [30] the sharp bound cos() > 1/y/n. Whether
the bound in (2.3) is sharp or not (regarding the power of n) I do not know.
However, in Theorem 9 in Chapter 5 we show that when I' is the minimal
positive basis consisting of a regular simplex, the sharp bound is 1/n.

2.1.3 Convergence

Let {z1}%2, be the sequence of points generated by the generalized pattern
search algorithm 1 applied to problem (2.2). From [18] we then have the
following convergence result.

Theorem 1. Suppose that L(zg) := {x € R* : f(x) < f(zo)} is compact
and that f € CY(Q) for some open set Q D L(xg). Then

liminf ||V f(z¢)|| = 0.
k—00

Under stronger conditions on the pattern search algorithm the liminf in
this theorem can be replaced by lim ([18]). The stated result means that the

15

pattern search algorithm behaves nicely. For example, there always exists a
subsequence of the sequence of iterates {z }52, that converges to a stationary
point.

To see the necessity of the condition on f to be continuously differentiable,
we consider the function

n—1 n
@) = ol + Y |7 — miaa| + Y 3.
i=1 i=1

We get
2

n
f(@) = Jlol” = nllall > =

By the first inequality, f tends to infinity with ||z|| and by the second f has
a lower bound. Since f is also continuous, L(xg) is compact. Moreover, f is
Lipschitz continuous over any ball with radius R since

f(@) = f)l =|(l=]* = lvll*) + 22(\%’ — Tiy1| = [Yi — Yina|) + Z(xi —)|

<INyl =l + lyl) +

n—1 n
+QZ|$z’ — Tip1 — Yi + Yit1] +Z|33z - il
i=1 i=1
n
<2R||z —yl| +5) [z — uil
i=1

<R+ 5n)ljz -yl

Now, let €’ be the unit vectors, i.e, €} = d;; where d;; is the Kronecker
delta function. We have f(0) =0 and

fheiy = | PA2ARFh 2R, i=1n
e) = h% +4lh| +h > 3|h|, ifi=2,---,n—1

so that f(he') > 0 = f(0),Vh # 0,5 = 1,---n. Hence a search along the
coordinate directions from x = 0 will not result in a lower function value.
Note also that (—1,—1,...,—1) is a direction of descent since

F(=h,-++,—h) =nh>—nh=nh(h—1) < 0,Vh, 0 < h < 1.

This means that if for example simple coordinate search, which in [30] is
shown to be an instance of the generalized pattern search algorithm, starts off
from the origin it will stay there in spite the existence of a descent direction.

16

2.1.4 Bound constraints

The shape optimization problem motivating this thesis is, by its nature,
constrained (see Section 4.7). We therefore note the extension made in [19]
of pattern search algorithms to bound constrained problems,

in f(z), (2.4)
where f is real-valued as before, [,u,xz € R™ and [< u. (The vector in-
equalities are to be understood coordinate-wise). Denote by B the bound

constrained domain defined by [and u and let P be the projection onto B.
Define

q(z) = P(z = Vf(z)) — =.

This is the appropriate “gradient” to consider in the case of constrained
problems since ¢(z) = 0 if and only if z is a constrained stationary point
for (2.4), see [19]. In order to make sure that the pattern always contains
search directions along the boundary of B, the core pattern should contain
a nonsingular diagonal matrix and its negative. This is the only additional
restriction required to obtain the same convergence result as in Theorem 1
but with V f replaced by ¢ and L(z,) replaced by Lg(zo) = {z € B: f(z) <
f(zo)}. They also note that the extended pattern search gives exactly the
same sequence of iterates as does the unconstrained pattern search presented
above applied to the function

Fla) = { f(z), ifzx € B,

00, otherwise.

Hence, under the restriction that the core pattern contains a diagonal matrix
and its negative, the class of pattern search methods presented in this chapter
can be applied to the problem (2.4).

2.1.5 Examples: coordinate search and the SBA

We now describe the exploratory moves algorithms for coordinate search with
fixed step length and a variant of the Hooke and Jeeves algorithm [15] called
the Sherif-Boice algorithm [29], or SBA.

Coordinate search with fixed step length

This algorithm searches through each coordinate direction in turn. Let e;
denote the standard unit vectors in R®. The basis matrix is the identity,

17

B = I. The generating matrix has 3" columns that contains all possible
combinations of {—1,0,1}. For n = 2 we have

c_f[ro-1 01 1 -1-10
“lo1 0 -11-1-1 10/

Algorithm 3. (The ezploratory moves algorithm for coordinate search with
fized step length.)
Let x, A and f(x) be given. Let s =0 and min = f(z).
Fori=1,---,n do

st = s+ Ae,

If f(x + s%) < min then min = f(z + s*) and s = s,

else s* = s — Ae;

If f(z + s*) < min then min = f(z + s') and s = s

Return s, f(z + s).

We denote this algorithm by (s, f(z + s)) = es(z, f(x),A). The reason
for returning the function value at the new point and not only the step is to
reflect that we do not want to compute the function at a point more than
once since it is supposed to be very expensive to do so.

The SBA

The SBA [29] is a variant of the Hooke and Jeeves algorithm [14]. It alter-
nately performs coordinate searches and pattern steps, which is an attempt
to further investigate promising directions built up by a preceding coordinate
search. Also, some of the currently best points are marked as base points.
We say that a search or step succeeds if it leads to a lower function value and
otherwise that it fauls.

First, the initial point is marked as a base point. Then a coordinate search
is performed. If it succeeds, the new best point is marked as a base point and
a pattern step is performed from it. The pattern step has the same direction
and length as the step between the current and the previous base points.
Then the algorithm starts all over again: a coordinate search is performed
from the currently best point, i.e., the result of the pattern step if it was
successful and otherwise the result from the previous performed coordinate
search. Every time a coordinate search fails, the step length is halved. See
Figure 2.2 for a flowchart.

In contrast to the Hooke and Jeeves algorithm the SBA only performs
the coordinate search after the pattern step if the pattern step was succesful.
The formulation above differs from the original one in [29] because it reduces
the step length also when a failed coordinate search follows after a successful

18

START Coordinate Pattern step
Set initial Search Yes | Marknew from the current
base point and from currently base point base point and
evaluate f best point evaluate f

Yes No

Step
length large
enough?

Reduce
step length

Figure 2.2: Flowchart of the SBA.

pattern step. Otherwise it could happen that we search through the same
points once more when we start the next iteration with a coordinate search.

The pattern matrix is the same as for the Hooke and Jeeves algorithm
and can be found in [30]. As before, (s, f(x + s)) = es(z, f(x),A) is a short
hand for Algorithm 3. Furthermore, bp denotes “base point”, pbp “ previous
base point”. do_ps, “do pattern step”, is either 1 or 0.

Algorithm 4. (Ezploratory moves for the SBA.)
Let xy, f(xr), Ak, bp, pbp and do_ps be given. Let s = 0.
If do_ps =1 then x, = xx + (bp — pbp)

If f(z,) < f(zg) then s = bp — pbp.

do_ps = 0.
else (s, f(wx + s1)) = sy, f(2r), Ag)

If s, # 0 then dops =1, pbp = bp, bp = x} + si.
Return sg, f(xy + s), bp, pbp and do_ps.

2.2 Minimal and maximal positive bases in
pattern search

In this section we will see how the general pattern search algorithm defined
above can be used to produce new algorithms by replacing a maximal positive
basis with a minimal. Since a smaller positive basis often gives a worse
approximation of the gradient we are led to the natural question of whether
we should have a maximal or a minimal positive basis. We analyze this in a
simple case and find, perhaps contrary to intuition, a maximal positive basis
to be preferable.

19

2.2.1 A minimal positive basis search algorithm

In the coordinate search algorithm (Algorithm 3), a step is built up by consid-
ering, if necessary, 2n directions: each coordinate direction and its opposite,
which form a maximal positive basis. However, as soon as a better point is
found in some direction, that direction is not further considered, and so a
step is built up from at most n linearly independent “small steps”. These
remarks will now be used to construct an algorithm that mimic coordinate
search but only use a minimal positive basis pattern matrix.

Let I' € Z™™+) be a minimal positive basis for R*. Then any n of
the vectors in I' form a basis for R* (Theorem 2 in Chapter 5). We may
therefore modify the coordinate search to be a search along directions that
form a minimal positive basis in the following way (I'(i) denotes the i:th
column of T'):

Algorithm 5. (Ezploratory moves for a minimal positive basis search algo-
rithm.)

Let x, f(x), A be given. Let s = 0,min = f(z),i=0,5 =0.

Whilei <n+1andj<n

st = s+ Al'(4)
If f(z + s') < min then min = f(z +s'),s =s",j =7+ 1.
1=1+1

Return s, f(z + s).

In this way we reduce the highest number of evaluations per iteration
from 2n to n + 1. If we replace the ordinary coordinate search with the new
one we get variants of Hooke and Jeeves and SBA that use a minimal positive
basis core pattern.

2.2.2 How large should the positive basis be?

Often the maximal number of evaluations per iteration with a pattern search
method is the number of vectors in the positive basis, or a multiple of it.
The argument for using a minimal positive basis is then that it reduces the
highest number of evaluations per iteration. On the other hand, a maxi-
mal positive basis better approximates the gradient. The question is if the
advantages with a minimal positive basis outweighs that of a maximal. To
investigate this, we consider the following simple optimization algorithm.
Given a positive basis [' and a current iterate z; we compute

s, = arg ernAi?F flze+y) (2.5)

20

and if f(zg + sx) < f(zx) we accept the step, otherwise we reduce the step
length. Whether one should use a maximal or minimal basis in this algorithm
is to ask whether it is worth the effort to check many points around the
current iterate before deciding on a step, or if it is better to take a step as
soon as possible (with preserved convergence properties).

In order to determine how well we can approximate an arbitrary vector
x we are interested in the smallest angle between x and any of the vectors in
the positive basis, i.e. the angle defined by

T@)ex
[IXGIE

This angle can be seen to the left in Figure 2.3.
The ability of I' to approximate the direction of steepest descent may
then be measured by

cos(f) := max

d(T) :== min max ——— L{) ez
leli=t e IT@)
which is the cosine of the angle between the vector x that is furthers away
from any vector in I', and the vector in I' that is closest to x.

Let I'' be the maximal positive basis that consists of the standard unit
vectors and their negatives and let ['? be a minimal positive basis consisting
of a normalized regular simplex (Appendix, Definition 1 and Theorem 6).
From [30] we have d(I'"') = 1/4/n and Theorem 9 in the Appendix states
that d(I'?) = 1/n. For n = 2, the situation is depicted in Figure 2.3; d(I'!) is
just the cosine of /4 and d(I'?) the cosine of 7 /3.

Obviously I'" € Z"*?" and therefore passes as a core pattern matrix in
Algorithm 1. Tt is not true that I'> € Z™*?" but we use d(I'?) as an upper
bound for d(T") for any minimal positive basis I.

We now suppose that the reduction in the objective function is propor-
tional to the approximation of the gradient and that the gradient is of a fixed
size (as is the case if f is linear). A step s according to (2.5) then leads to a
decrease in the objective function value bigger than or equal to

of = p-Isll - d(r"),

where p is some positive constant. The function f is evaluated 2n times per
iteration with I'' and n+1 times with ['>. Hence the quotient of the reduction
in f per evaluation using ' and the reduction in f per evaluation using I'!
becomes 2n+/n/(n(n + 1)). This quotient is less than 1 for all n > 1 and
tends to zero as 1/4/n when n tends to infinity. Hence, a maximal positive
basis should pay off in any dimension and become even more effective with

21

rl ri =74 r2

Figure 2.3: Tllustration of how a positive basis I approximates an arbitrary vector. The
basis to the left is maximal and the basis on the right is minimal. 6 is the
angle between some vector and the closest vector in the basis. In the middle
and to the left is seen a vector that is furthest possible from any vector in
the basis.

increasing dimension. The reason is that the basis ability to approximate the
gradient (as measured by d(I")) does not vary linearly with the size of the
basis. However, the analysis is made under substantial simplifications.

2.3 Pattern search, oracles and surrogate func-
tions

In this section we suppose that we have access to a surrogate (or model)
function f for f, ie., f ~ f and f is less expensive to evaluate than f.
We discuss, inspired by [3], [31], [33], how a surrogate can be used in a
systematic way in order to optimize f. We first discuss possible choices of
surrogate functions.

