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Abstract

Compound Poisson processes are often useful as approximate models,
when describing the occurrence of rare events. In this paper, we develop
a method for showing how close such approximations are. Our approach
is to use Stein’s method directly, rather than by way of declumping and a
marked Poisson process; this has conceptual advantages, but entails tech-
nical difficulties. Several applications are given to illustrate the procedure.

1 Introduction

Rare events in dependent systems frequently appear in clusters. A typical example
is that of extremes in meteorological or financial time series, but multidimensional
scan statistics and more complicated, graph based phenomena also behave in
this way. As exemplified in Aldous (1989), the occurrence of such events can be
approximated by supposing that the positions of the clusters are the points of a
Poisson process, and that the structures of the individual clusters are independent
and identically distributed. In this paper, we model the rare events as the points
of a dependent point process = on some space I', and use compound Poisson
processes as approximations, summarizing each cluster solely by the number of
points that it contains.

If only the total number of points Z(I') were of interest, the corresponding
approximation would be by a compound Poisson distribution on Z,. However, a
compound Poisson process approximation contains much more information. For
instance, in examining the occurrence of certain motifs in a stretch of DNA, one
may be interested in detecting regions in which the density of such motifs is unusu-
ally high, without having to specify the length of region in advance; a compound
Poisson process approximation may then provide a tractable approximate null

*Supported in part by Schweizer Nationalfonds Projekte Nr. 20-50686.97 and 20-61753.00
tSupported in part by the Swedish Natural Science Research Council
AMS 1991 Subject Classification: Primary 60G55, 62E17 ; Secondary 60F05.
Key words and phrases: extreme values, point processes, compound Poisson process, Stein’s
method.



model with which to compare data. It is therefore useful to have some idea of
how good such an approximation may actually be.

A very useful and widely applicable method of quantifying such approxima-
tions is by way of Stein’s method for Poisson process approximation, as in Arratia,
Goldstein and Gordon (1989). The original point process = on I' is replaced by a
point process SonT x IN, in which a point at («,7) denotes a cluster of size i at
position a. The construction of such a mapping — ‘declumping’ — is not always
easy, and is usually far from natural. However, the advantages of the procedure,
when it can be carried through, are substantial. If EZ(I" x IN) is not too large,
it leads to good approximation with respect to total variation distance (Arratia,
Goldstein and Gordon (1989), Theorem 2), and if EZ(I' x IN) is large there is
still good approximation (Barbour, Holst and Janson (1992), Theorem 10.F) with
respect to the weaker, but still very useful, do(I" x IN) distance defined in (2.9)
below.

In this paper, we use Stein’s method to approximate the original point pro-
cess = directly, using a compound Poisson process on I', without invoking =. One
reason for doing so is to avoid the necessity to declump. Another concerns the
difference between dy(I' X IN) and dz(I'). A bound dy(X)(Q,R) < 0 between
probability measures @ and R over X implies that the difference [ fdQ — [ fdR
can be bounded for any d;(X)-Lipschitz function f (see (2.7) below) in terms
of § and the Lipschitz constant of f. However, the d; (I x IN)-Lipschitz functions
are not necessarily the ones most relevant for approximating =. For instance, the
function f4, defined on configurations & of points of I' by fa(§) = liemyeay, is
d; (T")—Lipschitz with constant 1, so that ds(I")—approximation to £(Z) implies the
same accuracy of approximation in total variation to £(Z(I')). In contrast, the
corresponding function

fa(€) = Lis |, jérxignen

of configurations in I' x IN is not d;(I" x IN)-Lipschitz, so that dy(' x IN)—
approximation to E(E) does not directly entail a corresponding approximation
for L(Z(I')) — the analogous approximation would be to the total number of
clusters Z(I" x IN).

More generally, a do—distance measures the average d;—distance between pairs
of configurations in an optimal coupling. Now two configurations each containing c
clusters, which are identical except for one cluster at «, which is of size s > 2 in one
of them and of size 1 in the other, are at d; (I x IN)-distance 1/c from one another,
which is small when c is large, irrespective of the value of s; in contrast, the d; (")~
distance takes its maximal value of 1. Then again, let the two configurations be
as before, except that at « there is an s—cluster in the first, which is split into two
clusters of sizes s; and sy at o and o/, where s; + s, = s. In d;(I' x IN)—distance,
the configurations are at the maximal distance of 1 from another whereas, in
d;(T')—distance, they are separated only by ssdo(a, @')/m, where m is the total
number of points in the configurations, being small if o and o' are close to one
another or if sy < m. In either case, the distance d;(I") seems to represent a



more useful and natural measure of discrepancy than d; (I x IN), implying in turn
that d; (") is better suited than d; (I"' x IN) for practical application.

Unfortunately, as has already been experienced in the approximation of ran-
dom variables, there are severe technical difficulties involved in the direct ap-
proach to compound Poisson approximation using Stein’s method. As a result,
we are only able to prove good bounds in dy(I')—distance under the additional
condition (3.7), which is the point process analogue of the condition j#; ~\, 0 of
Barbour, Chen and Loh (1992), when approximating the distribution of a random
variable by a compound Poisson distribution of the form L(jN;), N; ~ Po (6;).
There are many examples where the condition (3.7) holds, in particular when the
compound Poisson process is close to a Poisson process, but, if it is not satisfied,
it seems to be necessary to attempt a declumping; improvements along the lines of
those made for random variable approximation in Barbour and Utev (1998,1999)
are not yet in sight.

The structure of the paper is as follows. The general setting is outlined in Sec-
tion 2, properties of the solutions to the Stein equations are proved in Section 3,
and the main approximation theorems are given in Section 4. One novel aspect of
the argument, compared to that used in applying Stein’s method to Poisson pro-
cess approximation, is that the solutions g to the Stein equation, usually bounded
functions from the configuration space H := H(I') to IR, are now allowed to be
functions: H x I' — IR. The paper concludes with some illustrative examples.

2 Generalities

Let = denote a point process on I'; whose mean measure g has density p(«),
a € T', with respect to some measure v on I', and satisfies u(I') < co. We
wish to approximate the distribution of Z by the distribution CP (7, s, ...) of
a compound Poisson process on I'; here, 7r; denotes the mean measure for the
positions of clumps of size 7, + > 1. The m; are defined in terms of a measurable
family of decompositions N of the point process Z:

N:TxQ—=H: (o,w) = (E"(w),25w), Z"(w)), (2.1)

where, for each (o, w),

(1]

(w) = E%*(w) + E5%%(w) + E"*(w).

We always set Z%%(w) := ZE(w){a}; then =%* is taken to represent that part
of E which is ‘significantly dependent’ on Z{«}, and =™ is what remains. The
latter two choices are essentially arbitrary, and there is no need to specify them
further until applying the general results, when better choices lead to smaller
error bounds. In particular, for the bounds that we derive to be useful, the mean
measure of =% should be close to pu.

Let P* and E“ refer to the Palm measures of = at «, so that, as in Kallen-
berg (1983, Section 10), for measurable g : #H x I' — [0,00) and B a Borel set



inT’

and hence
Elg(E,0)E2(da)] = E*g(E,a)|p(da), pae. . (2.3)

The intensity measures 7r; for clumps of size 4, + > 1, in the approximating
compound Poisson process CP (7, s, ...), are then defined by

imi(da) = P=E"*(T) + E{a} =i)u(da), (2.4)

and their densities p;(a) = (dm;/dv)(a) are given by

ipi(a) = P*(E2(I) + E{a} = i)u(a). (2.5)
Note that, from (2.4), >, im;(da) = p(da), so that
w(l) = Zm(r) < Zm(r) = p(T) < co. (2.6)

2.1 Distances

Let H := H(X') denote the space of finite point process configurations on a space
X, with metric dy bounded by 1. We shall almost always take X = I', but for
comparison with the Poisson process approach it is convenient also to allow other
choices of X. Let K := K(X) denote the set of functions k : X — IR such that

si(k) = sup |k(y1) — k(y2)|/do(y1, y2) < o0,

y1Fy2€X
and define a distance d; := d;(X) between finite measures p and o over X’ by
hipo) = 1 if p(X) # o(X) (2.7)
W)= m o sup,ex %(kﬂfkdp— [kdol|, if p(X)=0(X)=m > &:

Let F := F(X) denote the set of functions f : H — IR such that

s2(f) = sup [f(&) — f(&)]/di(1,€2) < o0 (2.8)
§17&€EH
and define a distance ds(X’) between probability measures over H(X) by
1
= —_ dQ — dR| . .
QR = i [ 10 [0 @

For finite measures p and o over X', we also use the notation ch(p, o), defined as
follows:

5 {iflfp’gp;p'(X)_a(X) di(p',o), if p(X) > o(X);

4P )= (o, ). it p(x) < o(x). 210



An alternative interpretation of d;, when considered as a distance between con-
figurations &;,& € H, is

di(&,&) = mln{n Zdo Y1is Yor(i)) }» (2.11)
i=1

where (y11,...,%1n) and (y21,-..,Y2,) are the points of & and &, respectively,
and S, is the set of permutations of {1,...,n}. Hence d; measures the average
distance between the points of the two configurations under the closest matching.

3 Stein equations

To bound the d; distance between £(=) and CP (7, me,...), where 7y, my, ... are
the measures defined in (2.4) and

dy(L(Z2),CP (7, m9,...)) = ?clelg 50

|E[f(2)] = CP (1, 2, ... )(f)],

we need to find a Stein equation for the distribution CP (7, ms,...). By anal-
ogy with the cases of compound Poisson random variable (Barbour, Chen and
Loh 1992) and Poisson process approximation (Barbour and Brown 1992), a can-
didate equation is

St [ ofe+ t5.)mlda) (O] = £(6) ~ CP(mi sy (), (3)

1>1

for £ € H, where |£| is used to denote &(T"). Note also that the identity

{Zz / 2+ 16,, a)m (da) — /B g(2, )E(da)} (3.2)

>1

for all bounded measurable g, which is the Palm characterization of = as a com-
pound Poisson point process with distribution CP (71, 7o, . ..), dovetails neatly
with (3.1), when the function g does not depend on its second argument. As we
see in Section 3.1, there is a solution to the equation (3.1), but, as in general in
the random variable case, the solution has useful uniform bounds only when 7 (I")
is small. In the random variable case, under the condition that 6; \, 0 as i — o0,
where 6; is the expected number of clumps of size 7, much sharper uniform bounds
can be found. The situation here is similar; under the additional condition that
ipi (@) N\ 0 for each o € T', we can derive better bounds. However, to do this, we
need to consider an equation which looks slightly different from the Stein equation
above, but is also related to the Palm characterization (3.2); see (3.9).



3.1 The general case

In this section, we prove two results about the solutions of the Stein equation (3.1)
for bounded f, under quite general assumptions. The first gives uniform bounds
on the function gy and its differences at arguments £ and £ + n; it is the analogue
of Theorems 1 and 2 of Barbour, Chen and Loh (1992) that relate to the random

variable case.

Lemma 3.1 For any bounded f : H — R and any choice of measures mw;, | > 1,
there exists a solution g = gy : H — R to the Stein equation (3.1), which satisfies

sup(€] Vv 1)[g; ()] < 2[|F[1e™ ;5 sup (1€ V 1)]gs (€ +n) — g(E)] < 2/ f[le™,
EEH EnEH

where w(T') is as in (2.6). If f € F, the factor 2||f|| can be replaced by so(f).

Proof. Let X, X, Xy,... be independent point measures of the form X = Joy,
such that (J,Y") takes values in INxT" and that P((J,Y) € {j}xB) = w;(B)/=(I),
for j € IN and B C I'. Note that E|X| = EJ = p(I')/m(l') < co. By letting
F(&) = CP (my,m,...)(f)— f(&), Equation (3.1) can be rewritten for each fixed £
with |£] > 1 as

g(6) = F‘g) |(;|)E[|X\ (6 + X)), (3.3)

where E' is applied only to X. Equation (3.3) can then be solved in [£] > 1 by a
recursive argument.
First, let go(§) = F(€)/|€|, and define gi, go, . . . successively by

FE) =)
g e

noting that the right hand side only uses values of g, ; at arguments n with
In| > 1. Then it follows that

R 1 £+ 5T, 1X.]
9(6) = |s| *mz [|s+sl| |s+sr\]’ (3:5)

gn(8) — 7 Bl Xn|gn-1 (€ + Xa)], (3.4)

where S; := 3% . X,. Hence, letting || f|| = sup, |f(n)|, we have
j=1""7 n

L IR+ ST X
S n(©) ~ou@) < 3 gty |

n>m n>m

< Sswlrwirryre | L=t

n>m

211

n>m

F n
T < o fe™® < o,

IN

6



for any m > 1. Hence g,, converges uniformly on A \ {0} as n — oo, where ()
denotes the zero measure or empty configuration; we denote the limit by g;, and
set g¢(0) = 0. Hence, because E|X| < oo, we have

[E(| X9 (& + X)) = E(1X]g7(€ + X))| < llgn — g¢[| EIX[ =0

as n — oo; replacing X,, with X in (3.4) and letting n — oo, it thus follows
that gy satisfies (3.1).
Now, from (3.5), for any & with || > 1,

SO B b
€llon©)] < 201 1+;w<r>E[|§+Sﬂ...|§+5ﬂ)

" H’"1|Xs|]
< 2Ifll 1+ (D E [8—7
I {1+ oy g
n FT
= opfl (14 ”(,)>
—1 T.
< 9 ffe™O

for all n, so that g satisfies [£] [g;(€)| < 2||f||e™). This proves the first inequality.
Now, write

a(é-aXb"'aXT) = ‘£|‘§+Sl‘|§+s’r‘
Then it follows by (3.5) that, for any n € H with || = k and for any [£| > 1,

|gn(€ + 77) - gn(é-)‘

Fetn) FO| <~
< i+ T ‘*Z”(F) (3.6)

Since F(&) = CP (7, ma,...)(f) — f(§), we get

F(§+77)_F(§)‘ < Ef©) = fE+ )|+ k[f(§) = CP (1,75, .. ) (f)]
El+k e T (1€ + k)]

21 f11l€] + 2&1LF1l _

- (E+RlE

and it follows similarly that the remaining part of the right-hand side of (3.6) is
bounded by

. 1 X 2 ™
2||f||2 re | =l < AWl _y,

F(E+n+5S)  F(E+S)

xXFE
£+77,X1:"'5XT) a’(g:Xla"-aXr)

211 711/1€1;




This, together with the previous bound if £ = (), completes the proof of the second
inequality.

Finally, the right hand side f(£)—CP (7, 7o, ...)(f) of the Stein equation (3.1)
is not changed by subtracting (infecs f(€) + supgey f(€))/2 from f. Hence, for
f € F, we may take || f|| < s2(f)/2-

[ ]

The second lemma bounds the differences of the values of the function g; at
arguments which have the same mass.

Lemma 3.2 If &, n € H are point configurations with || = |n| = m, then

(m Vv 1D)|gr(€) —gr(m)| < sa(f)di(&,m)e™ .

Proof. For m = 0, the result is obvious. For m > 1, it follows from (3.5) that

m|gn(§) — gn(n)|

< If(

F(E+ ) = Fn+ S Ty X
'*Z [ €+ 5. €+5,)

Using the definitions of d; and so(f) given in (2.7) and (2.8), respectively, we get

1f(€+Sp) = fn+50)| < s2(f)di(€ + Sy + Sr) < 52(f)da(E,m),

and hence, for m > 1,

< sa(f)di(é, n)eﬂ'(r)’

for all n, from which the result follows.

3.2 The case where [y;(a) N\, 0 for each «

In this section, we consider an alternative to the Stein equation (3.1), working
under the assumption that

I () (O for each a€T. (3.7)

Set
A(da) = lm(da) — (I + 1) (da), 1>1,

and let Z be an immigration (in groups) — death process on I' with immigration
intensity measure \; for groups of size [ and with unit per capita death rate. Then



Z has equilibrium distribution CP (7, s, ...), and its infinitesimal generator is
given by

Z / [h(€ + 16,) — h(E)]Ni(da) — / [h(€) 82))E(dev),

where & € H. Here we solve the Stein equation

(AR)(E) = [f(£) = CP (w1, m2,...)(f); (3-8)

for f € F.
If, for each o € I', we define a function g, on H + 6, by

9o(§+0a) = h(E+da) —h(E), EE€H,

we have

> (e +162) = bOAda)

>1

-y / Z[h €+ k6a) — B(E + (k — 1)da)]Ar(da)

>1

= Z/gaf-i-ké > Ai(da)
k>1 1>k

= Z/ga (€ + kbo) ki (da),
k>1

and hence (3.8) can be written as

S / g€ 4 162)m(dar) — / 6a(©)(da) = [(€) = CP (1m0, )(/).

>1

(3.9)

Note that this equation is the same as the Stein equation (3.1), except for the
index « attached to the functions g,.

Let P¢ and E¢ denote, respectively, the distribution and the expectation of
the immigration—death process Z defined above, when Z(0) = £&. We now show
that

hi(e) = — / CIEELF(Z0)] - CP (mrymar (Dl (3.10)

exists, is bounded and satisfies (3.8). The proofs are very similar to the proofs of
Propositions 2.1 and 2.3 in Barbour and Brown (1992).

Lemma 3.3 For any bounded f : H — R, the function hy : H — IR given
in (8.10) is well defined.



Proof. Let Z;, be an immigration-death process with immigration intensity X\,
for groups of size [, and unit per capita death rate, which is empty at time 0.
Let D and D be pure death processes with unit per capita death rates and with
D(0) = ¢ and D(0) ~ CP (1, 7y, .. .), independent of each other and of Z;. Let
Z=2y+D,Z=2y+D and

7 =1 =inf{u > 0: D(u) = D(u) = 0},

so that Z(t) = Z(t) for all t > 7, and observe that, for each &,

Efr] = E[(l€l+ DO + (€l +|DO) = 1)~ + -+ +1]
< B[l +log(|€] + [D(0)] +1)] < o0,

the finiteness of the expectation following because |D(0)| has a compound Poisson
distribution with finite mean.
Now define

ur(€) = = [ IESF(2() = CP (w1, ) (1) (3.11)
Note that
| Btz - ez a < 2l [ P> sls

so that, since E[r¢] < 00, limy o hy r(€) exists and is finite for each £&. Hence (3.10)
is well defined.
n

Lemma 3.4 For any bounded f : H — R, the function hy, defined in (3.10),
satisfies the Stein equation (3.8).

Proof. The time for the first birth or death in the process Z under P¢ is exponen-
tially distributed with parameter ¢ = £(T') + 3,5, [ Ai(da). Hence, from (3.11),

ht,f(f) = —[f(f) - CP (7"1’ T2, - - -)(f)]eiqtt

+/0 g~ { —u[f (&) — CP (mwy, ms,...)(f)] 512
+ ;Lhtu,f(f + 104) Al(ja) + /r ht—y,f (€ — 50[)@} du.