A well known method that uses a surrogate function for optimization is
the trust region method which uses a quadratic model that is the second order
Taylor expansion of f around the current iterate.

If we have no information about the derivatives, the surrogate could be an
algebraic model constructed from a sampling of the objective([5], [26]). As
the optimization proceeds, the model can be updated whenever f is evaluated
at a new point. If the objective is like a “black box”, i.e., given a point
it returns a value and we have no knowledge at all of how this is done,
one is forced to use algebraic models. If f is based on some experiment
or complicated computer simulation, f can be the result of performing a
simplified experiment or simulation. In the case studied in this report, a
point x determines six pde:s that have to be solved numerically in order to

22

determine f(z). We can take f to be the result of using a larger mesh size in
the numerical pde solver, or approximate the equations with something that
is easier to solve.

Sometimes the notation f; is used to indicate that the surrogate is up-
dated during the optimization. Since we will not discuss any updating pro-
cedures we simply write f.

How should f be used in the optimization of f? Most straightforward
would be to optimize on f until convergence and then use the result as a
start for the optimization of f. However, if f is not a reliable model of f
the result could be that we start the optimization of f even further from the
optimum and have to spend even more time to get close to the optimum than
if we had not used a model at all. This is illustrated by the numerical results
in Section 4.8.2. The reason for restricting the search on the surrogate may
also be, as for trust region method, that we have a reason to believe that
f ~ f only holds in a small neighbourhood of the current iterate. It is thus
clear that surrogate functions should be used in some kind of framework that
takes into account the reliability of the model.

The main reason why the general pattern search algorithm 1 is well suited
for the construction of such a framework is the freedom of choice of the
exploratory moves algorithm. It may consist of only two things: an oracle
that suggests a number of steps on the current grid and a core pattern check
that has to be done before the grid may be refined. A core pattern check
is simply a search through all the steps in the core pattern (Section 2.1.1).
Then we can write the following simple exploratory moves algorithm.

Algorithm 6. (Ezploratory moves with an oracle.)
Let xy, f(xr), Ay be given and let s = 0.
Let the oracle suggest some steps s',...,s™ on the current grid.
If f(zy, + 5°) < f(xy) for somei € {1,...,m} then s = s,
else perform a core pattern check:

If there exists s € ApBT s.t. f(xg + s) < f(xk) then sp = s.
Return sg, f(xg + sk)-

m

The oracle could consist of some iterations with an arbitrary optimization
procedure on the surrogate f.

We now give a coordinate search algorithm that uses a surrogate function.
We write (s, f(z + s)) = cs(z, f(z), f, A) for the ordinary coordinate search
(Algorithm 3), where f is now added to the arguments to indicate on which
function the coordinate search is performed.

23

Algorithm 7. (Ezxploratory moves for coordinate search that uses a model
for the objective function.)
Let x, f(z), A be given and let s = 0.
(5, f(z 4 8)) = es(z, f(z), f, D)
If § # 0 then
If f(x+35) < f(z) then s =5,
else (s, f(x + s)) = cs(x, f(x), f,A)
else (s, f(x +s)) = es(z, f(z), f,A).
Return s, f(z + s).

We get versions of the Hooke and Jeeves algorithm and SBA that can use
a surrogate for the objective function simply by changing from the ordinary
coordinate search in these algorithms to the one just described. Note that
if f is a bad model of f so that the steps suggested by coordinate search on
f never result in lower values of f, these versions turn into the usual ones
apart from the extra evaluations of f.

24

Chapter 3

Fluid dynamics

The problem described in the Introduction has two main theoretical aspects,
namely, optimization and fluid dynamics. We discussed the first part in
the previous chapter and now continue with the second. Everything in this
chapter can be found in most introductory textbooks on fluid dynamics.

We consider the motion in R? of a viscous, incompressible fluid of constant
density. Such a motion may be described by the physical quantities

u(x,t) = the velocity of a fluid particle at the position x in space at time ¢
p(x,t) = the static, or internal, pressure at the position x at time ¢

p = the (constant) density of the fluid

1 = coefficient of viscosity

v= K the kinematic viscosity,
P
The parameters p and p are known quantities, depending only on the fluid
under consideration. u and p are typically unknown functions of both x and
t. They satisfy four partial differential equations, the so called Navier-Stokes
equations.

3.1 The Navier-Stokes equations

We use the conservation laws of mass and momentum to derive the equations
of motion for a viscous incompressible Newtonian fluid of constant density
in the absence of body forces.

Let ¢(x,t) € R® denote the trajectory of a fluid particle initially at x € R?
(i.e. ¢(x,0) =x). Let V C R? be some volume element of the fluid with
boundary 0V and outward normal n and let V; = {¢(x,?) : x € V'} denote
the volume moving with the fluid.

25

The law of conservation of mass says that the rate of increase of mass in
V' equals the mass flow rate into V. Since we consider a fluid of constant
density we get, after applying Gauss’ theorem,

VeudV =0. (3.1)
/

The momentum of the fluid in V; is
m(t) = / pu(x, 1) dV. (3.2)
Vi

The forces on a volume element are usually divided into body and surface
forces, of which we will ignore the former in order to simplify the presentation.
The surface stresses of the volume element are pressure and internal friction
and may be represented by the stress tensor' o(x,t) € R* x R® so that
o(x,t)n is the force per unit area at time ¢ on a surface element through x
perpendicular to n. Hence, using the transport theorem [7] to differentiate
(3.2) with respect to ¢, we get

D
m'(t) = pf? dV = / ondV = [VeogdV, (3.3)
Wi oV Vi

where the second equality is Newton’s second law and the third equality
is Gauss’ Theorem. Here, Du/Dt = Ou/0t + (u e V)u is the the total
derivative of u (the acceleration of a fluid particle following the fluid), and
(Veo); =00;;/0x; (arepeated index means a summation over that index).

We now make appropriate regularity assumptions on p and u. Then, since
Equations (3.1) and (3.3) are valid for arbitrary volumes V(= V;—y), we may
remove the integral signs to get

Du
and
Veu=0. (3.5)

Water is an example of a Newtonian fluid [1] for which

o=pl+2uD, (3.6)

1One can ask why o should be a matrix. Actually, using Newton’s second law and the
assumption that o is a continuous function it can be proved that o is a linear function of
n. This is done in [16].

26

where p is the coefficient of viscosity and
1 8uz an

the rate of deformation (or strain) tensor. The second term in (3.6) represents
the viscous stresses.

For an inviscid fluid viscous stresses are ignored and ¢ = pI. Substitution
into (3.4) gives the Euler equations. For viscous incompressible fluids it
follows from Equation (3.5) that V e 2D = V2u (= (Auy, Ausy, Aus)). We

then arrive at the following four partial differential equations:
Du
— =-V v?
PDi p+ pViu,
Veu=0.

(3.8)

These are the Navier-Stokes equations. The first three equations represent
the balance of momentum and the last equation expresses the conservation
of mass. In the balance of momentum equations, the first term is called the
inertia force, the second the pressure force and the third the viscous force.

3.2 The Reynolds number

An important quantity for describing a flow is the Reynolds number, defined
as

Re = —,
v

where U is a typical flow speed and L a typical distance over which the flow
changes in a significant way. In the case of a stationary flow the Navier-Stokes
equations become

1
(ueViu= —;Vp + vV?u.

We may expect to have
U? vU
(ueV)u| ~ A and V| ~ —
which gives
|(ueV)u| U?/L _ Re
v V2u vu/rz
That is, the Reynolds number indicates the relative importance of inertia to
viscous forces in typical parts of the flow domain.

27

3.2.1 Flows with high and low Reynolds numbers

A flow with a high Reynolds number differs a lot from a flow with a low one.
For the latter, viscous forces dominates over inertia forces so that the flow
equations may be approximated by

Vp = uV3u, (3.9)

which is sometimes called the equations of creeping motion. Since they are
linear they are much simpler than the full Navier-Stokes equations and be-
cause they are of the same degree one can use the same boundary conditions.

With a high Reynolds number, viscous flow effects are so small that they
may be ignored, giving the approximation

pueVu = —Vp. (3.10)

These are the Euler equations. The flow is driven by pressure differences so
that fluid particles are accelerated in the direction of the pressure gradient at
each point. Since they are of lower degree than the Navier-Stokes equations
one has to reduce the number of boundary conditions.

3.3 The boundary layer

For a high Reynolds number, viscous effects are negligible in most part of
the fluid domain so that Equation (3.10) is valid. Since these equations are
of lower degree one has to reduce the number of boundary conditions. The
appropriate procedure is to replace the no-slip condition at the walls with an
impermeability condition. Experimentally, though, it is found that the no-
slip condition continues to apply no matter how high the Reynolds number
is. Hence there is a thin region close to the walls where the flow adjusts itself
to the no-slip condition, resulting in much larger values of 8?u/dy? than far
from the wall (u being the velocity parallel and y the distance perpendicular
to the wall). This region where viscous effects remain important is called the

boundary layer and its approximate thickness denoted by d. It can be shown
that ([1])

1) 1

L™ Rell?’
Sometimes § is defined as the distance from the wall where the flow differs
one percent from the inviscid flow solution.

Even if the boundary layer is very thin for high Reynolds number flows, its
presence is still very important for certain aspects of the flow. (Consider for
example d’Alembert’s paradox: the drag force on an obstacle in a potential
flow is zero.)

28

3.4 Turbulent flow and the Reynolds equa-
tions

We briefly present the fundamental problems of turbulent flow modelling,
and state and motivate the Reynolds equations.

With an increasing Reynolds number (for example as the result of an
increasing mean velocity) the flow eventually becomes unstable. Small dis-
turbances are amplified and may lead to a fully turbulent flow. A necessary
condition for turbulence to develop and sustain is the existence of a mean
velocity gradient ([22]). A turbulent flow is characterized by chaotic and
irregular flow particle trajectories. Local quantities change unpredictably
in time, even if the imposed boundary conditions are stationary. However,
turbulence is not a completely random phenomenon since, often, it gives rise
to some kind of patterns at a large scale. For example, a turbulent velocity
field have certain spatial structures known as eddies. There are always ed-
dies of a wide range of sizes, small eddies existing inside larger eddies ([22]).
A turbulent flow is much more dissipative than a laminar flow, because of
the work of the small eddies against viscous stresses. Also, “important con-
stituents of the turbulence phenomenon take place in eddies of the order of
a millimetre in size, while the whole flow domain may extend over meters or
kilometers” ([17]). Hence, even though the Navier-Stokes equations are the
general equations of fluid dynamics, they are not appropriate to be used in a
computer model for turbulent flows since such a model would require an im-
practical number of computational nodes in order to resolve the small-scale
(stochastic) effects on the large-scale (average) flow behaviour.

The stochastic behaviour of turbulent flows require a statistical, averaged
description. To this end, we divide each flow quantity ¢ into

=0+,

where () is a time-averaged component and ¢ is a fluctuating component. We
denote averaging by bar, i.e., Q = q. By definition, ¢’ = 0. In a stationary
flow the average may be seen as a time average. If the flow is explicitly time
dependent the average quantity may be considered to be the average of the
quantity at corresponding instances and locations over a number of identical
flow setups ([32], p- 300).

If we put u; = U; + u,,p = P + p' into the Navier-Stokes equations and
then take the average, we get the so called Reynolds equations for the mean

29

quantities U, P,

oU; oP an(oU;

p 19z; o + oz M%j - Puz‘uy‘),
(3.11)
oU; 0
8$Z' -
The six quantities 7;; = —puju; behave as extra stresses on the fluid and

are known as the Reynolds stresses. They represent the effect of the small-
scale fluctuations on the large-scale mean flow arising from the non-linearity
of the Navier-Stokes equations. Mathematically, the Reynolds stresses ap-
pear as six new variables and must be modelled in order to get a closed system
(a system with enough number of equations to determine all the unknowns).
This closure problem is the fundamental issue of turbulence modelling.