We wish to let £ — oo on both sides of this equation.
Since, for each fixed &,

/000 /r e "¢(da)du < 0o

10



and since, using the same notation and technique as in the proof of Lemma 3.3,
it follows that

€]+ D(0)|
Lu<tyheus(E =) < 2IfIIE[ D '] < oo,

=1

bounded convergence implies that

e ),
/0 ge / (@ = 60 du / hi€ — 62)€(da)  (3.13)

as t — o0.
Furthermore, since Y., i7* <1+ logn,

€]+ D(0)|+1
Lpuciphius(E+162)] < 2IFIEL Y il

< 2 FIIEN +log(€| + 1 + | DO)])]

where the right hand side does not depend on « or . Next we need to show that

/ /FZEHHOg €]+ L+ D) )] Ni(da)e™ " du

>1

= ¢ Y B[+ log(JE] + 1+ |1D(0) AT (3.14)

>1

< (Z)\z )E{1 +1log(1 + [¢] + | D( )|)}+Zlog(1+l)/\l(F))

1>1 1>1

is finite. Recall that A;(da) = I (da) — (I + 1)1 (da), so that
L

0<> log(l+ HA() < ) (log(l + 1) — log(1))lm(T <Zm

=1 =1
giving

L
Lll_)lglol_zllog(l + DN < 7(T) < 0.

Hence (3.14) is bounded, and by dominated convergence
/ ‘q“Z/ht uf (€ +16,) N (de)du — = Z/hf £+ 16,) N (de), (3.15)
>1 >1

as t — oo. Furthermore, e79¢ — 0 and fot e gudu — 1/q as t — oo, and letting
t — oo in both sides of (3.12), it follows from (3.13) and (3.15) that

hg(§) = ! { — [f(€) = CP (1, ms,...)(f)] (3.16)

q
+Z/hf € + 16a)Ai(dr) + /hf(g—éa)ﬁ(da)}-

>1

11



But now recall that ¢ = §(T) + Y5, [ Mi(de), so that

/hf £(da) + hy(€) /Aldoz
>1

which combined with (3.16) proves the result.
u

The next lemma concerns the smoothness of the solution Ay, and of some
functions derived from it.

Lemma 3.5 If

gaf(§ + 504) = hf(g + 504) - hf(g)a g E %a (317)
where hy is defined in (3.10) and f € F, then
(4) SUP  |gay (€ + 0a)| < 52(f) {1 Al 65)\_1/2}
a€cl(eH
(47) SUp  [gaf(€ + 0a + 0p) — Gar (€ + o)l
a,Bel E€EH
< so(f) {1 A )\3(1 + 210g+()\1/2))} ,
1

where A := Aq(T).

Proof. The proof is modelled on that in Barbour, Holst and Janson (1992, Lem-
mas 10.2.3 and 10.2.5). We begin with (i). Let Z; and D be defined as in the proof
of Lemma 3.3, and let F be an independent standard exponential random variable.
Then Z(t) = Zy(t) + D(t) ~ P¢ and Zy(t) = Zo(t) + D(t) + 6o 1{E > t} ~ P&,
Then, by the definition of g,; and h given in (3.17) and (3.10), respectively,

Gof(E+0a) = hp(E+da) — hs(§)

- / OO{Ef[f(Z(t))] ES+n(£(2(1))]} dt (3.18)
- / e 7 P(D(t) = ) ELF(Zo(t) +n) — F(Zolt) +n + )],
n<§

where 7 € H is a possible outcome of what remains of the point configuration
D(0) = £ at time t.
By the definition of so(f), and since d;(&1,&) = 1 if |&1| # |&2], it follows that

£ (Zo(t) + ) — f(Zo(t) + 1+ da)|

< 55(f)dr(Zo(t) +n, Zo(t) + 1+ 6a) = s2(f), (3.19)
for all « € T', £ € H, and thus one of the estimates in (i) is immediate from (3.18):
sup [gas(€ +da)l < s2(f). (3.20)

acl éeH

12



Let Yj(t) denote the number of individuals which have immigrated in groups
of size j and are still alive at time ¢. Then |Zy(t)| = Yi(t) + Ya(¢t) + ... and
Yi(t) ~ Po (A1) where

t
)\Lt = / Al(F)e*“ du = (]_ — e*t))\l. (321)
0

Fix t and let Y1 = Yi(t), Y* = >_,., Y;(t), and p(i) = P(Y: = i). Furthermore,
write
fo=F(Zo+m); fa = f(Zo+n+0ba); f5 = F(Zo+n+05); fap = [(Zo+ 1+ a+dp).
Then

Elfo— fol = Y Elfo — fo| Y1 = KIp(k) (322)

k>0

Elfo| Y1 = 0]p(0) + S {E[fo | Y1 = k + Lp(k + 1) — E[fa | Y = klp(k)} .

k>0

As in the proof of Lemma 3.1, we may subtract (infees f(§) + supgeqy f(£))/2
from f, and take supgcy [f(€)| < so(f)/2 if f € F. Hence the first part of the
right-hand side of (3.22) is bounded as

[Elfo| Y1 = 0]|p(0) < p(0)s2(f)/2. (3.23)

Since the positions of the Y; points follow a Poisson process with intensity
measure (1 — e~*)Ay, it follows that

Bl Y=k +1) = [ Bz Vi = HA(d8)/M(D)
r
Furthermore, by the definition of so(f) and d;, we have

[F(€+3p) — f(E+ 0a)| < 52(f)da(§ + 05, € + 0a) < 52(f)/ (€] +1),
for any & € H. This will be used to bound the terms of the sum in (3.22):
|Elfo| Y1 =k +1]p(k+1) = Elfa| Y1 = k]p(k)|
= |Elfo|Y1 =k +1]{p(k + 1) — p(k)}
—{Elfa|Y1=k] = E[fo|Y1 =k +1]} p(k)|

< [p(k +1) — p(k)| 52(f) /2 + p(k) /F Ellfs = fal [Y1 = k]A:(dB)/ A (T)

< so(f) {Ip(k +1) = p(k)|/2 + p(K)E[(k + Y* + o[ + )]} . (3.24)
Inserting (3.23) and (3.24) in (3.22) yields
|E[fo — fall
< 52§f ) (p(O) +> Ip(k+1) —p(k)[+2) El(k+Y"+1+ |n|)_1]p(k)>

IN

82(f)(()+2E[Y1+1 [+ Ip(k+1) — )|)

2
k>0
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Since p(i) = P(Y; = i) and L(Y]) = Po (A1), where A, is defined in (3.21), it
follows that

1—e Mt
Bl = £l < sul) (o) + )

)

1 — —A1,t
< 5(f) ((zeAl,t)—l/Z Llme ) |
o

I

where the last inequality follows from Proposition A.2.7 in Barbour, Holst and
Janson.
We now have two possible bounds on |E[fy — fu]l:

52(f)’
\E[fo — fa]| < { so(f) ((26/\“)—1/2 +(1- e_)‘l’t)/)q,t) )

neither of which depends on o or 1. Choose ¢; such that e™® =1 — A\;'. Then
A= M1 —e")>N(1—e™)=1fort>t), and we get

Gag(€+02)| < / e S P(D(t) = n)| ELF(Zo(t) + 1) = F(Zo(t) + 1 + 5.)]|dt

n<é

< 5(f) /0 " et + o)) /t e (2eM0) Y2 + (M) Yt (3.25)

As in Barbour, Holst and Janson (1992, p. 222), computation of the integrals in
(3.25) yields

9ar(E+0a)] < s2(f£)1.65/V Ay,

for all « € ', £ € H, which together with (3.20) proves (i).

For the proof of Part (ii), use a coupling much as in Part (i) to provide an
expression for g,r(& + 9o + 08) — gas(§ + 0o), but now with two independent
exponential random variables F; and Fjy and four Z-processes Zy + D, Zy+ D +
5a1{E1 > t}, Zo+ D+ 6ﬂ1{E2 > t} and Zy+ D + 5a1{E1 > t} + 5ﬂ1{E2 > t}
This, with the earlier notation, yields the formula

9o (€ + 0o+ 08) — gas(§ + 0a)
= hy(§+ 0o +dp) — hf(5+5ﬁ) hy(& =+ da) + hys()

— / —2t Z P =n E[fag — fa fﬂ + fo]dt. (326)
n<g
Since E||fap — fo — fa + fol] < 2s2(f) by (3.19), we get one of the bounds in (ii)
directly:
|90 (€ + 00 +95) = gas (€ + da)| < 52(F)- (3.27)

To get a second bound, we rewrite the integrand in the form

E[faﬂ - fa - fﬂ +f0]

14



= Y Elfap— fa—fs+ fo| Yo = KIp(k)

= —p(O)Elfa+f5— fo!Yi = 0+ p()E[fo | Vi = 1]
+> {p(k)Elfas | Y1 = k] — plk + 1)E[fs + fo | V1 =k + 1]

k>0
+p(k +2)E[fo| Y1 =k +2]}

= D _{{p(k+2) = 2p(k+1) + p}E[ fo+ 3Fs [ Vi =k + 1]

Ap(k) {Elfas | Vi = K] — E[3fu+ 3 f5| Vi =k + 1]}
+p(k+2) {Blfo | Vi = k+ 2] — B[3fa+ 3fs|¥s =k +1]}}
+(p(1) = 2p(0)) B[t fo + Lfs | Y1 = 0]

(){ ol Vi =11~ Bl fa+ 6ol Vi =01
+p(0)E[fo | Y1 = 0]
= > Ak +1) = 2p(k) +p(k = V))E[3 fa+ 3f5| Y1 = k]

+p(k) {Elfas | Vi = k] — El3fa+ 15| Vi = k+ 1]}
+pk + D{E[fo|Yi =k +1] - E[}fa+ 1 fs|Y1 = k]}}
+p(0)E[fo | Y1 = 0],

where p(k) := 0 for £ < 0. Using the same technique as in (i), it thus follows that

‘E[faﬂ — fa— fﬁ + fo”
< Sng) {p(O) + > Ip(k+1) — 2p(k) + p(k — 1)I}

k>0

) p(k+1)
+s2(f EZ{ k+2+|n|+Y*)+(k+1+|77|+y*)}

k>0

{ Z|p —2p(k —1)+p(k—2)|+3E[(Y1+1)_1]}.

k>0

Recall that p(i) = P(Y; =) and that £(Y;) = Po(A14). Hence
D Ip(k) = 2p(k = 1) +p(k—=2)] = Y p(k) [(1—k/Aie)” = k/X|

k>0 k>0
< A {Vary: + EY } =2X 5,

and we get

\Efas — f5— fa+ fol| < so(f) ({1/ A +3(1 —e™0)/A,) . (3.28)
Combining (3.26) with (3.27) and (3.28) leads to

t1 [e’s)
|9af (€ + 05+ 0a) — gar(E+0a)| < s2(f) {/O 2 *dt + /t 4€2t/A1,tdt}
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2 A1
< " (1 + 210g+(5)) s2(f),

for all A; > 2, and the proof is completed.
|

Remark. For Poisson process approximation, the uniform bound in Lemma 3.5
(ii) can be replaced by a non-uniform bound of order O(A\™' + (|¢] + 1)71), by
means of Theorem 5.1 in Brown and Xia (2000). It is possible that something in
the same spirit could also be done for compound Poisson process approximation.