3.5 Turbulence modelling

We describe one way of closing the Reynolds equations, namely the Standard
k — € model ([17], [11]). It consists of two transport equations for the tur-
bulent kinetic energy k£ and its dissipation rate e. The model is derived for
high Reynolds numbers, using the hypothesis of Boussinesq (see below) and
assuming that the turbulence is isotropic, which means that the statistical
properties of the turbulence are independent of the direction: “perfect disor-
der reigns” ([13], p.3). Hinze [13] points out that even though the assumption
of isotropy is not true for any actual flow, it often yields valuable approxi-
mations also when the turbulence has essential nonisotropic characteristics.
According to Fluent [11] the popularity of the £ — € model for industrial flow
calculations is due to its “robustness, economy, and reasonable accuracy for
a wide range of turbulent flows”. They also state that for certain flows a
Reynolds stress model (RSM) is a must in order to model the nonisotropic
effects on the flow, but, for the time being, the RSM is computationally
more expensive and less robust then the £ — ¢ model. Malalasekera and Ver-
steeg [21] remark that the k& — € model is the most widely used and validated
turbulence model.

In the Reynolds equations (3.11), the Reynolds stresses appear together
with the viscous stresses. Therefore, it is natural to assume that also the
former are proportional to the mean velocity gradient (the Boussinesq hy-
pothesis). Together with the assumption of an isotropic turbulence this lead
to the modified Boussinesq hypothesis [13]:

S _ 2
—puju = 2 Dij — gpkéij. (3.12)

30

Here ¢;; is the Kronecker delta function, Eij the average rate of deformation
and yu; a new parameter called the turbulent viscosity. k, called the turbulent
kinetic energy, is defined by

1
We also define the rate of dissipation of turbulent kinetic energy,
=v .
8@- 8.Tj

€

The way in which kinetic energy is dissipated may briefly be explained as
follows ([32]). Turbulent regions of the flow are made up of eddies at different
scales. Energy passes from the mean flow to the largest eddies. These in turn
pass the energy down to smaller and smaller eddies until the length scale is
such that viscosity becomes important. (This phenomenon is known as the
energy cascade.) Energy is then dissipated through the work of the smallest
eddies against viscous stresses.

Arguments based on dimensional analysis under the assumption that one
length scale and one velocity scale suffice to describe the effects of turbulence
yields that u; can be related to k and € as ([21], [28])

k2

where C), = 0.09.

By an averaging procedure similar to the one used to derive the Reynolds
equations from the Navier-Stokes equations, it is possible to derive two trans-
port equations for £ and e. Modelling some of the terms in these equations
(see for example [21]) gives, for high Reynolds numbers, the following two
equations used in the Standard k£ — € model ([17]):

Dk 0, 0k -
25— % 0S5 4 24, Dy Dy —
P Dt = o, Mo, T 2Pl — e (3.14)
De 0 Oe € N T ¢ .
"Dt = 0o, w,) T Crepelsla = G

where
0. = 1.3, Ci. = 1.4, Che = 1.92.

Once Equation (3.14) has been solved, £ and e determine the Reynolds
stresses through the modified Boussinesq hypothesis (3.12) and Equation
(3.13).

31

To sum up, the Standard k£ — ¢ model models the six Reynolds stresses
by two new unknowns, £ and €. A closed system for the six unknowns U;,
P, k and e are made up of the six partial differential equations in (3.11) and
(3.14), together with the seven algebraic relations (3.12) and (3.13).

3.5.1 Near walls

The presence of solid boundaries, “walls”, significantly affects turbulent flows.
The no-slip condition enforces large velocity gradients close to the wall and
these give rise to the production of turbulent energy. Gregory Seil [28] states
that solid boundaries “act as sources of turbulence and energy loss”. Fluent
[11] notes that the near-wall modelling is important in order to get reliable
numerical solutions. Since the Standard £ — € model described above was
developed for high Reynolds number flows, it has to be modified in order
to account for the low Reynolds effects always present in the near-wall re-
gion. In general, there are at least two methods for numerical modelling
of the turbulent boundary layer ([17]): the wall-function-method and the
low-Reynolds-number-modelling method. In the latter, the turbulence model
equations themselves take viscous effects into account and boundary layers
are resolved by using fine enough computational grids. The former avoids
the need for fine near-wall grids by the use of wall functions that describe
the relations between the involved quantities (velocity etc) at a certain dis-
tance from the wall. For high Reynolds number flows, it therefore saves
computational resources, as noted by Fluent [11].

In the following we discuss the structure of a turbulent boundary layer
and present a set of wall functions that can be used in the Standard £ — €
model. We denote by U(> 0) and u’ the mean and fluctuating flow velocities
tangential to the wall, by v’ the fluctuating velocity normal to the wall and
by y the distance from the wall. Often, the dimensionless quantities

U L Uy

Ut =— and Yyt =
Uy v

1/2 is called the friction

are used instead of U and y. Here, u, = (74/p)
velocity and 7, is the wall shear stress.

According to Hinze ([13], p. 587), a turbulent boundary layer of thick-
ness ¢ consists of an inner region, where the flow is directly influenced by
viscous effects, and an outer region, where the flow is fully turbulent and
viscous effects are negligible. In the inner region (0 < y/é < 0.1) the
shear stress is approximately constant and equal to the wall shear stress
Tw ([21]). The inner region, in turn, consists of the very thin viscous sublayer

(y/6 < 0.002)), where viscous stresses dominate, the buffer layer, where both

32

viscous and turbulent (i.e. Reynolds) stresses are important, and an outer
layer (0.01 < y/d < 0.1), sometimes called the log-law layer, where turbulent
stresses dominate.

In the wall function approach to the modelling of turbulent boundary
layers, the values of U, k£ and e at the wall-adjacent nodes are required to
fulfil three relations. First, we have the log-law,

1 (E
v_1y, (“y> (3.15)

U, K v

that can be derived for the turbulent part of the inner region. That is why this
region is also called the log-law layer. The derivation is accomplished in [13]
using the Boussinesq hypothesis, the assumption of a constant shear stress
and an assumption concerning the length scale of the near-wall turbulence.
From measurements the numerical values of the constants are found to be
k = 0.41 (von Karman’s constant) and E = 9.8 for a smooth wall ([21]).
Experimental measurements also show the log-law to be valid for 30 < y* <
500 ~ 1000 ([13]).

In the near-wall region the production term in the transport equation for
k becomes ([28])

Gy = —pu't! g—ly] (3.16)

In the inner region, the shear stress is approximately constant and equal to
the wall shear stress. Since Reynolds stresses dominate in the log-law layer,
we have

—pu'v’ = —puz (= 7).
Furthermore, differentiation of the log-law gives

8U_ﬁ

— = 3.17
o ry (3.17)
The last two equations inserted into Equation (3.16) result in
3
Gr = p=. (3.18)
Ky

We now assume that the production Gy of turbulent kinetic energy equals
the rate of dissipation pe (see [13], p.649). Hence,

€= —L. (3.19)

Inserting this expression for € into Equation (3.13) and solving for k gives

2 peu?
T (3.20)
The Boussinesq hypothesis,
— ou
—puUvY = 'ut(?—y’
together with Equation (3.17) allow us to write Equation (3.16) as
G, = m}g;. (3.21)

Equating the two expressions (3.18) and (3.21) for Gy and solving for pu;
results in

W= pur KY.

Inserting this expression for u; into Equation (3.20) we finally arrive at

2

u
= (3.22)
o

When using the Standard £ — € model with wall functions, the wall-
adjacent nodes should be well inside the log-law layer, but not closer; 30 <
yt < 200, say. The values of U, k and € in these nodes are determined using
the relations derived above, i.e.,

gzlln Bury k= g ezu—3
Uy K v ’ L2 Ky

It should be noted that the friction velocity u, is not known a priori, but
rather calculated from the gradient of the mean velocity near the wall. Hence,
it is not obvious how to employ these formulae in practice; the interested
reader is referred to [21].

3.6 Cavitation

In the Introduction we discussed the consequences of cavitation in a waterjet
duct. We saw that it must be avoided since it leads to a less efficient propul-
sion of the ship. We now define the cavitation number and discuss what is
meant by cavitation.

34

In a domain with flowing water the internal pressure p of the fluid will vary
with the position. We say that the water cavitates if the internal pressure at
some position is less than the vapour pressure p, so that the water starts to
boil. The local risk of cavitation may be measured by the so called cavitation
number o which, in the case of a stationary flow, is defined by

p(x) — po

o) == (3.23)

where pg = 1/2p|ul? is the dynamic pressure. The larger o is, the less is the
risk of cavitation. We note that o, being a function of the position, is a local
measure of the risk of cavitation and to get a global measure in x we define
the real number

Omin = 1000 o(x). (3.24)
This quantity, the least cavitation number, will be our objective function in
the shape optimization of the waterjet inlet duct model in the next chapter.
It may seem to be quite a pessimistic measure of the cavitation properties.
Also, taking the minimum implies that we cannot a priori assume higher
regularity than C° for f. However, it is the measure proposed by Kamewa.
We finally note that with fixed boundary conditions, ,,;, depends only on
the geometry of the pipe flow domain D.

35

Chapter 4

Shape optimization of a
waterjet inlet duct model

We present a solution strategy, based on computer simulations, for the prob-
lem of the optimal shape design of a waterjet inlet duct model with respect
to cavitation. For a more thorough background discussion and motivation to
this problem, we refer the reader to the Introduction.

The structure of the chapter follows the structure of the problem. We first
sketch a model of the problem in order to discuss some basic properties of it.
We then make a precise problem formulation. Then follows a presentation
of how it has been solved. We describe our model of the waterjet inlet
duct geometry, the computational grid generation and the flow model that
has been used. We discuss the properties and the implementation of the
objective function, followed by a description of the optimization procedure
and the numerical results. We conclude with some remarks and suggestions
for future research.

4.1 Preliminairies

We shortly describe how we intend to model the waterjet inlet duct. We also
discuss what to do about the fact that our optimization problem is infinite
dimensional.

4.1.1 Water flow in s-shaped pipes

In general the geometry of a flow problem may be described by an open
subset D C R? with its boundary 9D partitioned into the wall W, the inlet
I and the outlet O. Let n be the outward unit normal to 0D, where it is

36

defined.

Loosely speaking, we model the waterjet inlet duct with an s-shaped pipe
having two bends as in Figure 4.1. The inlet and outlet openings of the
pipe are plane surfaces parallel to each other and the pipe bends smoothly
in between.

The essential purpose of such an s-pipe is to accomplish a parallel trans-
port of the water flowing through it. This means that the water velocity
at the outlet should be approximately parallel to that at the inlet, but the
outlet should be “higher” than the inlet.

Water is viscous and incompressible, and the flow through the pipe is
stationary but turbulent. Appropriate boundary conditions are a no-slip
condition on W a velocity condition at I and a pressure condition at O.

Outlet O

Figure 4.1: The pipe flow domain D with boundary partition into walls, inlet and outlet.

4.1.2 From infinite to finite dimensions by parameter-
ization

Our problem is to find the shape of the s-duct that minimizes the risk of

cavitation in the water flowing through it. The risk of cavitation is measured

by the least cavitation number (Section 3.6) and hence the objective function
is

f(D) = —omin(D), (4.1)

where D is the pipe flow domain. Among what set, or class, of pipes D should
we look for an optimal solution? The pipe flow domain is determined by its
boundary surface which, since it is two-dimensional, may be thought of as a
function from a subset of R? into R3. But such functions have an infinite

37

number of degrees of freedom and we hence have an infinite dimensional
optimization problem

Ill)lei]% —0Omin (D), (4.2)
where D is some set of admissible domains. There are infinite optimization
problems that are (analytically) solvable but this one is not. In order to
solve it numerically we have to reduce the number of degrees of freedom to
finitely many. This can be done by a parameterization. The details are left
until later on, but it means that we describe the pipe with some variables,
or parameters, each one capturing some aspect of the geometry considered
to be important for the flow and the objective function. These parameters
are described by a vector £ = (&, ..., &,) in some subset {2 of R". Each value
of & uniquely determines a pipe flow domain D(£). In this way we get the
finite dimensional optimization problem

min — oy, (D(£)). (4.3)

£eq

(Since the flow domain is completely determined by £ we may simply write
0(€).) The price we have to pay is a drastic reduction of the set where we
look for the optimal pipe. We can not be sure that there is no other class
where there are (much) better pipe. Thus the parameterization has to be
done very carefully in order to preserve the main features of the problem.
The challenge is to get a quite general class of pipes described by only a
small, finite, number of parameters.