For configurations £ and 7 with the same number of points, there are slightly
different results.

Lemma 3.6 If £, n € H are point configurations with || = |n| = m, then

(Z) |gaf(£ + 5a) - gaf('r] + 5a)|
< 289(f)d1(&,m) min {1, 2mAT (1 — e ™) (1 + log[1 + A1 /(m + 1)])} :
(1) |9as(§+ s0a) — gpr(€ + 505)]
< $5(f)do(e, f) min {1, (25 = AT (1 — e™)(1 +log[1 + A1 /(m + 1)]) };

Proof. For Part (i), let Zy be an immigration-death process with the usual pa-
rameters, and with Zy(0) = (). Furthermore, let D; and D, be pure death processes
with D;(0) = & and D,(0) = 7, coupled so that pairs (&;, ;) of individuals whose
indices are matched in the coupling definition of d;(&,n), given in (2.11), have
identical lifetimes 7;, and let £ be an independent standard exponential random
variable. Then, from (3.17) and (3.10), and defining Z; = D1 + Zy, Zy = Dy + Zj,
we can argue in the usual way to obtain

9ar(§ + 0a) — gay (0 + 6a)]
= |hs(€+6a) = hs(§) — hp(n+ o) + hy(n)]

= /OO B [f(Z(0))] = E[f(Z(t)] = B [f(Z(1))] + E”[f(Z(t))]dt‘

_ / T B2 (1) + uI{E > 1)) — F(Z(1))
—(Zo(t) + 0uI{E > t}) + f(Zo(1)))dt]
= /0 e 'E[f(Z1(t) 4 6a) — F(Z1(1)) — f(Z2(t) + ba) + f(Z2(t))]dt‘

< /000 e {E|f(Z1(t) + ba) — f(Za(t) + ba)| + E|f(Z1(t)) — f(Z(t))|} dt

IN

5(f) /0 2t Bldy (2 (1), Zo(8)1{| Dy (1)] > 1}]dt. (3.29)
By the coupling of Dy and D,
E{d\(Z:(t), Zo(t)) I{|D1(t)| > 1}}
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_ {I{IDl(t)\ > 1} do(&, ni) 1{T; > t}}
- Zo()] + o, T, > 1}

=D > PUDi(0)| = r)P(Zo(t)| = j)di (&, m)r/(r + j)

r=1 j>0

< di(& n)min (1, 2mE{(1 + |D1(t) + Zo(t))'}) -

The final expectation is bounded by first replacing Zy(¢) by the smaller Y;(¢) ~
Po (A1;) as in (3.21), and then applying Barbour, Holst and Janson (1992, proof
of Lemma 10.2.1). Substituting this into (3.29) gives Part (i).

The argument for Part (ii) is of very similar structure, with pure death process-
es D; and D, starting with configurations D;(0) = (s—1)d, and D5(0) = (s—1)dg,
and with an additional independent Dy starting with Dy(0) = &£. This leads to
the estimate

|9ar (& + 50a) — gps(§ + s0p)]
/0 e 'E[f(Z1(t) + 0a) — [(Z1(t)) — f(Za(t) + 65) + f(Za(t))]dt

< ) [ et )@ - DE( 100 + Do),

where Zl = Z0+D0+D1 and Z2 = Z0+D0+D2.
|

Remark. Combining Lemmas 3.5 and 3.6, it follows that, if £,n € H, with
|€| < |n|, and if the condition (3.7) holds, then

‘gaf(f + 504) - gaf(n + 5a)|
< sa(f) (IE() = n(T) [ min{1, 227 (1 + 21og" (01/2)} (3.30)

+2d1 (€, m) min{1, 26(T)A; (1 — e ) (1 + log[1 + A /(1 + §(F))])}> :
where dy(£,7) is as in (2.10). In general, one still has the estimate

197(&) — g7 (n)] (3.31)
< sy(f)e™® (1{5(1“)7&7,(1“)} + 621(5,77)> /(min(f(F),n(F)) V1),

from Lemmas 3.1 and 3.2.

4 Process approximation
In order to derive a bound on the dy distance between the point process = and

a compound Poisson process IT with £(IT) = CP (ry,s,...), we use either the
Stein equation (3.1), which can be solved whatever the behaviour of u;(a), 1 > 1,
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or Equation (3.9) if the condition (3.7) is satisfied. By letting goy = g for all
a € I' in the general case, both of the equations (3.1) and (3.9) can be written as

St [ gas(e + 18)mlda) = [ gar(€)€da) = £(€) = CP (s, s, (1),

>1

and hence, by the definition of the ds metric given in (2.9),
dg(ﬁ(E), CP (7'!'1, ™o, .. ))

1
= sup 2(f)\E[f( Z)] — CP (w1, ma,...)(f)]
1 - —_—
— igg ) ‘E [lzzll/gaf(:+lf5a)7rl(da) —/gaf(:):(da)”. (4.1)

The following lemma shows how this latter quantity can be bounded.

Lemma 4.1 Let = be a finite point process on I' with mean measure p, decom-
posed by N as in (2.1), and let the m; be defined as in (2.4). For each o € T
and © > 1, suppose that O, and ®,; are point processes defined on a common
probability space with distributions

L(0y) = P(E" e-|2() + E{a} =i);  L(Pai) = L(T).

Then, for any family of bounded measurable functions G : ' X H — R : (o, &) —
6a(€), we have

P / E[go(E + 16,)]m(da) —E{ / ga(E)E(da)}

>1

< bg(E,N) + CQ(EvN)(42)

where

Ea {90(8) = ga(E™* + (E¥(D) + E{a})da) } u(da)|;
G(EN) = Z / B {ga(OF, + i0a) — ga(®ai + ida)}| mi(dar).

1>1

Proof. Letting

B = /FE“ga(E)M(da)—/FEaga(Er’a-i‘(ES’O‘(F)'i‘E{a})%)N(dOK)a (4.3)
C = /FEaga(Er’aﬁL(Es’a( ) + Z{a})ds) pu(da) Z / [Ga(E +i0y)]m;(da),
(4.4)

we immediately get

E{/FgaEEda} Z/E[ga + i0y) |7 (da)

i>1

< |B[+1C], (4.9)
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by (2.2
/F E@ga(27° + (25°(T) + Z{0})da) (da)
=y / E®{ga(E7 + i8,) | E5%(T) + 2{a} = i} P*(E*2(T) + E{a} = i) p(da)

i>1

). That |B| < bg(E,N) is clear. For |C/|, write

=3 / Ego (0%, + i64)im;(da), (4.6)

i>1

by (2.4), from which |C| < ¢g(E,N) follows immediately.
]

Lemma 4.1 and (4.1) can now be combined with the estimates (3.31) and (3.30)
to give bounds in dy-distance between L£(Z) and CP (i, 7o, ...). Here, we give
two slightly simplified and weakened versions of the result.

Theorem 4.2 Under the assumptions of Lemma 4.1, it follows that

do(L(Z),CP (11, 755,...)) < ™) { / Edy (25, 240 (1)6,) p(do)
T

+Z / [) # ®a:()) + Ed1(92,, ))} 7i(da).

i>1

If, in addition, Condition (3.7) holds, then
da(L(2),CP (w1, ma,...)) < 2X7 (1 + 2log™ M){T1 + T},

where
Ay / Es’a(dﬁ)do(oz,ﬂ)> (do);
T o= D0 | B (100(0) ~ ualD)] + 2min(Of (1), ea(D))ds (O @) ) ilde).

i>1

Proof. First, we simplify the bound in (3.30) to the form
19as(€ + 8a) = Gar (1 + )
< salf) (J6(0) = n(D)[227 (1 + 2log™ \o)
244 (€, 7)26(T)A; (1 + Tog* A1)
< (N2 1+ 210g™ X)) (J6T) = n(D)] + 241 (€, EM)) . (4.7)

valid for &, € H with |£] < || if Condition (3.7) holds. To bound bg(Z,N) in
Lemma 4.1, note that =(I') = Z"*(I') + £%*(I') + E{a}, so that by (3.31), (4.7)
and the definition of d;, given in (2.10),
bg(E,N) < 20, 11 + 2log™t AT, if (3.7) holds,
so(f) D) [ Eod (E5*,29%([)é,)p(dcx), otherwise.
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Bounding ¢g(=,N) by applying (3.31) and (4.7) again, and combining these
bounds with (4.1), completes the proof.
u

In both versions, there are two components to the bounds, corresponding to the
elements bg(=, V) and cg(Z2,N) of Lemma 4.1. The first measures the effect of
shifting the points of Z%* onto «; the second measures the closeness of ©7, to ®,;.
Thus, for approximation to be good, the decomposition N of = should be chosen
in such a way that the points of =Z%% are close to « and that the P*-distribution
of =™ is not very different from L(E).