4.2 Problem formulation with some comments

Advised by Kamewa, we propose the following simplified model of the wa-
terjet inlet duct (Figure 4.2). The inlet duct is described by a pipe having
a circular cross section, i.e., there is a smooth curve through the pipe D so
that if we take the intersection of D and a plane perpendicular to that curve
we get a circular disc. The total length of the pipe is fixed to 8 m and its
height to 3 m. The radius of the inlet opening is set to 0.2 m and the radius
of the outlet opening to 0.2¢/2m. For the waterjet propulsion of the ship to
be in the intended direction we would like to have the outlet water velocity
parallel to the inlet water velocity. We approximate this by requiring the
last 0.6 m of the pipe to be straight (cylindric).

First we want to find a finite dimensional parametric pipe model (ex-
plained in the previous section), which generates an appropriate class of

38

pipes with the properties just mentioned. Then this class of pipes can be
described by all vectors £ in 2 € R", and our optimization problem becomes

Igneislzl —Omin (§)- (4.4)

omin (Equation (3.24)) depends on the solution to a viscous, incompress-
ible, stationary and turbulent flow problem on the domain D determined by
£. Kamewa suggests the water flow through the pipe to be 1m?3/s. Con-
sequently, since the radius of the inlet opening is 0.2m, we put the inlet
velocity at I to 8 m/s normal to 1.

Because of the objective function, further discussed in Section 4.6, the
problem (4.4) is to be considered a very hard one. After having given up
all hope of finding anything like an analytic solution, we stick to computer
simulations and numerical algorithms. Since the problem is complex and
contains a lot to model in proportion to the time available for a post graduate
student, we first strive to reach Aim 2 in the Introduction, i.e., to implement
an iterative process that numerically searches for approximate solutions to
the problem.

4.3 Geometric modelling

This section contains the construction of a parametric pipe model according
to the simplifications of the waterjet inlet duct geometry done in the pre-
vious section. We begin with a description of the pipe by two curves. We
then parameterize these two curves to obtain a parameterization of the pipe.
Finally, we present the generic generation of the grid for the computational
analysis of the flow.

4.3.1 The generic pipe geometry

We represent the pipe geometry by two curves (or functions).

The centre curve is a plane (the zy-plane) curve from the pipe inlet open-
ing to the outlet opening. It is piecewise defined by five segments according
to Figure 4.5. The first and last segments are straight lines parallel with the
z-axis and the last one is at least 0.6 m long. Between them are two circular
arcs, connected by a straight line. The centre curve can be described by a
smooth mapping 7. : [0,1] — R® with v/(s) # 0. Note that 7, is a vector
valued function. We fix the coordinate system by letting v.(0) = (0,0,0),

39

Y.(1) = (8,3,0). We also require that

(0))
2o = 00 =Sy

The radius curve contains the information about the radius of each cir-
cular cross section along the pipe. It can be seen as a smooth real-valued
function 7, : [0,1] — R such that v, > 0, 7,(0) = 0.2 and ,(1) = 0.2v/2.

If we denote by t.(s) the unit tangent to . and by n.(s) a unit vector in
the zy-plane which is perpendicular to t.(s), the pipe domain D is defined
by

D= {7e(s) +7-1mc(s) : s € (0,1), [r] < 7(s)} (4.5)

To prepare for the meshing of the pipe we partition D into one inner
and four outer volumes, giving a cross section like the one in Figure 4.3, and
divide the pipe into five segments along its length as shown in Figure 4.4.
However, we leave the details of this and continue with the parameterization.

0.6m
Y, (1) =0.2*sgrt(2)m
, Y@
Y9 Ay
Y ©@=02m '
C(S 3m
Yc©) Zﬂy
centre curve
8m

Figure 4.2: The centre and radius curves building up the pipe.

4.3.2 Parameterization of the geometry

With the generic pipe model just described at hand we parameterize the pipe
geometry by parameterizing the centre and radius curves.

Under the condition that the centre curve should be continuously differ-
entiable (a continuously changing tangent) it is uniquely determined by the

40

Outer uter

O
volumes \ I volumes

Figure 4.3: Partition into outer and inner volumes to prepare for a good mesh.

Figure 4.4: Partition of the pipe into five segments along its length to prepare for a good
mesh. The cross sectional partitioning into inner and outer volumes can also

be seen.
y e
a
y 3
— X R1 mpy=L15
mpx
8

Figure 4.5: The parameterization of the centre curve. The upper part of the figure shows
how the centre curve is built up by straight lines and circular arcs.

41

four parameters mp,, R1, R2 and « described in the following. R1 and R2
are the radii in the first and the second arc, respectively. The curve has to
pass through the point (mp,, 1.5,0) and « is the angle between this segment
and the z-axis (Figure 4.5). We thus have a parameterization of the centre
curve .. (In the Appendix it is shown how it can be represented by a NURB
curve, which facilitates its computer implementation.)

We now define the radius curve ~, as the first coordinate in a B-spline
curve:

C(s) = (1:(s), c2(s), e3(5)) = Z Ni2P;.

This is a NURB curve with all w; = 1 (Appendix). We take Py = (0.2,0,0),
P, = (0.2,0,0), Py = (r,0,0), Py = (0.2 - v/2,0,0) and the knot vector
U ={0,0,0,u,1,1,1}. Tt follows from the properties of NURB curves listed
in the Appendix that 7, is a continuously differentiable curve from 0.2 to
0.2y/2 with 7/(0) = 0. r and u are the two parameters. The first changes
the thickness of the pipe while the second determines where along the pipe
the first should have effect. This is best explained by Figure 4.6.

4.3.3 Constraints on the chosen parameters

In the following we give sufficient constraints on the chosen parameters in
order for them to define the centre and radius curves which in turn determines
the pipe.

We restrict our attention to centre curves where

0<a< g (4.6)
Since the centre curve passes through (mp,,1.5,0), we get
0 < mp, < 74. (4.7)

For the two arcs to be bended appropriately (like an “s” and not like an
“Inverted s”)we get another two conditions on « from the first and the second
bend respectively:

1.5
t 4.
an(a) > o— (4.8)
1.5
t > —. 4.9
an(a) > - — o (4.9)

42

0.4
0.3
1]
=
Tg02
@
u=0.7
0.1 r=0.17, 0.23, 0.3
0 1 1 1 1 1 1 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s
B
0.4

0.3

Radius
o
S

u=0.2
0.1r r=0.17, 0.23, 0.3

0 | | | | | | | | | J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S

Figure 4.6: The effect of the radius curve parameters r and u. Each plot shows the
radius curve with tree different values for r. In plot A, v = 0.7 and in plot
B u = 0.2. We see how u controls whether the effect of r should come in the
beginning or the end of the pipe.

To be able to connect the straight segments with arcs so that the curve is
continuously differentiable, the radii can not be too large:

Rl < (mp o tail.?a)) tan(loz/Q)’ (4.10)
Rl < sirllki) tan(la/z)’ (4.11)
R2 < (7.4 — mp, — tai‘?a)) — (1a o (4.12)
k2 < sirllki) tan(la/z)' (4.13)

(These last conditions follow by considering the following problem: given two
line segments AB, BC| find the circle with the largest radius with tangential
points on the segments, see Figure 4.7.)

43

Figure 4.7: The circle with the largest radius r having tangential points on the line
segments AB and BC.

The two natural conditions on the radius curve parameters are

0<u<l, (4.14)
r > 0. (4.15)

r > 0 implies that the radius curve is positive everywhere, which follows from
the properties of NURBs listed in the Appendix.

There may be one more natural condition which involves both the centre
and radius curve parameters. If the radius of the pipe is too large compared
to the radius of the centre curve, the pipe wall will intersect itself. This is
no problem in the abstract definition in Equation (4.5) but poses a problem
when it comes to the implementation.

4.4 Grid generation

The CFD (Computational Fluid Dynamics) analysis of a flow is performed
on a computational grid, a mesh. We describe the generation of such a grid
for the generic pipe model given above.

To generate high quality meshes, or grids, for numerical flow computa-
tions is, in general, hard. Different geometries require different meshes and
the size of the mesh may have to change a lot between different parts of
the geometry. Large meshes (having many elements) lead to time-consuming
computations and storage problems.

The challenge with meshing in the context of shape optimization is to
find out how to mesh automatically and still be (quite) sure that the quality
of the mesh is high enough for all geometries in the class over which we
are optimizing. We note that we only need a grid fine enough for giving
reliable cavitation values and not for resolving all aspects of the flow such as
secondary flows etc.

44

4.4.1 Computer representation of geometry and mesh
with Gambit

The geometry is constructed and meshed with a commercial computer soft-
ware called Gambit which is a preprocessor to the computational fluid dy-
namics program Fluent5. In Gambit the geometry is built in a hierarchical
way starting with points, or vertices, connecting them to edges, making sur-
faces from the edges and volumes from the surfaces. Then the geometry is
meshed, starting, in the case of a structured mesh, with the edges and con-
tinuing with surfaces and volumes. Finally, boundaries are defined and the
mesh is exported to a file which can be imported into Fluent5.

Gambit admits automatic running by a so called journal file, which is
printed outside Gambit. Since we have a generic pipe model, which is well
suited for constructing the pipe in the way Gambit does, the structure of
the journal files for different pipes are the same and so these files can be
generated automatically by a computer program. I have had access to such
a code, written in C++ by Sara Agren ([34]).

4.4.2 Generic meshing procedure

We have chosen a structured mesh, and this for two reasons. Firstly, expe-
rience tells us that structured grids render, compared to unstructured grids,
higher stability and faster convergence. Secondly, with structured meshes it
is easier to map data between pipes which may be helpful for speeding up the
CFD computations. The main drawback is that structured grids are more
difficult to generate and less flexible than structured grids.

The pipe domain D has been partitioned into 25 parts according to Figure
4.4. Hence it consists of five sections of the sort shown in Figure 4.8. Three
natural numbers (n{,ns, n3) are given as input to the meshing procedure. n;
is the number of grid nodes along the pipe. It determines the number of
mesh cross sections along the duct. The number of mesh cross sections of
each section (i.e., the number of (uniformly distributed) grid nodes on edge
A in Figure 4.8) is determined by the length of the section compared with
the length of the entire duct. ns grid nodes are uniformly distributed on
edge C, which corresponds to one fourth of the circular end of each section.
Finally, ng is the number of grid nodes at edge B in each section. The grid
points on B are stretched to get a good near-wall mesh. The stretching is
described by the successive ratio SR which is the ratio between two adjacent
mesh intervals. SR = 1 gives a uniformly distributed edge mesh.

This meshing procedure reveals the purpose of splitting the pipe into
25 parts. The outer volumes (Figure 4.3) together with the stretching at

45

= 3 A/ i)
=

Figure 4.8: One of the five sections constituting the pipe. To the right it is shown how
the mesh points are stretched at B so that they are closer together near the
wall.

edge B gives the possibility of controlling the quality of the near-wall mesh
without getting an excessively large overall mesh. The splitting along the
pipe is made to get a good quality on the mesh elements themselves, i.e. to
make them “orthogonal” enough. As already mentioned, the meshing is done
starting with the edges but a uniform mesh on an edge along the whole pipe
would result in skewed elements reducing the mesh quality, see Figure 4.9.
Admittedly, this problem is quite related to the specific software used.

Figure 4.9: The mesh elements become skewed if the mesh is constructed from a uni-
formly distributed mesh on one edge along the whole duct.

To sum up, the generic meshing procedure just described gives a high
quality mesh of moderate size, with stable and quite fast convergence in the
fluid dynamic computations as a consequence, and this holds for a large set
of different pipe geometries.

46

4.5 The flow model

We present the pipe flow model that has been used.

The flow in a pipe D is viscous, incompressible, stationary and turbulent.
Thus it is best described by the Reynolds equations (3.11). The viscosity of
the fluid is set to u = 0.001003 kg/(ms) and its density to p = 998.2 kg/m?,
corresponding to water. The kinematic viscosity then becomes v = 1.002 -
107%m?/s. The inlet velocity is set to 8 m/s in the z-direction. This gives
the flow of 1m3/s recommended by Kamewa. The outlet pressure is set to
Patm = latm since the water leaves the waterjet inlet duct above the sea
surface. At the pipe wall we have the no-slip condition.

If we choose the diameter of the inlet opening as the characteristic length
scale and the inlet velocity as the characteristic velocity scale, the Reynolds
number for our flow problem becomes

Re — 8(m/s) - 0.4(m) ~3-10°

1.002 - 10-%(m?/s)

The CFD analysis has been done with the commercial software Fluent5.0.
Fluent uses the finite volume method for numerical solutions of both laminar
and turbulent flows and the user can choose between different numerical
schemes, turbulence models and wall functions. For a discussion of the effects
of different turbulence models and wall functions on the numerical solutions of
a pipe flow, we refer to [28]. We have chosen to start with a first order upwind
scheme, followed by a second order upwind scheme and lower factors of under-
relaxation. This gives a fairly stable and accurate solution. The pressure-
velocity coupling is done with the SIMPLE algorithm. For explanations of
the technical terms mentioned in this paragraph we refer to [21].

We have used the Standard & — ¢ model with standard wall functions
(Section 3.5). For this model to be valid, the y-values at the wall-adjacent
nodes should be between 30 and 200 (Section 3.5.1). Small y*-values are
obtained by a fine near-wall mesh, but how fine can not be computed a
priori. The best way to solve this problem is to use, perhaps repeatedly,

Fluent’s built-in function for adaption of the near-wall mesh with respect to

yt.

The numerical solver is iterative and quite time-consuming. To get a
converged solution for a pipe with an acceptable mesh size takes around 400
iterations or 30 to 60 minutes on a SUN Ultra workstation. The time depends
a lot on the mesh size (Table 4.6). Consequently it is important not to choose
a too fine (large) mesh.

47

4.6 The objective function

In this section we discuss some theoretical aspects of the objective function
and also describe how it has been implemented.

The objective function, defined in Equation (4.1), depends on a turbulent
flow problem. In practice, therefore, it is time-consuming to evaluate, does
not have explicit derivatives and the complexity of its implementation (de-
scribed below) introduces high frequency distortions of the idealized function.
Hence it is an objective function of the kind described in Chapter 2.

Theoretically, not much can be said about the structure of the objective
function. We know nothing a priori about the number of local minima or the
behaviour of the function close to such a minimum. This is further discussed
in connection to the numerical results at the end of this chapter. Also, since
the function is given by taking the minimum over a region in space, it can be
expected to be continuous (C?), but not smoother. The reason is that we do
not know that the location in the pipe where the minimum cavitation number
occurs moves in a continuous way. It may jump, for example between the
first and the second bend. As long as it stays in approximately one place,
however, we can expect —0,,;, to be at least continuously differentiable (C*).
The question of regularity is essential. The convergence analysis for pattern
search methods requires that the objective function is C* (Theorem 1 in
Section 2.1.3) and this condition is necessary (as shown by the example in
Section 2.1.3).

The implementation of the objective function has been written in Matlab
but involves calls to functions written in UNIX and C++ as well as to the
two commercial programs Fluent5.0 and Gambitl.2. A flow chart is found
in Figure 4.10.

The function call is done with values for the parameters mp,, o, R1, R2,r,u
previously described. If they do not fulfil the constraints, infinity is returned
as the objective value. Otherwise, a grid is generated for the pipe. First two
files defining the centre and radius NURB curves are written. These files are
read by a C++ program which writes a journal file with all the commands
for constructing the geometry and its mesh in Gambit. Next, Gambit is run
to give a mesh file. The CFD analysis in Fluent is performed on that mesh
and the cavitation numbers are stored in a file. Finally, the least cavitation
number is extracted from that file and its negative is returned as the function
value.

As mentioned already, the function is time-consuming. Most of the time is
spent on the CFD analysis but this depends heavily upon the mesh used. The
geometric modelling and grid generation take approximately five minutes.

The implementation is fairly stable but it may happen that one step fails,

48

Input data
(mpx,a, R1,R2, r, u)

constraints
ok ?

Werite definition files for
centre and radius curves

Grid

Make a journal file and

send it to Gambit gene_

ration
Make a mesh in Gambit

Send the mesh file

to Fluent5 and CFD

solve the flow
equations

Analyze the data Pre-
from Fluent and
compute the least
cavitation number Process

Figure 4.10: Flow chart of the implemented objective function.

49

in either the mesh generation or the flow solver. Then infinity is returned,
possibly after the interrupted program has been terminated manually.

4.7 The optimization procedure

With a parameterized inlet duct model at hand we continue with the opti-
mization problem (4.4), which we now restate for the sake of the reader’s
convenience:

min f(§), (4.16)

£eQ

where

f(&) = —omin(D(§))-

The flow problem implicit in f is described in Section 4.5. The vector & € RS
consists of the parameters for the generic pipe model (Section 4.3.1), i.e.,

& = (mpy, a, R1,R2,r,u).

With an eye to the geometric constraints in Section 4.3.3, to the possibility
to have a structured mesh for all geometries generated from €2 and also to
our choice of optimization algorithm in the following paragraph, we choose
the following bound constraints for the parameters:

Q={£eR° :2.6 <mp, <48,
31 <a < 91,
0.49 <R1, R2 < 1.51,
0.15 <r < 0.3,
0.2 <u < 0.8}.

Note that we now allow o > 90° in contrast to the constraints in Section 4.3.3.
These constraints, however, were only sufficient to guarantee the possibility
to construct the pipe; this construction is still possible.

Because of the properties of the objective function, described in the pre-
vious section, we consider the pattern search method (Section 2.1) for our
optimization problem. We have chosen the SBA (Section 2.1.5). This is a
simple and robust direct method with, being a pattern search method, known
convergence properties in the case of bound constraints (Section 2.1.3 and
2.1.4).

The SBA proceeds by taking steps A¢; in the coordinate directions and
reducing the step size when necessary. The steps should be of different size

a0

Parameter £ | Initial step size A&
mMpy 0.15

o 6°

R1, R2 0.15

T 0.02

U 0.1

Table 4.1: Initial step sizes.

for different parameters &. Their initial sizes A&;, given in Table 4.1, are
chosen to be approximately one tenth of the allowed interval in €2 for the
corresponding parameter.

In order to make it possible to use the same step size in all directions
we may change the variables to gz = &/A;. This is called scaling and
corresponds to a multiplication & = D¢ with the diagonal matrix D =
diag(1/AE;). Q is then changed to Q and the new objective function will
be f(é) = f(D_lg). In the following, though, we will only refer to f and &
and just say that we choose a certain step length, the same in all directions,
presuming that the scaling problem has been taken care of.

As convergence criteria we have used the step length A and the number
of function evaluations. This means that the SBA algorithm stops as soon
as the step length is reduced below a given minimum step length A,,;, or
the number of objective function evaluations equals a given number n,,,, of
allowed evaluations. The motivation for this second criterion is that f is so
expensive to evaluate. (If the user has a certain period of time he may spend
waiting for the optimization result he can then calculate n,,,; according to
that.)

In Section 4.8 we investigate how the objective function depends on the
mesh size n, = (n1, ng, n3) (Section 4.4.2). To indicate this dependence we
write f,. In that section we estimate the mesh size n; = (80,7, 12) to give
mesh independent results, that is, f = f;, and find that for coarser meshes
we only have (see, for example, Table 4.3)

I = fa (4.17)

to different degrees of accuracy. In Table 4.6 we see that f, might be consid-
erably cheaper to evaluate than f which means that we have found a model,
or surrogate function (Section 2.3), for f.

In the following section we present numerical results from applying the
SBA to the problem (4.16). We also investigate the properties of the functions

ol

fa, to see if they are suited as surrogate functions for f, by applying the SBA
to the model problem

min fo (). (4.18)

£eq

The stepwise procedure of the SBA makes it possible to use the solution of
the currently best design (parameter) as an initial flow solution for the sim-
ulations on subsequent geometries. For example, with the mesh (70, 10, 15)
the solution for the pipe with parameters (3.7,55%,1,1,0.23,0.5) converged
after 432 iterations. When used as an initial solution for the pipe with pa-
rameters (3.7,55% 1,1.1,0.23,0.5) a converged solution was reached after 267
iterations.

4.8 Numerical results

The numerical results is divided into two parts. In the first, we perform tests
on three different pipes in order to find an appropriate mesh size. In the sec-
ond, we present and discuss the results from some runs with the optimization
algorithm chosen in the previous section.

4.8.1 Simulations for deciding the mesh size

The structure of the mesh is described in Section 4.4.2; what we have to
decide now is its size, the successive ratio SR which specifies the stretching
of the mesh near the wall, and also appropriate y*-values. To get a mesh
that makes the flow solution mesh independent would be optimal but we are
satisfied if we manage to do that for the objective function.

We investigate the necessary mesh sizes for the pipes determined by the
vectors p; = (3.7,90,0.5,1,0.23,0.5), p2 = (3.7,90,0.7,1,0.23,0.5) and p3 =
(3.7,55,1,1,0.23,0.5).

The value of y* in the wall-adjacent grid point should be between 30 and
500, approximately, in order for the log-law in the Standard k& — € model to
be valid (see Section 3.5). In practise, however, it is often suggested that the
upper limit for ™ rather should be 200 in order to get more than one grid
point inside the log-law layer. In table 4.2 we have examined the effect of
reducing y*, by a successive adaption of the near-wall mesh, on the objective
function. There is no visible effect on neither pipe p; nor ps. Thus y™ < 500
should be enough for our purposes, since nothing seems to be gained from
a further reduction. Let us just note that this adaption is a time-efficient
method to get a good near-wall mesh. Even though a couple of adaptions

92

Test of y+ values
Parameters Mesh Size No.it | y+ | Omin
(3.7,90,0.5,1,0.23,0.5) | (100,10,15) | 70000 | 283 395 | 0.64
- e Adaptionl | 98000 | 313 200 | 0.64
- e Adaption2 | 139500 | 340 141 | 0.64
(3.7,55,1,1,0.23,0.5) (70,10,15) | 49000 | 432 373 | 1.5
- e Adaptionl | 68600 | 465 201 | 1.5
- - Adaption2 | 146000 | 493 110 | 1.5
- e Adaption3 | 171000 | 510 81 | 1.5

Table 4.2: Test of y*+ values.

Parameters (3.7,90,0.5,1,0.23,0.5)
Mesh Size No.it | y+ Omin
(120,10,15) | 84000 | 328 406 | 0.63
(100,10,15) | 70000 | 283 395 | 0.64
(70,10,15) | 49000 | 429 486 | 0.67
(100,8,13) | 48000 | 237 543 | 0.66
(80,7,12) 30800 | 214 623 | 0.68
(
(
(

60,6,7) 12240 | 190 1584 | 0.86
50,4,5) 4800 | 167 2476 | 1.12
40,3,4) 2280 | 115 3335 | 1.45

Table 4.3: Test of mesh size.

result in very large mesh sizes, the main part of the iterations in Fluent5.0
are done on a grid of moderate size.

In Table 4.3, 4.4 and 4.5 can be seen the effect of using different mesh sizes
on the pipe p1, p2 and ps, respectively. For the meaning of the parameters
in the first column, see section 4.4.2.

We see that at least a mesh of the size (100, 10, 15) is necessary to give
a mesh independent o,,;, for all three pipes. For p3, the mesh size (80,6, 7)
gives the same function value as the larger mesh sizes (Table 4.5). Also,
the mesh of size (80,7,12) gives approximately the same function value as
(100,10, 15) for p; and p, and hence we regard that mesh to give a fairly
mesh independent solution. For smaller mesh sizes, though, the objective
function values deteriorates quickly.

Let us conclude this section with an interesting observation. Of the ex-

23

Parameters (3.7,90,0.7,1,0.23,0.5)

Mesh Size No.it | y+ Omin
(70,10,15) | 49000 | 282 377 | 1.12
(100,8,13) | 48000 | 371 534 | 1.13
(80,7,12)) | 30800 | 354 622 | 1.09
(60,6,7) | 12240 | 216 | 1547 | 1.19
(50,4,5) 4800 | 156 2404 | 1.24
(40,3,4) 2280 | 135 3117 | 1.41

Table 4.4: Test of mesh size.

Parameters (3.7,55,1,1,0.23,0.5)

Mesh Size No.it | y+ Omin
(70,10,15) | 49000 | 432 373 | 1.5
(80,6,9) 20160 | 191 972 | 1.5
(80,6,7) 16320 | 197 1465 | 1.5
(60,5,5) 7500 | 145 2311 | 1.56
(50,4,5) 4800 | 146 2245 | 1.59
(40,3,4) 2280 | 103 2885 | 1.66
Table 4.5: Test of mesh size.