Remark 1. Estimation of the final term can at times be helped by the observation
that, for £ = & + & and n = n; + 15 in H, then

€(T) = n(D)] + 2min{¢(T), n(T) }di (€, m) )
< &) + () + [€(T) = ()] + 2min{&, (1), 7 (1) }da (€, m)- - (4-8)

It may also be useful to condition on the extra information contained in some

random element Y, constructing ©7Y such that

£OF) = P €[ 2(0) +3{a) =1, Y =)
to match some @Y. with £(®Y,) = L(Z). Note also that

(1€7(T) = @ai(T)| + min (O, (T), Bai(T)) 1 (O, ) ) < [0 — Deall,  (4.9)

where || - || applied to a measure denotes the variation norm.

Remark 2. The dy—distance depends on the choice of the underlying metric dy
on ', and it is therefore not surprising that dy appears in both 77 and 75, in the
latter through d;. In practice, an appropriate choice of dy has to be made. The
standardization which seems most natural, where possible, is one which, loosely
speaking, gives the process = or the approximating compound Poisson process
unit dp—intensity; this has something of the flavour of the traditional idea of a
limiting process. If ' is a proper subset of some IR¥, and if v is uniform over T,

one could for instance take

do(, ) := min{1, ()"/*|o — B}, (4.10)

where i = p(T)/v(T). However, for k > 2, it may be preferable to choose the
scaling differently in different coordinate directions, if these have a particular,
practical meaning.

Theorem 4.2 is very flexible, but rather abstract. We now consider some special
settings, in which the various terms are more easily understood.
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4.1 Fixed neighbourhoods of dependence

For each « € T, let {a}, NS, N and N¥ be a partition of T, such that sets of
the form {(«, f); # € N} are product measurable in I' x I, and let

2= ) BB} Bi= ) E{Ble EMi= ) E{BY,

BENS BEND BENY

so that 2%, E%® and =% are the point processes resulting from restricting the
process = to N2, N° and NY, respectively. A typical choice is to take N2 =

B(a,r(a)) \ {a} and Ng = B(a,r'(a)) \ B(a,7()), where B(a,r) denotes the
r—ball in T" with centre «, r and ' are continuous functions, and r(a) < r'(«) for
all @. Then

E:E{a}+58,a+5b,a+5w,a

defines a family N of decompositions as in (2.1), with Z"® = E»@ 4 %@ In many
cases, there is a natural way to make the partitioning in such a way that =*¢
is strongly dependent on Z{a}d,, =% is weakly dependent on ={a}d, + =5,
and the set N° = I'\ {{a} U N3 U N¥} acts as a ‘boundary’ between =% and
="+ much as in traditional ‘blocking’ arguments. The intensity measures defined
in (2.4) are now expressed as

imi(da) = P*(E(Ng U{a}) = i)pu(da)
= E{IE{a}UN]) =i]E(da)}, pae.,

by (2.3).

Theorem 4.3 Let N and m;, 1 > 1, be defined as above, and assume that, for
each o € I" and © > 1, point processes OF; and ®¥, are defined on a common
probability space in such a way that

£(O%) = PYE" € - [Z(V;U{a}) = i) (@) = LE").
Let do(N) = sup,er,gens do(a, B). Then

dy(L(Z),CP (71,79, ...))
< e™® {dy(N)EE(T)

+E (/ I[E(NY) > 1]E(da)> + /FP(E(Ng UN; U{a}) > 1)p(da)

T

+Yi [ (Ponr) # a5(0) + Bd (@3, 91) m(da)}.

1>1
If, in addition, Condition (3.7) holds, then
dQ(E(E), CP (71'1, o, . . ))
< 2ATH(1 + 2log™ \) {Qdo(/\/’)E </ E(N;)E(da))
T
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+E< /F (N, )E(da)) /F ES(N? U N* U {a}) p(da)
# 30 [ £ (1850) - 050 + 2050, 05005 22) m(da)}.

Remark. Note that, in both bounds, the final and most complicated term is zero
if Z»* and Z%* + Z{a} are independent.

Proof. The proof is much as for Theorem 4.2, and involves estimating the right
hand side of (4.1). By (2.2), it follows that

E(/gaEEda> Z/Ega + i0y) i(da)
I

i>1

3
< [Bl+)_|c®
=1

where B is as introduced in (4.3), and C, defined in (4.4), can be split into the
sum of

oW = E{ /F {ga(E™ + 22 4+ (E9(T) + Z{a})da)
ga(EP 4 (2(T) + ={a})5)} E(da)} (a.11)
oo E{ [ so(z5+ @) + Stapzw )}

—Z /FEga( % +1ibq) mi(de), (4.12)
and
0B .— Z /{Ega EYY +i0q) — Ego(E+i04)} mi(da). (4.13)

i>1

The contribution from | B| can be estimated as for Theorem 4.2; note that, by (2.2),

/F Eody (2, 2(D)6,) p(da) = E ( /F dl(ES"’,ES’a(F)(Sa)E(da))
< do(N)EZE(T),

and similarly

[ [z} uie) < awe ([ =wizae).

Furthermore, with g, = gy or g, as appropriate, for any f € F, the quantities
|CM)| and |C®)| are easily bounded using Lemmas 3.1 and 3.5, and the remaining
element C® is bounded in the same way that C was bounded for Theorem 4.2,
by means of (3.31) and (3.30).

[ ]
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Remark. The fixed neighbourhood structure above can be easily adapted to the
restriction =4 of the process = to a subset A C I'. For a € A, take N!(A) :=
N! N A for | = s,b,w, and compute the corresponding bounds. There are some
differences when N! ¢ A, and integrals, including that implicit in the definition
of A (4) := m1(A) — 2my(A), are to be taken over A and not I'. However, if the
process = is reasonably homogeneous, and if A is not such that edge effects play
an important part, then the bounds thus obtained will not be greatly different
from those for = over the whole of I'. In particular, bounds of similar accuracy
then apply to the total variation approximation of £(Z(A)) by the corresponding
compound Poisson distribution on Z,, for any ‘reasonable’ set A.

4.2 Countable T

If ' is countable, = can be written in the form = = . X,d,, where the X, are
non-—negative integer valued random variables. Taking v to be counting measure,
p(a) simply becomes EX,, and the Palm measure P is given by the mixture of
conditional distributions

P() =) IP(Xq=1)P(E € - | Xo =1)/EX,.
1>1
This makes possible some further simplification of the bounds in Theorems 4.2
4.3. We give a variation of the latter theorem, in a form reminiscient of the ‘local’
version of (compound) Poisson approximation for random variables by Stein’s
method.

For each «, let N2, N® and N¥ constitute an arbitrary partition of T'\ {a}.
Define

Usi= Y Xg=E(N}); Za:= Y _ Xs=E(N2); Wai= D Xg=E(NY),
BENE BEN? BENY
(4.14)
so that Z(T") = Xo + Uy + Zo + W, for each «. Then the intensities u;, ¢ > 1, of

clumps of size ¢ for the approximating compound Poisson process are given by

ipi(@) = P*(Xo + Uy = )EXq = 3 IP(Xo =1, Uy =i — 1),

=1

and m;{a} = pi(a) for each ¢ > 1 and a € T. We now prove the following
theorem.

Theorem 4.4 If I' is countable, and = = Y . Xo0q is decomposed as above,
then

do(L(Z),CP (71, m,...))

<™ {dO(N YEZ(T)
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+Y E(Xol[Zo > 1))+ > P(Xo+Ua+ Zo > 1)EX,

a€cl a€el

+3 N EIB{XI[Xo + Uy = i] | 2} — B{XoI[Xo + U, = i]}\} .

€l i>1
If, in addition, Condition (3.7) holds, then
dg(ﬁ(E), CP (71'1, ™o, . . ))

<2011+ 2log™ A) {2d0(N) Z E(X.Uy,)

acl

+3 E(XaZa)+ Y E{Xo+Us + Za}EXa}
acl acl’
+1.65X; Y 0N T B B{XoI[Xq + Uy = ]| 2"} — B{XI[Xo + Us = i]}|.

a€cl’ ¢>1

Proof. All but the last elements in the bounds are direct translations of the

corresponding terms in Theorem 4.3. The final term comes from an alternative
bound for C® of (4.12):

COI =373 (B{ga(E" +i00) Xal [Xa + Un = i}

a€cl’ ¢>1

— B{ga(E" + i)} E{ X[ Xo + Us = i1} ‘ (4.15)

<3 |B [gn(E + i ){Xad [Xa + Ua = ] = B(Xal[Xa + Vo = )}
<SS llgall Y E ‘E{Xal[Xa + U, =] |22 — B{XoI[Xo + U, = i]}‘ .

acl’ i>1

Taking g, = g or g, as appropriate, and using Lemmas 3.1 and 3.5(i) respec-
tively, gives the required bound.
|

There are other variants of the final terms, analogous to those proved in Barbour
and Chryssaphinou (2000, (2.8)—(2.11)) for random variable approximation.

4.3 Janossy densities

In the case of fixed neighbourhoods but uncountable I'; the final element in the
above bounds still has an analogue, if the Janossy densities j, : [ — [0, 00) with

respect to v™ exist for the process =Z; this in particular requires the process to
be simple. To simplify the notation, let o@; = aq,...,q;, da; = day ... da;, and
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similarly for 3;, dB;, %;, and d7,. Then the density of the mean measure 7 of = is
given by

pla) = Z/n !]n+1 an)V" (da,)

n>0
B ;/Nwm n! Z/ oy '3n+m+1(am,a B V™" (dty, dB,).
For each o € I" and ¢ > 1, define the clump densities by
ffe) (4.16)
- ;/(N%Ng)n% (Ng)i1 (1_11),Jn+z(az 1o, B " (day_y, dB,).

This definition is equivalent to (2.5), and, as before, Y., iu; (o) = p(a).