Mesh Size | Approximate run-time in Fluentd

(100,10,15) | 84000 | 90 min

(80,7,12) 30800 | 30 min

(60,6,7) 12240 | 10 min

Table 4.6: Run-times for different meshes.

o4

amined pipes, the minimum cavitation number for p, is bigger than that
for p; and less than that for ps. This order is kept distinct by the meshes
(80,7,12) and (60, 6, 7), though it is “weaker” with the latter. However, with
the mesh size (40, 3,4) this order is lost. The run-times in Fluent5 for the
different meshes can be seen in Table 4.6.

4.8.2 Optimization results

In this section we present some results from applying the SBA to the problems
(4.18). We use two different meshes n; = (80,7,12) and ny, = (60, 6,7) and
hence get two corresponding functions f; and f,. We consider f; to be the
idealized function f in problem (4.16). Most of the pictures and tables can
be found in Appendix B.

Five runs with the SBA have been done. Runs 1,2 and 3 are done with
function f; from three different initial vectors; the results are presented
graphically in Figure 4.11. Runs 4 and 5 are done with function f, from
two different initial vectors and the result from run 4 is presented in Figure
B.1. The initial and final (optimized) radius and centre curves from runs 1,2
and 3 are shown in Figures B.2, B.3 and B.4, respectively. A comparison
of the final centre and radius curves from runs 1, 2 and 3 can be seen in
Figure B.5. The changes in each variable during the runs 1 to 4 are shown
graphically in Figures B.6, B.7, B.8 and B.9. The essential numerical data
from all the runs is found in Tables B.1 and B.2.

Analysis

We first note how the objective values in runs 1,2 and 3 decrease dramati-
cally during the first 10-15 evaluations, after which the iterations no longer
yield significant improvements (Figure 4.11). The final objective values in
these runs are almost equal: —2.56, —2.56 and —2.55, respectively. The
initial vectors, which were chosen quite arbitrarily, seem to be far from any
local minima. The changes in the variables seem to be significant up to ap-
proximately 30 evaluations (Figures B.6, B.7 and B.8). At the end of the
optimization changes occur in neither the variables nor the objective, which
gives us a reason to believe that the final vectors are close to local minima.

Figures B.6, B.7 and B.8 indicate that all variables are important. We
analyze the results of runs 1, 2 and 3 for each variable in turn.

mp, : Takes final values between 4 and 4.7, which indicates that there are no
unique optimal value for this variable. See also Figure B.5.

« : All final values are very close to 90°.

%)

R1 : Takes final values between 0.8 and 0.96.
R2 : Takes final values just above 0.6.
r : All final values are between 0.27 and 0.29.

u : The final values are quite dispersed (between 0.2 and 0.4).

It can be seen from Figure B.5 that the final values of the variables r and u
in all the first three runs result in radius curves each one having an inflection
point, in contrast to all initial radius curves.

Runs 4 and 5 are done with f, as the objective function. Run 4 starts
from the same initial vector as run 1. Notably, the sequence of iterates from
run 4 is exactly the same as the corresponding first part of the sequence
of iterates from run 3 (which at least almost can be concluded from Tables
B.1 and B.2 and Figures B.6 and B.9; the author can affirm that this is
indeed the case). Run 5 starts from the final vector from run 2. As expected
(since the final vector of run 2 should be close to a local minimum) only a
small improvement in the objective are done in the course of 30 evaluations.
However, it is interesting to note that the value of f; for the final vector of
run 5 is actually higher than the value of f; for the initial vector of the same
run (Table B.2).

Conclusions

From the results it is clear that the implemented procedure gives significantly
improved inlet duct designs with respect to the cavitation property, at least
when calculated as a percentage of the initial objective values.

The cavitation objective function appears to be quite “nice”: all runs
result in approximately the same objective value and the optimized variables
from the different runs are not very far from each other. It would be inter-
esting to know if we have found distinct local minima, or if they correspond
to the “flat region ” of one and the same local minimum. If we consider that
significant changes occur in the variables for some iterations even when no
marked decrease in the objective any longer can be seen, the latter seems
plausible.

What conclusions can we draw concerning the optimal design of the pipe?
All runs indicate that the angle of inclination « should be around 90°; actu-
ally somewhat above that. The radius of the second bend should be around
0.6 m which is about tree quarters of what the radius of the first bend should
be. The variable u is the one that differs the most between the runs. How-
ever, the general trend of the optimized radius curve is to have a point of

26

Runl —*—*—* Run2 —0-0-0 and Run3 —.—.—.

o o T — _

40 60 80 100 120
number of function evaluations

Figure 4.11: Optimization results from runs 1,2 and 3.

inflection (Figure B.5), which none of the initial radius curves had. Though
the exact location of this point differs, it appears approximately after one
third of the length of the centre curve (where the last 0.6 m has not been
taken into account).

The variables mp, and u are obviously related to each other. We remem-
ber that u decides where along the duct the radius should increase or decrease
(the effect of 7). It is natural that this depends on mp, which controls the
position of the inclined part of the duct.

Run 4 shows that f, is a very good surrogate function for f;, at least
when the initial vector is far from a local optimum. f5 is about one third as
expensive to evaluate as fi, see Table 4.6. On the other hand, the decrease of
f2 in run 5 actually corresponds to an increase in f;, which we regard as the
idealized function. Hence, results obtained from f; can be very helpful when
analyzing fi, since f5 is less expensive and sometimes reflects the behaviour
of f;. However, as shown by run 5, information obtained from f, can only
with great cautiousness be transferred to f;.

57

4.9 Concluding remarks and future research

In this chapter we have described the construction of geometric and flow
models for the problem formulated in Section 4.2. The SBA applied to this
problem results in a dramatic decrease in the cavitation objective function
within only 10-15 function evaluations. Moreover, we have found that the
mesh size is an appropriate mean for constructing surrogate functions, though
these surrogates must be used with care.

The objective function seems to behave quite “nicely”. As mentioned
earlier, not much can be said theoretically about the objective. The numer-
ical results, however, indicate the existence of a minimum with a quite large
region around it in the variable space where the function values are almost
optimal. The existence of this kind of a minimum would make it suitable
to optimize the pipe shape with respect also to other properties, such as the
pressure drop etc. The cavitation objective function is related to the relia-
bility of the waterjet propulsion, whereas a pressure drop objective function
would rather measure the efficiency.

One thing that could be done to numerically investigate the question of
regularity of the objective function, is to check the location in the pipe where
the cavitation number attains its minimum. If this location does not “jump
around” (see discussion in Section 4.6), we have a reason to believe that the
objective function is continuously differentiable.

One important work still to be done is to validate the models and the
numerical results with real data. Even though the overall model of the wa-
terjet inlet duct was suggested by Kamewa, our choice of parameters has
been done quite arbitrarily and the resulting pipe shapes are rather simple.
For example, the cross section is circular, whereas in reality it might change
from rectangular to elliptic. It would be easy to generalize our model to el-
liptic cross sections. Furthermore, another model of the inlet of the waterjet
inlet ducting might be preferable. Instead of having a fixed inlet velocity one
could have a box around the inlet where one sets a free-stream velocity and
then computes the inlet velocity.

The parametric model has not been fully evaluated. It should be com-
pared to other models and the relative importance of each parameter should
be investigated with, for example, some statistical tool such as an analysis
of variance (ANOVA). There is no obvious way to construct the generic pipe
model. In a good parameterization the parameters are all equally impor-
tant and more or less independent of each other. The parameters for the
centre curve are physical and hence “natural”, but this is not the case for
the parameters r and u for the radius curve. The numerical results indicate
that the radius curve should have an inflection point. Perhaps it would be

o8

more “natural” to have a parameterization that controls the location of this
inflection point. The problem with non-physical parameters is that it is more
difficult to see the effect of a change in one parameter and to avoid redun-
dancy, i.e. to avoid that different parameter values result in (almost) the
same objective function value or even the same pipe geometry. (However,
there is no safe way to avoid redundancy in this sense, since it might be an
inherent property of the objective function.) Finally, the optimization result
may be harder to interpret.

Actually, it seems as if the choice of parameters is a first intuitive op-
timization and in our case it can not be made by a machine since the full
problem is infinite dimensional.

It would be interesting to know how the shape of our optimized pipes
relates to the shapes of existing pipes. This question, the relevance of the
geometric model and the possible addition of parameters should be discussed
with an waterjet engineer expert.

We have used the Sherif-Boice optimization algorithm, which should be
compared to other grid methods or some approximation method (see the
introduction to Chapter 2). It would be desirable to implement an algorithm
that allows for more general constraints than the bound constraints used here.
(A pattern search algorithm for linearly constrained problems is presented
in [20].) Furthermore, it would be interesting to implement and test an
algorithm that uses the investigated surrogate functions f,.

To conclude, we dare to say that we have reached Aim 2 set up in the
Introduction. However, to even come close to Aim 1 a lot of validation and
calibration of the models remain to be done. At the present stage not much
can be said quantitatively about the results obtained.

It has been an interesting problem to work with, much because it concerns
such a “practical” thing as a three-dimensional shape. Also, the problem
combines the subjects of optimization and computational fluid dynamics in
a challenging manner. To take the problem further is probably not just a
question of improving the optimization algorithms and the CFD algorithms
separate from each other, but rather combining the two. For example, the
commercial software available is mainly developed for the analysis of a single
geometry. There is not much effect of using the solution from one geometry
as an initial guess to a neighbouring geometry (as it would be natural to
do in connection to optimization). Probably, much remain to be done here,
from a numerical as well as a fluid dynamics point of view.

29

Chapter 5

Positive linear dependence and
the regular simplex in
optimization

The purpose of this chapter is to investigate some properties of the regular
simplex from the point of view of optimization.

Simplices are geometric constructions consisting of n + 1 vectors, called
vertices, in R". They are used in some nonlinear optimization methods,
such as the classical simplex method [12] and some pattern search methods
[18]. However, they are also of interest to the analysis of general pattern
search methods, because, as we will show, simplices are minimal positive
bases. Positive bases are used in pattern search methods to define the search
directions. Hence, it is interesting to know how well a positive basis can
approximate the gradient (see also discussion in Section 2.2.2). We show
that the cosine of the angle between an arbitrary vector and the closest
vector in a minimal positive basis consisting of a regular simplex is bounded
below by 1/n.

We also investigate the geometric properties of the iterates generated by
the classical simplex method by Spendley, Hext and Himsworth [12]. This
method proceeds by generating a sequence of simplices in R", where the next
simplex is found by reflecting one vertex of the current simplex in the plane
through the remaining vertices. Inspired by Powell [27] we show that, at least
when n > 3 is not a power of 2, repeated use of such reflections may result
in an infinite sequence of points in a bounded domain. Hence the iterates
generated by the classical simplex method do not stay on a lattice as do
the iterates generated by pattern search methods. The lattice structure of
the iterates was essential to the convergence analysis of the last mentioned
methods [30].

60

Our analysis uses some basic theory of positive linear dependence, which
we now present.

5.1 Positive linear dependence and positive
bases in R”

The positive span of {ay,---,a,} C R" is the cone
{a eR":a=cra1+ -+ crar,¢; € R¢; > 0,Vi}.

The set {a1,--- ,a,} is called positively dependent if some a; is in the positive
span of the others, otherwise positively independent. A positive basis is a
positively independent set whose positive span is R”. A positive basis must
contain at least n 4+ 1 elements and such a basis is called minimal. Also, it
contains at most 2n elements and such a basis is called mazimal.

From [8] we have the following two theorems of which the second charac-
terizes positive spans.

Theorem 2. Suppose {ay,--- ,a,} positively spans R*. Then {as,--- ,a,}
linearly spans R™.

Theorem 3. Suppose {ai,--- ,a.},a; # 0, linearly spans R*. Then the fol-
lowing are equivalent:

1. {ay,--- ,a,} positively spans R"™.

2. For every b # 0, there exists an i such that be a; > 0.

3. For every i, —a; is in the positive span of the remaining a;:s.

For what follows, it is also convenient to have

Lemma 4. Let {a1,--- ,a,11} be a minimal positive basis for R*. For any
given © € R* we may choose n of the a;:s so that x is in their positive span.

Proof. From Theorem 2 we have z = Y., bia;, b € R. If b; < 0 we can
use 3 in Theorem 3 to replace bja; with a positive linear combination of the
remaining a;:s. This gives x as a linear combination of n of the a;:s where one
more coefficient is positive than in the first linear combination. Repeating
this procedure eventually gives the desired result. O

5.2 The regular simplex in R"

Simplices may be defined in different ways. In some parts of mathemat-
ics, they are defined as n-dimensional sets in (n + 1)-dimensional space. In

61

simplex methods for nonlinear optimization (originally described in [12]),
however, they are given by n + 1 vectors in R", whose convex hull is n-
dimensional. In our definition of a regular simplex, we only use the property
that all the edges are of equal (non-zero) length.

Definition 1. The set of vectors {vy,--- ,vp41} in R” is called a regular
simplex if v; # v; and ||v; — vj||=constant> 0, Vi # j. The v;:s are called
the vertices of the regular simplex. If ||v;|| = 1, Vi, the reqular simplex is said

to be normalized.

Intuitively, a normalized regular simplex constitutes a minimal positive
basis. In order to show this, we first prove the following proposition.

Proposition 5. Any n vectors in a normalized reqular simplex are linearly
independent.

Proof. Let {v1,- - ,v,41} denote a normalized regular simplex. Suppose that
n
Y= Zcz-vi = 0.
i=1

Definition 1 implies that v; ® v; is equal to some constant « for all 7 # j.
More precisely,

constant = ||v; — Uj||2 = [Jvi]|® + ||v]-||2 —2v; 0

5.1
=220, 00;,Vi % j. (5:1)

We then have
n
Y®Upt1 = a’zci =0,

i=1

n
yeuv; =¢;j+a Z c; =0,
i=1,i#j

so that ¢; = ac;. Then either @« = 1 or ¢; = 0, but o = 1 implies that
all v; are the same, which is contrary to the definition of a regular simplex.

Thus ¢; = 0, Vj, which shows the linear independence of vy, - -- ,v,. It easily
follows that any n of the v;:s are linearly independent. O
Theorem 6. Let{vq,- - ,v,41} be a normalized reqular simplex in R™. Then

it 1s also a minimal positive basis.

62

Proof. We will use theorem 3. From Theorem 5 it follows that {vy,- -, vp41}
linearly spans R". Let

n+1

—V = E C;V;.
1=1

Then

n+1
UV — U1 = (1 + C]')Uj + Z C;U;
1=2,17£]

We now take the scalar product of both sides in this equation with v; — v;
and, using equation (5.1) and v; ® v; = «, Vi # j, so obtain

21—) = oy —wl* = (1+¢;)(1 - a).

Hence ¢; =1, Vj, and

n+1
i=1
Theorem 3 then gives that the v;:s form a minimal positive basis. O

To show that Definition 1 is meaningful, we next prove that normalized
regular simplices exist in all dimensions. To this end, it is convenient to have
the following lemma.

Lemma 7. Let {v1,--- ,vn11} be a normalized reqular simplex. Then
1
v, 0V, = ——,
] j n

Proof. From (5.1) we have v; @ v; = «, Vi # j. We then obtain the desired
result by taking the scalar product with v; in (5.2). O

Theorem 8. There exists a normalized reqular simplex in R™, for any n.

Proof. The proof is constructive and we use induction on the dimension n.
The existence is clear for n = 2. Now, suppose {vy,---,v,} is a normalized
regular simplex in R*"! for some n — 1 > 2. Equation (5.1) and Lemma 7
implies that

1

o=l =2(1+ =),

63

Denoting the elements of the vector v; by v;;, 7 =1,...,n, we define the
vectors w; € R* by

W — (v /Yy -y vin/7, B), fori=1,...,n,
1 (0,...,0,1), when ¢ =n + 1.

where 3 and -y are real numbers. In order for {w;} to be a normalized regular
simplex we must have

2(1 +— i 1) 1+7%(1 - B)?,
1 1/9* 4+ 52,

where the first equation comes from the condition ||w; — w;||*> =constant,
Vi # j, and the second from ||w;||> = 1,Vi. These two equations have the
simultaneous solution

1
6:)
n
B \/1+n+1/(n—1)
N 1+n ’
which ends the proof. O

The performance of a pattern search algorithm (Section 2.1.1) depends,
among other things, on how well the search directions approximate the direc-
tion of steepest descent. The search directions are required to constitute at
least a positive basis in R". Therefore, it is of interest to find an upper bound
on the angle, or, equivalently, a lower bound on the cosine of the angle, be-
tween an arbitrary vector and any vector in a positive basis. For a maximal
positive basis consisting of the standard unit vectors and their opposites, the
lower bound for the cosine is 1/4/n (see Figure 2.3 and [30]). The follow-
ing theorem states the corresponding result for a normalized regular simplex
(which, according to Theorem 6, is a minimal positive basis).

Theorem 9. For a minimum positive basis consisting of a normalized requ-
lar simplex {vy,--- ,v41} in R* we have

min max (z ev;) = —,
llzfl=1 2 n

and the minimum is attained when x = —v;, for any 1.

64

Proof. From Lemma 7 we have (—v;) ev; = 1/n, Vi # j, and it only remains
to show that max; = e v; > 1/n for any unit vector z. For a contradiction,
suppose max; x @ v; < 1/n for some z of unit length. Lemma 4 assures that
(after possibly a reordering of the v;:s) we may write x = Z:HQ civ;, ¢; > 0.
Let

k =arg max c;.
=2, 1

Then, using the (contradictive) assumption that z e v; < 1/n for every i, we
get

n+1
|z||? = (Z c,v,)
n+1 n+1
FOIEL DO
=2 =2

Hence ¢, > 1 and it follows that

n+1
JYO’Uk—Ck—— Z C;
z2z;£k
1 n+1 1
>c(1—— >>—
1=2,17#k

which contradicts the assumption on z. This concludes the proof.
U

Finally, we consider the classical simplex method in [12]. This method
proceeds by generating a sequence of simplices, where each simplex has all but
one vertex in common with the preceding simplex. The objective function is
evaluated at all vertices {vy, ... ,v,} of the current simplex. The new vertex
v is found through the reflexion of the vertex with the highest function value,
say vUm, in the plane through the others, i.e. |

= —Uy + — sz (5.3)

For n = 2, this can be seen in Figure 5.1, and the simplices obtained from
such reflexions form a regular pattern (Figure 5.2).

65

Yo Vo

Figure 5.1: Reflexion of a regular simplex.

\ \2

0 2

Figure 5.2: In R? the sequence of points generated by repeated reflexions of any of the
vertices of a simplex stays on a lattice. Hence, if one vertex, v; in the figure,
is kept fixed, reflexion of the remaining two vertices produce only a finite
number of new points (namely 4).

Hence, the method can only produce a finite sequence of different sim-
plices in a bounded domain of R2. In [27], Powell shows that repeated reflex-
ions may produce an infinite sequence of different simplices when n = 3 and
asks whether the same thing could happen in higher dimensions. We show
that it indeed can, at least when n is not a power of 2. As mentioned in the
introduction to this chapter, this result indicates that a simplex method may
behave quite differently from a pattern search method.

Let {vo, ... ,v,} be a normalized regular simplex in R" (see Definition 1).
Let n = ab > 3, where a is any positive integer and b is any prime number
different from 2 (i.e., n is not a power of 2). We will consider the sequence of
simplices generated by keeping all but two of the vertices in the simplex fixed
and repeatedly apply (5.3) to the other two. More precisely, the k:th simplex
(k > 1) has one vertex wy, different from the (k — 1):th simplex, where

{ Wy = Yo, W1 = V1, (5.4)
Wi = —Wg_92 + %(wk,l + Z?:Q Ui), k>1. '

66

All of the simplices in the sequence generated in this way will be different if
all of the vertices {wy}32, are different. If we let

CcC =

1
1(U2+U3+...+U3)

and define
up, =w, —c, k=0,1,...,

the sequence in Equation (5.4) transforms to

2
Uy =Vy— C, Uy =V —C and U = —Ug_1 — Ug 2,k > 1.
n
We see that the points u, stay in the two dimensional subspace spanned by
ug, ui. From Lemma 7 we have v; e v; = —1/n, Vi # j, and it is then easy
to compute
2 g N1 n+1
U = (|u = 3 and U ® Ul = N
[[uoll® = [Ju] T 0=)

It follows that u; is the rotation R of ug by an angle # in the plane spanned
by ug, u1, where

1
cos(f) = 0t _ 7
[uol[luall — n
Furthermore,
Up ® U1
Ug = —U] — Uy = 2721111 — Uy,
n [|

so that us is the reflexion of ug in the line through w,. This means that us is
the rotation R of u;. By induction we get uy = Rug_1.

Now, the elements in {wy} are distinct if and only if the elements in {u}
are distinct. If two elements in {u} are equal, we must have R™uy = ug for
some positive integer m. This happens exactly when m#/2x is an integer.
Suppose this is so. We expand cos(m#) in powers of cos(#), the highest power
being of order m,

1 = cos(mf) = 2™ ' cos™ () + 2 cos™ () + ...

1 1
= 2m_1n_m + Qo

+...,

nm—2
where all o; are integers. Multiplying both sides by n™ gives

2m71 m

2 4
+NnN 0o +tN Cpg+...=1",

where all but the first term are divisible by 6. We have thus reached a
contradiction under the assumption that mf/27 is an integer, and so we
have an infinite sequence of distinct simplices in a bounded region of R".

67

Appendix A
NURB curves

We explain what a NURB curve is and state some elementary properties
of it. We describe how a continuous curve consisting of circular arcs and
straight line segments can be represented by a NURB curve. Everything in
this appendix can be found in reference [25].

A.1 NURB curves

A non-rational uniform B-spline curve, in shorthand a NURB curve, of degree
p is defined by (see [25])

Yoo Nip(u)wiP;
Clu) =S N (s

where {P;} are called the control points which together form a polygon called
the control polygon, w; > 0 are the weights and N, is the p:th B-spline basis
function. For each ¢ > 0 it is recursively defined by

0<u<l, (A.1)

1, u; <u<ujyq
N — 9 7 = = 1+1»
wo(v) { 0, otherwise,

U — Uy Uitp+1 — U
N;,(u) = —N; —1lu +—N'1_1 p>0
Zap() uz+p _ ,U/Z [2y4 () uz+p+1 _ uz+1 i+1,p ?
where U = (ug, U1, -, Up,) is the knot vector with ug =u; =--- =u, =0 <
Upr1 < -+ < Uy p=---=1Uyp=1and m=n+p+ 1. Hence the first p+1

knots equals 0 and the last p + 1 equals 1.
We now list some relevant properties of a NURB curve C ([25]).

e Though a NURB curve does not in general interpolate all the control
points one always has C(0) = Py, C(1) = P,,.

68

C is infinitely differentiable in the interior of a knot interval and at
least p — k times differentiable at a knot of multiplicity k.

e [t lies in the convex hull of the control polygon.

o If all w; = 1 then > N;,(u)w; = 1 and the NURB curve is an
ordinary B-spline curve.

e The effect of increasing one weight in proportion to the others is the
NURB curve being pulled towards the corresponding control point.

e The derivatives at the end points are given by

co) =2 P —py), CO)= P Unn

Up+1 Wo - Um—p-1 Wn

(P, —Pp_q).

A.2 Representation by NURBs

We show how the centre curve in Section 4.3.1 can be represented by a NURB
curve of degree 2 ([25]). The centre curve is continuous and consists of five
segments, each one either a circular arc or a straight line.

Given mp,, R1, R2,a we compute Q;,7 = 0,---,7 which are the end
points of the five segments that constitute the centre curve apart from the
“midpoint” Qs = (mp,, 1.5,0) and the left end point Qg = (7.4, 3,0) of the
last straight line segment of length 0.6 m, see figure A.1. Then we calculate
R;,i =1,---,7 where R; are the midpoint of the line segment Q;_1Q; for
1 =1,3,4,6,7 and the point of intersection between the lines éi_gQi_l and

iQi—f-l for ¢ = 2, 5.

Q5 Qe Q7

Figure A.1: The control polygon for the NURBs representation of the centre curve.

69

As a control polygon for the centre curve we now take

{QO) R17 Ql; R2: Q27 T Q67 R77 Q?}

with weights

| cos(a/2), i=3,9,
Wiz, i=1,2,4,5,6,7,8,10,11,12, 13, 14.