We give a version of Theorem 4.3, in which the contribution from C® of (4.12)
is expressed in these terms. To do this, we need to introduce the conditional
density of a clump of size [ near «, given the configuration of = on NY;. this is
to be interpreted in the sense that we can find a function ¢ : I' x H — IR, with
the property that

E{/Fg(Ew“ (Ua + 1)b4, @)E(da) } Z/UE{Q EY+ibq, a)Pi(a| =) v (da),

i>1

(4.17)
for all bounded measurable functions g : # X I' = R. For each [ > 1, m > 0,
a €l and 3, € (NVY)™, we define

Wi(a|By) = (4.18)
ZT>0 r! f(Nb =1y 1 f(Ns yi-1 ]l+m+7‘(a a1, ﬂma ir) T_H_l(dal 1, d?r)
Zn>0 ! f(Nb)" Zt>0 ; stU{a})t Gt (@t By T )V (d, d7,,)

and show that this ¢ satisfies (4.17).
If there are in total n = k+m+r+1, k,m,r > 0, points in the process, then

there are (k;Tn“L:fl) ways to divide these points into subsets consisting respectively

of k, m, r, and 1 points. Hence, for any measurable non-negative function A :

H — R,
E[h(Z)]

- > za (@0 (d5)

n>0

SR OESD (k metrf 1) /F/ e / (Nwym

k>0 m>0 r>0
/( (k+m+r+ 25%‘*’25@‘*‘25%—#-5

25

bl




jm+r+k+1 /Bm: Vs ak: a)ur—}—m—i—k—I—l (dﬁr: dﬁma daka da)

) 1 1
= joh(0 /Zk,/m g%/(w)m;ﬁ

k>0

m k
/ h(z 0oy + 3 08, + D Oa; + 0a)
(Vo) =1 j=1 j=1

jm+7‘+k+1 (ﬁm: 77"7 7% a)yr—l—m—{—k—i—l (ﬁr: dﬁmv dakv dOZ)

In particular, for the function [, g(E*® + (U, + 1)da, @)Z(der), which equals zero
if Z =0, we get

E U 9(E"* + (Ua + 1)da, a)E(da)]
/F = m'/wmgrl/m Z%/SZ_Q(i%j—%(iJrl)&a,a)

]m—|—r—|—z+1 (ﬂma ’Yra aZ: OZ r+m+z+1 (dO{Z, d’Yra dﬂm’ dOé) (419)
Now [ =i+ 1 in (4.18) yields

E{/g(”“’“ (v, +1)(5a,a)E(da)}
— /Zm'/wngz% (i + 1)8q, @) (i + 1)1 ([ B,,) Zl!

m>0 >0 j=1

1 - -~ 73 = n( j~ J~ m 3
[ el B ) i 47, (0B do)
( (

Nom 5o B (vguteny
_ /Z (i + 1) E[g(E™® + (i + 1), 0)tbi1 (2| Z"%) v (do)
>0

= Z / (29 4 i8,, ) (a|Z°)]w (da),

and so (4.17) is indeed satisfied.
This enables us to bound |C®| as follows:

€] = |BL[ gal=" + Wat Db, Eda]—;/ [9a(E + i6,)m(da)
< X [ 1Blga(2 + i8] = Elan(2 + 80 pse)| v (do)
- Z [ 1Blga(27 + i6.) {11(alE7) = (e} (da)
< z [ ol Elial=2) = pita) I (da. (4.20)
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Using Lemmas 3.1 and 3.5 to bound the contribution to (4.1) which results, we
obtain the following theorem.

Theorem 4.5 Let N be defined as for Theorem 4.3. Suppose that the Janossy
densities for = ewist, and are denoted as as above. Let mi(da) = pi(a)v(da),
i > 1, where p; is as in (4.16), and let (| B,,) be as in (4.18). Then

dy(L(Z),CP (71,9, ...))
<™ {do(N)EE(T)

+E (/P I[E(Ng) > 1]E(da)> + /FP(E(NZ UN; U{a}) > 1)p(da)
+Zi/F(EI¢i(a\E”’“) — pia))) v(da)}-

i>1
If, in addition, Condition (3.7) holds, then
dQ(E(E), CP (771, o, .. ))
< 2ATH(1 + 2log™ \y) {QdO(N)E (/ E(N;)E(da)>
r

+E (/F E(Ng)a(da)) +/FEE(N3uN;u{a}) u(da)}
1165023 /F (Elvs(a| 2°%) — () v(da).

i>1

4.4 Comparing compound Poisson processes

The theorems given above presuppose that the point process = is to be compared
to a compound Poisson process CP (71,73, ...) which is derived from the prop-
erties of Z and the decomposition family N in a particular way. If one wants to
compare instead with a perhaps nicer compound Poisson process, it is useful to
be able also to bound the distance between the distributions of two compound
Poisson processes. Now, if = ~ CP (1, 7y, ...), the Palm characterization (3.2)
implies that

E{Zl/rg(E—i-léa,a)m(da)—/Fg(E,a)E(da)} =0

>1

for all bounded g, including the functions g; and g,y found by solving the Stein
equations (3.1) and (3.8) appropriate to CP (py, p,, - - .) for bounded functions f,
so that

CP (p1, pyy - )(f)—CP (1, 709, .. )(f) = E{Zz/rga(zﬂaa)(m(da) - p,(da))},

I>1
(4.21)
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for g, = g5 or goy. Thus we can bound the dy—difference between CP (py, po, .. .)
and CP (my,m,...), using (2.9), if we can control the right hand side of (4.21)
for all f € F. This leads to the following theorem.

Theorem 4.6 In general, we have the bound

ds(CP (py, Py - . .), CP (701, 702, ..)) (4.22)
< oP F)Z{um (D) + min{m (L), p(D)}dy(m1, py) }

If l(dp,/dv) () is decreasing in | for each o and if Y ;o *{m(T') + p,(T")} < oo,
then -

dy(CP (py, Py, - - ), CP (71,72, ...))
< 1.6507 ?|(I) — p(D)| + 207 (1 + 2log*(01/2)) D 1(1 = 1)|m(T) — py(T)|

(1= o+ (D)1 - e ™) _ (4:29
x (min{fr(m PO 5) +2 3 minfm >pl<r>}cil(m,pl>>,

where 7 1= 3 s lmy, pi=3 5, lp; and 01 := p;(T') — 2p,(1).

Proof. For (4.22), if g; solves the Stein equation (3.1) with p for =, then it
follows from Lemma 3.1 that ||gs|| < s2(f)eP®) for all f € F; from Lemma 3.2, it
also follows that that the function o — g;(§ + 0,) is do—Lipschitz with constant
at most so(f)[~1eP™) for all f € F,1>1 and & € H. Hence

1301 [Lanle + 18, (de)  pta)

>1 YT

< eP( ) Z {[‘ﬂl(f’) — pl(F)‘ + min{m(r), Pl(r)}dl(ﬂ'la pl)} )

>1

and (4.22) follows from (4.21).
For (4.23), let the functions g,; be those solving the Stein equation (3.9) for
CP (py, po, - - -), and write

St [ gurle + 162 (m(de) = pi(da)

>1

- 3 / (9as (€ 4 162) — gay(€ + 62)} (mi(da) — py(de))

1>2

n / g (€ + 60) (7 (d0) — p(dar)). (4.24)
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Taking the second term first, observe that, for each £ € H and f € F, the function
a > gof (€ + 6,) is uniformly bounded by sy(f)(1 A 1.6507 /%) by Lemma 3.5(i),
and is dp—Lipschitz with constant at most

sa(f) {1 noyt(l—e ) (1 +log (1 T f|£|)>}

ii), so that

| ot + ) - b(da))‘

6507 /|#(T) — zx(r)\ ) (4.25)
+(1—e ) (o7t + (1 + €)Y min{#(D), p(D) }di (#, p).

For the first term, treat each | > 2 separately. For each £ € ‘H and f € F, the
function

by Lemma 3.6
1

f)

@ = gar(€+16a) = gas (€ + da)
is uniformly bounded by

so(f)l—1) {1 A207" (14 210g*(01/2))}
by (3.30), and is do—Lipschitz with constant at most

25(f) {1 Aloy'(1—e ™) (1 o (1 T j-l\f\))}

by Lemma 3.6(ii), so that

75 [ (Gurl€ 5 182) = gug(€ + 60)) (milda) ~ pi(da)

>2

< 207" (1+2log"(01/2)) Y101 = 1)|m(T) = py(T)| (4.26)

1>2
21— )07 + (14 [€)™) Y2 P mindm (D), pu(D) s (s, 1),
1>2
Now take = ~ CP (1,9, ...); then, from (4.24) — (4.26), and using the fact that

E{(1+E) "} < ﬁa —e ),

we have

55 |EX1 [ 90 18,)(m(do) = py ()

>1
< 16507 *|#(T") = p(I")|

+207" (1+2log*(01/2)) > 1(l = 1)|my(T) — py(T)|

+(1 =) {or ! + (D)1 — e )}

X (min{fr( ), p(D)}dy (7, p) +ZZI min{m;(T), l(F)}Czl(ﬂ'laPl)>,

>2
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from which the theorem follows.
n

Remark. In the case of random variables, when card(I') = 1, the terms involv-
ing d in Theorem 4.6 are zero, and the bound reduces to that of Barbour and
Chryssaphinou (2000, CPA 1B with ¢ = ¢; = 0, (2.15) and (2.19)), apart from d-
ifferences in the constants. For Poisson process approximation, m;(I') = p,(I') =0
for all [ > 2, so that the [-sums are empty. If also w(I') = p(I'), this gives the
same bound as is implied by Barbour, Holst and Janson (1992, Theorem 10.F).

Corollary 4.7 In the general bounds of Theorems 4.2 — 4.5, CP (m, mo,...) can
be replaced by CP (py, py, - ..) if w(L') is replaced by p(I') and if the bound in (4.22)
is added. If also l(dp,/dv)(c) is decreasing in | for each o and if Y, *{m;(I') +
(D)} < oo, then CP (w1, s, . ..) can be replaced by CP (py, py, - - -) in the second
bounds of Theorems 4.2 — 4.5, if Ay is replaced by o1 and if the bound in (4.23) is
added.