To get an approximation of the arc length parametrization, which facili-
tates all work with the curve, such as meshing, we let iy = 0, 4,1 and

4 ‘Qi_Qiflt

U; = Uij—1 d 7::1)"'76a

where d = 327 |Q; — Q;_1|. We choose the knot vector

U= {Oa 05 Oaala ala’a% '122, e a’aﬁa (&Ga 13]-a]-}

70

Appendix B

Illustrations of numerical
results

This appendix contains some pictures and tables of the numerical results
discussed in Section 4.8.2.

Run4
T

—1.2F 4

f2

-1.8F N

26 1 1 1 | I
0 5 10 15 20 25 30

number of function evaluations

Figure B.1: Optimization results from run 4.

71

Centre curve for Runl. ——- initial, -.—.-. final.

height(m)
[N
PN B W
T T T T 1

o
o
T

2
-
N
w
IS
a
o
~
©

length(m)

Radius curve for Runl. ——- initial, —.—.—. final.

o
w
1

I
N
@

r, radius(m)
o
© b ©
= (%] N
T T

o

o

a
T

Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s, relative position measured along the pipe

o
o

Figure B.2: Initial and final radius and centre curves from run 1.

Centre curve for Run2. ——- initial, —.—.-. final.

w
1
\

height(m)
[N
N @
T T T T

o
&
T
~

o

o
-
N

4
length(m)

Radius curve for Run2. -—- initial, -.—.-. final.

0.15-

r, radius(m)

0.1

I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s, relative position measured along the pipe

Figure B.3: Initial and final radius and centre curves from run 2.

72

w
1
\

height(m)
[N
o N o
T T T T

o

@
T
~

I L L L |

o

<)
[
)
w
I
o
o
~
@

length(m)

Radius curve for Run3. ——- initial, —.—.-. final.

o
w
1

I
N
@

r, radius(m)
o
© b ©
= (%] N
T T

o

o

a
T

Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s, relative position measured along the pipe

o

=}

Figure B.4: Initial and final radius and centre curves from run 3.

Final centre curves for Runl -, Run2 -. and Run3 ——

height(m)

[N
PN U W
T T T T 1

\

o
&
T
N
~

+ I I I |

o

o
=
N

4
length(m)

Final radius curves for Runl -, Run2 -. and Run3 -—

I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
s, relative position measured along the pipe

Figure B.5: The final radius and centre curves from runs 1, 2 and 3.

73

5
4.5
X
Qo
€
42**gw%*ﬂe*%%**?*___*
35
0 20 40 60 80
number of evaluations
15
< 1
hd
0.5
0 20 40 60 80
number of evaluations
0.3
0.28
- 0.26
0.24
0.22
0 20 40 60 80

number of evaluations

100
80
]
<
2
© 60
40
0 20 40 60 80
number of evaluations
15
o 1
4
0.5
20 40 60 80
number of evaluations
0.8
0.6
=}
0.4
0.2
20 40 60 80

number of evaluations

Figure B.6: Changes in each variable during run 1.

74

4.5

mpx

3.5
0 20 40 60

number of evaluations
15

R1

0.5

0 20 40 60
number of evaluations

0.3

0.28

= 0.26

0.24

0 20 40 60
number of evaluations

80

alpha

15

R2

0.5

0.8

0.6

0.4

0.2

0 20 40 60 80
number of evaluations

0 20 40 60 80
number of evaluations

0 20 40 60 80

number of evaluations

Figure B.7: Changes in each variable during run 2.

75

5
4.52 ;Z
x
Qo
€
4
3.5
0 20 40 60 80 100 120
number of evaluations
15 =
< 1
hd
0.5
0 20 40 60 80 100 120
number of evaluations
0.3
0.28
- 0.26
0.24
0.22
0 20 40 60 80 100 120

number of evaluations

100
80
]
<
=
© 60
40
0 20 40 60 80 100 120
number of evaluations
1.5 —pk
o 1
4
0.5
0 20 40 60 80 100 120
number of evaluations
0.8
0.6
=}
0.4
0.2
0 20 40 60 80 100 120

number of evaluations

Figure B.8: Changes in each variable during run 3.

76

5
45
X
[oR
€ H————F——%
4
3.5
0 10 20 30
number of evaluations
15
- 1
x
0.5
0 10 20 30
number of evaluations
0.3
0.28
- 0.26
0.24
0.22
0 10 20 30

number of evaluations

100
80
«
<
=
© 60
40
0 10 20 30
number of evaluations
15
o 1t
& ”X,m
0.5
0 10 20 30
number of evaluations
0.8
0.6
=
0.4
0.2
0 10 20 30

number of evaluations

Figure B.9: Changes in each variable during run 4.

7

Optimization of the function f;

Run 1: 70 function evaluations

Initial value | 26 eval. | Final value
mpy 3.7 4.15 4.0375
o 90 90 90
R1 0.5 0.95 0.8
R2 1 0.7 0.625
r 0.23 0.27 0.27
U 0.5 0.3 0.2
Function f; -0.6809 -2.54 -2.5605
Step length A | 1 0.25

Run 2: 80 function evaluations

Initial value

Final value

mpy 3.7 4.1313
o 55 91

R1 1.0 0.9063
R2 1.0 0.625
r 0.23 0.29

U 0.5 0.3125
Function f; -1.5151 -2.5578
Step length A | 1 0.125

Run 3: 120 function evaluations

Initial value

Final value

mpy 4.5 4.669
o} 36 90.750
R1 1.0 0.963
R2 1.2 0.656
r 0.23 0.27

U 0.7 0.4
Function f; -1.5421 -2.5522
Step length A | 1.0 0.125

Table B.1: Numerical results from runs 1,2 and 3.

78

Optimization of the function f,

Run 4: 30 function evaluations

Initial value | Final value

mpy 3.7 4.15

o 90 90

R1 0.5 0.95

R2 1.0 0.7

r 0.23 0.27

u 0.5 0.3
Function f; -0.8609 -2.5711
Step length A | 1.0 1.0

Run 5: 30 function evaluations

Initial value | Final value

mpy 4.1313 3.9813

« 91 91

R1 0.9063 0.7938

R2 0.55 0.5125

r 0.29 0.29

u 0.3125 0.3125
Function f5 -2.5893 -2.6179
Function f; -2.5571 -2.2483
Step length A | 1.0 1.0

Table B.2: Numerical results from runs 4 and 5.

79

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

D.J. Acheson, Elementary Fluid Dynamics, Oxford University Press,
Oxford, 1990.

J.-F. M. Barthelemy, R. T. Haftka, Approximation Concepts for Opti-
mum Structural Design - A Review, Structural Optimization, 5:129-144,
1993.

A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, M.W.
Trosset, A Rigorous Framework for Optimization of Expensive Func-
tions by Surrogates, Structural Optimization, Vol. 17, No. 1, p. 1-13,
1999.

A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, Op-
timization Using Surrogate Objectives on a Helicopter Test Example,
Computational Methods in Optimal Design and Control, Birkhauser,
Boston, p. 49-58, 1998.

A.R. Conn, Ph.L. Toint, An Algorithm Using Quadratic Interpolation
for Unconstrained Derivative Free Optimization, Nonlinear Optimiza-
tion and Applications, Plenum Publishing, New York, p. 27-47, 1996.

A R. Conn, K. Scheinberg, Ph.L. Toint, A Derivative Free Optimization
Algorithm in Practice, Proceedings of the AIAA St Louis Conference,
1998.

A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Me-
chanics, 3rd ed., Springer-Verlag, New York, 1993.

O.L. Davies, The Design and Analysis of Industrial Experiments,
Hafner Publishing Company, New York, 1954.

J.E. Dennis, V. Torczon, Derivative-free Pattern Search Meth-
ods for Multidisciplinary Design Problems, Proceedings of the
ATAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analy-
sis and Optimization, Panama City Beach, Florida, 1994.

80

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

J.E. Dennis, V. Torczon, Managing Approximation Models in Op-
timization, Multidisciplinary Design Optimization: State of the Art,
STAM, Philadelphia, 1996.

Fluentb User’s Guide Volume 1-4, Fluent Incorporated, 1998.

G.R Hext, F.R. Himsworth, W. Spendley, Sequential Application of
Simplex Designs in Optimisation and Evolutionary Operation, Tech-
nometrics, 4, p. 441-461, 1962.

J.O. Hinze, Turbulence, 2nd ed., McGraw-Hill, 1975.

W. Hock, K. Schittkowski, Test FExamples for Nonlinear Program-
ming Codes, Lecture Notes in Economics and Mathematical Systems,
Springer-Verlag, 1981.

R. Hooke, T.A. Jeeves, Direct Search Solution of Numerical and Sta-
tistical Problems, Journal of the Association for the Computing Ma-
chinery, 8, p. 212-229, 1961.

W.M. Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechan-
ics, 3d ed., Butterworth-Heinemann Ltd, Oxford, 1993.

B.E. Launder, D.B. Spalding, The Numerical Computation of Turbu-
lent Flows, Computer Methods in Applied Mechanics and Engineering,
vol. 3, p. 269-289, 1974.

R.M. Lewis, V. Torczon, Rank Ordering and Positive Bases in Pattern
Search Algorithms, Technical Report 96-71, Institute for Computer Ap-
plications in Science and Engineering, Nasa Langley Research Center,
Hampton, VA, 1996.

R.M. Lewis, V. Torczon, Pattern Search Algorithms for Bound Con-
strained Minimization, Technical Report 96-20,Institute for Computer
Applications in Science and Engineering, Nasa Langley Research Cen-
ter, Hampton, VA, 1996.

R.M. Lewis, V. Torczon, Pattern Search Methods for Linearly Con-
strained Minimization, SIAM Journal of Optimization, Vol. 10, p. 917-
941, 2000.

W. Malalasekera, H.K. Versteeg, An Introduction to Computational
Fluid Dynamics. The Finite Volume Method, Addison Wesley Longman
Limited, 1995.

81

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

R.R Mankbadi, Turbulence Models for CFD, in Computational Fluid
Dynamics Techniques, edited by W.G. Habashi, M.M. Hafez, Gordon
and Breach Publishers, 1995.

K.I.M. McKinnon, Convergence of the Nelder-Mead Simplex Method
to a Nonstationary Point, SIAM Journal on Optimization, 9, p. 148-
158, 1998.

J.A. Nelder, R.Mead, A Simplex Method for Function Minimization,
Computer Journal, 7, p. 308-313, 1965.

L. Piegl, W. Tiller, The NURBs Book, 2nd ed., Springer-Verlag Berlin
Heidelberg New York, 1997.

M.J.D. Powell, A Direct Search Optimization Method that Models the
Objective and Constraint Functions by Linear Interpolation, Advances
in Optimization and Numerical Analysis, Kluwer Academic, Dordrecht,
p. 51-67, 1994.

M.J.D. Powell, Direct Search Algorithms for Optimization Calcula-
tions, Acta Numerica, 7, p. 287-336, 1998.

G.J. Seil, Computational Fluid Dynamics Investigations and Optimi-
sation of Marine Waterjet Propulsion Unit Inlet Design, PhD Thesis,
Department of Mechanical and Manufacturing Engineering, The Uni-
versity of New South Wales, 1997.

Y.S. Sherif, B.A. Boice, An Efficient Algorithm for Solving the Uncon-
strained Nonlinear Multivariable Minimization Problems, Advances in
Engineering Software, 17, p. 29-37, 1993.

V. Torczon, On the Convergence of Pattern Search Algorithms, STAM
Journal on Optimization, 7, p. 1-25, 1997.

V. Torczon, Managing Approximation Models in Optimization, Pro-
ceedings of the 6th AIAA/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization , Bellevue, Washington, September
4-6, 1996.

D.J. Tritton, Physical Fluid Dynamics, 2nd ed., Oxford University
Press, Oxford, 1988.

M.W. Trosset, V. Torczon, Numerical Optimization Using Computer
Experiments, Technical Report 97-38, ICASE, NASA Langley Research
Center, Hampton, VA, 1997.

82

[34] S. Agren, Parametric Geometry Representation of a Waterjet Duct and
Initialisation of the Related CFD Problem, Master Thesis, Department
of Mathematics, Chalmers University of Technology, Goteborg, 1999.

83