5 Examples

5.1 Declumping

Suppose that 2 = ) [ 1,0, is a simple point process on a finite or countable
set I', in which the points tend to occur in clusters. In this section, we discuss the
approximation of a ‘declumped’ version of =, as in Arratia, Goldstein and Gor-
don (1989). If a declumping can be simply defined, approximation can be made
by way of a Poisson process approximation on a larger carrier space, leading to a
different measure of closeness of distributions. Here, we show that approximation
is then also possible with respect to our usual dy—distance, and show that the
bounds are similar in form.

To best illustrate the comparison, we suppose that = can be expressed in the
form 2, = Y o1 D i Haida, Where Io; = 1 is interpreted as the event that a
cluster of size 7 occurs at «, I,; = 0 that there is none; hence, for each «, at most
one of the I,; can take the value 1. To reach such a form, some approximation
has usually already been made, moving all points of the a—clump onto the one
representative «, and the error involved corresponds to the first element in the
bounds in Theorems 4.2— 4.4. We then approximate =, by a compound Poisson
process CP (1,79, ...) with m;{a} = E[l,;] for i > 1 and a € T.

First, as in Arratia, Goldstein and Gordon (1989), we construct another point
process on I' x IN by letting = = Y aer 2is1 Laibai- For each (i) € I' x IN, let
B(a,i) C T x IN be a set containing («, 7). Set

by = Z Z E[1]E[14;]

(1) €T XN (B,5)€ B(v1)

b= ), > Ellalg)]

(@,d) €I IN (8,7)€ B(ai),(8,7)# (i)
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by = ) BlBlalo{Is;(8,4) ¢ Bla, i)} - Bl

(0,0)ETXIN

Let Po (Arxn) denote a Poisson process on I' x IN with intensity A, ) = E[l,;]-
Using Stein’s method for Poisson process approximation, with error bounds as
given in Theorem 10.A in Barbour, Holst and Janson (1992), we get

dTv(E(é), PO ()\FX]N)) S b1 + bQ + b3. (51)
Then, since =, is a function of é, it follows immediately that
dTv(E(E*),CP (7!'1,7!'2,...)) S bl +b2+b3 (52)

also.
This bound is simple and effective, as long as (L) is not too large. Otherwise,
one can take the metric dy on I' X IN defined by

do(( 1), (8, 5)) == {Cli;(a,g), iii i ;

and apply Theorem 10.F in Barbour, Holst and Janson (1992) for Poisson process
approximation in the do—metric; this gives

dy(£L(Z), Po (Arxn))
< (by+bo) {TA2XT (1 + 21ogT(A/2))} + b3 {1 A 165072} | (5.3)

where \ := 7(I') and ds := dy(I' x IN).

As discussed in the introduction, this is not the same as approximation in
the metric dy(I"), which is preferable for practical application. To obtain approx-
imation in dy(I'), we write E, = » . Xodo as for Theorem 4.4, with X, :=
Y i1 ilai = Ei{a}, and we define a decomposition family N by setting Z5* := (),
and hence Z* := 5, — X,0,. Let {I§}, (B,7) € ' x IN} be distributed as

{Is;, (B,7) € I x N} conditional on I,; = 1, and defined on the same probability
space, enlarged if necessary, as =. Set

O =) > jIfids O = Yoo iIges Op= > jIgios

B#a j>1 (8,7)€B(as),B#a (8,3)¢B(a,i)
Goi = Y jlgibs ®hii= D dlgds Phii= Y jlsdp
5 i1 (8.4)€B(asi) (8.0)¢B(as)

then we have £(©7,) = L(E0* |Z5*(T) +Z{a} = i) and L(P,;) = L(Z,), and also
@7, =07 + 077 and &, = ®L, + ®2,. Now note that cg(Z,N) of Lemma 4.1 is
just

Z Z iE(Iai) ‘E{ga(egi + 7;504) - ga((a;’il + 7;504)} (54)
a€cl’ ¢>1

+E{ga(®gil + 7;504) - ga((btlxi + 7;504)} + E{ga((btlxi + 7;504) - ga(q)ai + Zéa)}‘ :
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Replace by, by and b3 by the modified quantities

o= ) > iE[IE[L);
(i) T XN (B8,5)EB(a,i)

o=y D GE[laidgl;
(i) ELXN (8,5)€B(ayi),fa

by o= Y JE|E[l;|0{ls;; (8,5) ¢ Bev,i)}] — E[L]|-

a€l j>1

Then, if Condition (3.7) holds, the first and last terms in (5.4) are bounded using
Lemma 3.5(ii) by

s2(f) (b3 + 07) {1 A 2A7 (1 + 21og™ (M\1/2)) } 4

the second, by the argument for C® in Theorem 4.4 and by Lemma 3.5(i), is
bounded by sa(f)b} {1 A 1.65)\1_1/2}; as usual, \; := (") — 2m3(T"). Hence the

bound on dyo(T")(L(E.), CP (7, me,...)) is the same as in (5.3), but with 4 in
place of b;, 1 <[ < 3, and with \; in place of A\. Thus, with these differences,
approximation in dy(T") for the process =, can also be simply established. However,
if Condition (3.7) does not hold, the bound is very much worse, because of the
factor e™ ™) appearing in the general bounds, and the usual declumping approach
is clearly better.

Note that, in this example, there is no mention of the underlying metric dy.
This is primarily because all points in a cluster have already been moved together
in the definition of the ‘declumped’ process =,. However, there are also the terms
corresponding to 75, which in principle involve dy; here, the bounds are calculated
as if the strongest possible metric, the discrete metric, were being used.

5.2 Runs
Let Yi,...,Y, be independent Be (p)-distributed random variables. Define = :=
> Inb,, where I, := ;:01 Y,11, and where we suppose that the sequence is

‘tied together’ as a circleso that Y,,,, =Y, and Y1, =Y, _,41 fora > 1. A point
of = at « indicates that a run of k£ 1’s starts at «; this run may be overlapped by
others at either end. In this example, it is easy to declump, by taking the first
index in a cluster of overlapping runs as its representative. However, it is just as
easy to apply Theorem 4.2 directly.

If I, = 1, define a decomposition family N by setting

o

B
2= S [[L+D) ][ (5.5)
%) «

B<a = >a =

if TT_, Y, = 0, with the circle convention employed in all sums and products;
and otherwise set = +d, := Y 5, dg. In either case, set Z"* := = —=**. Thus,
if the last 0 before o occurs at a — [ and the first 0 after a at o +k — 1 +m, with
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Im>land m+1—1=i<n-—k, then Z5* +§, = ZZIZZL ds is the cluster

containing «, and =" is determined by the values of Y3, 3 ¢ [a —1,a+k—1+m]
together with the 0’s at o — [ and at o+ k — 1 + m. It is now easy to check that
p{a} = p* for all o, and that

i(l—p)?p~! if1<i<n—k-1;
PrEC) +E{a} =) =S il —p)p'" ifi=n—k (5.6)
pnk if i =mn,

so that, in particular, w;{a} = (1 —p)?p***~! for 1 < i < n—k — 1. This suggests
approximation by CP (p,, py,...) with p,{a} = (1 — p)?pF*tiL for all i > 1,
satisfying [(dp,/dv)(«) decreasing in [ for each « if p < 1/2. Using the notation
in Theorem 4.6, we have o1 = np¥(1—p)?(1—2p), p{a} = p* = E(E{a}) = 7{a}
for each o, 7; = p; for 1 < i < n—k —1 and dy(m;, p;) = 0 for all ;. Hence
the contribution (4.23), required in addition to the bound of Theorem 4.2 by
Corollary 4.7, reduces to

207 (1 +2log"(1/2)) Y UL = |m(T) = py (1)), (5.7)

1>2

in which the sum is of order O(n?p™1).

To tackle the terms 7 and 75 in the second bound in Theorem 4.2, we couple
@7, and ®,; by also conditioning on the value of [ as defined above, taking @7 :=
£ and letting @, be derived from indicators (Ys, 1 < B <n), where we set Y =
Yj for 8 ¢ [a—1,a+k—1+m] and choose Y; ~ Be (p) for § € [a—1, a+k—1+m)]
independently of one another and of the Yz’s. Thus ©7/(A) = & (A) for all
Ac{1,2,....n}\[a—l—k+1,a+k—1+m] and E|O"YT) L. (T)| < (2k+i)p".
Furthermore 7} ([a—1—k+1,a—1], {a+k—1+m}) = 0, so that d, (O, &) = 0.

Hence, for the second bound in Theorem 4.2, we have
T, < n(l—p)*) i(2k+i)p™ " + 0’
i>1
= n(2k+ 1)p* + 2n(1 — p) 'p* Tt + n?p".

For T7, we must first specify dy. By Remark 2 following Theorem 4.2, a natural
choice is to take dy(c, 8) := (p¥|a— B3| A1) (with |-| measuring the shortest distance
on the circle), so that = has unit dy—intensity. Then direct calculation shows that

Ee ( / Es’a(dﬂ)do(a,ﬁ)> < 21— p) 2 4 FL ey,
T

and hence T} < 4np?*1(1 — p)=2 + np". Combining the various terms, we find
that

dy(L(Z),CP (py, py,...)) < 2p° {(1 +2log" o1)/{(1 = p)*(1 - QP)}}
x {2k +1+2p(3—p)/(1—p)* +O(np" %)}
= O (kp*{1+1log* (np*)}/(1 - 2p)),

uniformly in p < 1/2.
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5.3 Sequence matching

Assume that Xi,...,X,, and Yi,...,Y, are sequences of independent random
variables taking values in a finite alphabet A. Let the X; and the Y; be sampled
from the distributions 7 and v, respectively, and let

0<p:=) Taka <1, (5.8)
acA

be the probability of a ‘match’ between X; and Y}, 4,7 > 1. Define the index set
F={a=(aq,a2):1<a; <m,1<ay<n}, and set

Ia = I[Xal = Yaza Xa1+1 = Ya2-|—17 ... ’Xal-l—k—l = Yaz-l—k)—l]’

so that I, = 1 if a matching subsequence of length £ between the two sequences
starts at a; we use the torus convention, much as in the previous example, to
avoid edge effects. Then define the point process

== Zlaéa

of starting points of matchings of length £.

We start by defining a decomposition family A'. As with much of the argument
below, this can be done in a fashion similar to that used in the runs example. Let
B < « be interpreted as 81 < a; and [ < an. If I, =1, set

a B
25 = > s[4+ > 5 14

B<a,la1—p1|=laz—B2| =B B>a,la1—B1|=laz—p2| T=a

if H;-n:m_{;"’"}_‘] I Xo,4+j = Yap4j] =0, for all J=0,...,min{m, n} — k, and other-
wise set Z5% + ¢, 1= Z;n:lri{gnn}f‘] Oa+j, for any J such that the product above is
non-zero. In either case, set =2" := = — =%,

As in the runs example, P*(Z%*(I") + =Z{a} = i) is given by (5.6), but now
with p as defined in (5.8) and with n replaced by min{m, n}. Furthermore, p{a} =
p* and m;(a) = (1-p)?p**1, 1 <i < min{m,n} —k—1. The discussion following
(5.6) concerning approximation with a compound Poisson process with the more
convenient p measures, defined by p,(a) = (1 — p)?pF™*~L, i > 1, rather than the
;s is valid here as well. The extra contribution we need to add in the ds-bound,
according to Corollary 4.7, is the same as in (5.7):

20, (1 +2log*(01/2)) Y Ji(i — 1)|my(T) — p,(T)), (5.9)
i>2
where o1 = mnp”*(1 — p)%(1 — 2p), and the sum is of order O (mnp™in{mni-1),
We couple ©7,, and ®,; by also conditioning on the value of /, defined as follows.
If I, =1, we let | be such that o — [ + 1 is the starting position of the cluster
containing «, which if the cluster size is ¢ means that 1 <1 <14, X,, | # Yo, 1,
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Xont+j = Yooty 3 = 1,...;k+1—1, and Xo, y4k+i # Yoo t+k+i; and that
ES® 4 6y = Zg;fj_ilﬂ 85. We then take ©7! := =" and let ®.; be derived from
{(X5,,Y5,), 1 <81 <m,1 < By <n}, where we set X5 = Xp, and Yy, = Y, for
Bj ¢ [aj —l,a; + k+1i—1], and choose X} and Yy, from the distributions 7 and
v, respectively, for 8; € [a; — [, j + k + i — ], independently of one another and
of the Xj,;s and Yj,s. Let I be defined as I, but determined by the Xjs and Y;'s
rather then by the X;s and Y;s.

Let Ag; = [aj—l—k+1,0;+k+i-1],j=1,2,and A:={{1,2,...,m}\
Agiay x{{1,2,...,n}\ As,.is}- Note that for ¢ > min{m, n} — 2k either or both
of Ag; i ‘overlaps itself’, so that Ay, ;; =" and A = (). To bound T5, defined in
Theorem 4.2, we first note that ©7' and @', are identical on the set A. Then, by
(45),

(05 (F) — 0, (D) + 2 min(03; (1), 4, (1)d1 (057, ®4;) < O4i(F\ A) + 24,(L\ 4).

)

Now we divide I" \ A into four subsets:
azl {ﬂ /Bl 6Aa1,’tlaﬂ2 6Aaglla|a1 ﬂ1| = |a2_ﬂ2|}7

azl ={B:01 € An iy, B2 € Agyigs |01 — Bu| # e — Bal},
azl {ﬂ ﬂl € Aal,zl;ﬂZ §é Aaz,ll} and Fazl = {ﬂ ﬂl ¢ Aal,zl;ﬂZ € Aaz,ll}

Furthermore, let

L 9 . L 2. _ ——
q1 = E TaVas 42 = E TalVe; T+ = I(?eaj(rya where Ya = Talj‘l/p’
acA acA

and note that py, > ¢; > p?, with equalities if and only if 7 = v is the uniform
distribution. Then it follows that

max{ZaeATa(Taya)k,ZaeA vo(Tava)¥} < fy+p , if ge Fazl,
Ell4|I, =1]p* < { o, if 3 €I?
4, if § €T3

azl’

a,t,l?
(arguments for this can be found in for instance Mansson (2000)), and

E[O7(T'\ A) + ®L,(T'\ 4)] <
Tl + 02l /0" + (T3 las /o + [ITa

zl|+|F

Letting (2k + i)~ = (2k + i) Amin{m, n},
Dot = 2k +14) ", |Toul = (2k+i) ((2k+14) —1),

Dol = Qk+0)~(n— 2k +19)7), [T = (2k+19)"(m— (2k+1)7),
so that

T, = O (mnp®(k>y% + nke /p* + mkes /p* + (m +n)kp")) . (5.10)
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Letting

ki, . B _ _
R AL e

1, otherwise,

we get, as in the runs example,

E° ( [z @i, ﬂ)) <
r
2pk+1(1 — p)_2 + min{m, n}pmin{m’"}_kl{a:(lyl)}(|m —n|+1),

and hence T < 2mnp**+1(1 — p)~2 + min{m, n}(jm — n| + 1)p™nimn} By this
inequality, Corollary 4.7, (5.9) and (5.10) we get

da(L(Z),CP (py, py, .- .)) = (5.11)
O ((k*4% + nkgt /p* + mkqs /p* + (m 4 n)kp*){1 + log* (mnp®)}/ (1 — 2p))

uniformly in p < 1/2.
An alternative to the above approach would be to use fixed neighbourhoods
of dependence and Theorem 4.3. If, for each o € I', we define

N; = {(ﬁl,ﬂQ) € F\{Oj} =k < o — 61 = Qg — ﬂQ < k}:

Ny ={(B1,8) e D\{{a} UNS} : |1 — Bi| < 2k — 1 or |ag — fo| < 2k — 1},
Ny ={(f1,62) €T : Jon — ] > 2k — 1 and |z — 5| > 2k — 1},

we achieve a bound of the same order as (5.11), but with somewhat larger con-
stants. For this bound to approach zero, and thereby verifying a good approxi-
mation asymptotically, there are restrictions on the relative growth rate of m and
n, and on how different the two distributions 7 and v are allowed to be. These
restrictions are unnecessary stringent, as observed in Neuhauser (1996). Barbour
and Chryssaphinou (2000) carry out compound Poisson approximation for the to-
tal number of, possibly overlapping, matching subsequences of length £, using an
approach with fixed neighbourhoods. They also use ideas from Neuhauser (1996)
in order to get less restrictive conditions for the approximation bounds to tend to
zero. Using fixed neighbourhoods, a similar refinement could be achieved here as
well.

5.4 Rare sets in Markov chains

Let Y := (Y;,t € Z) be an irreducible, positive recurrent Markov chain with
stationary distribution ¢. Fix sy € Z, preferably with v := 1{s¢} relatively
large, since it is to be used to define a sequence of regeneration points; and a
subset S; C Z\{so} of actual interest, which is ‘rare’ in the sense that 1, := 1(S})
is small. Take I' = {1,2,...,n}, and define

E:= ) I[Ya € Silba,

acl
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the point process of visits to S;. Erhardsson (1999), in the more general context of
Harris recurrent Markov chains, combines regeneration arguments, coupling and
Stein’s method in elegant fashion to show that £(Z(I')) can be approximated in
total variation by a compound Poisson distribution on Z,. Here, we consider do—
approximation of the distribution £(Z) of the whole process, when Y is stationary,
by way of Theorem 4.2 and couplings. As in Remark 2 following Theorem 4.2, a
natural choice for the metric dy is given by

do(c, B) := min{1, ¢ |a — B|}. (5.12)

To use Theorem 4.2, we first need to specify a decomposition family N. Define

ot = r2T(Y) :=min{j > 0: Yoy, = so};
T = To (Y):=min{j >0:Y, ; = s}, (5.13)

so that a — 74~ is the index of the last visit of Y to sy before o and « +Ts°(‘;+ that
of the first visit after a;, and both are equal to « if Y, = s43. Set

==Y "IV € Si)lla— 18 < B <o+ 78], (5.14)
BeT
B#a

and set =" := Z — =% With this decomposition, from (2.4), it follows that

zw,{a} = ’lﬁlp Z I[Y; € SI]I[_TSJ_ <5< T;)(;+] =1 ‘ YE) € Sl) . (515)

j=—a+1

Note that, because of edge effects, the m;{a} are not equal for all «, but that
imi{a} is mostly close to

ip; == Y P (Z IY; € SiI[-10~ <j<tofl=i|Yp € Sl) : (5.16)

JEZ

suggesting approximating the stationary point process = by CP (py, py, - ..) with
p; = p;v for v counting measure on I'. To shorten the remaining discussion, we
shall restrict ourselves to the case where o1 := n(p; — 2p2) > 0 and ip; decreases
with 4. This is so, for instance, if S is a singleton, when ip; = ¥,ip*~!(1 — p)? for
p = Pg,(7(S1) < 727), provided that p < 1/2; here, 7(S1) denotes the first strictly
positive index at which S; is visited, and Ps, denotes probability conditional on
YE) € Sl.

We consider two couplings of Y-processes which can be used to realize O,
and ®,; of Theorem 4.2, in each of which we also condition on the values [ and m
taken by 7%~ and 7" respectively. In the first of them, very much as in Erhards-
son (1999), we build the coupled processes Y and Y ® out of three independent,
realizations of Y -processes: a stationary realization Y?, a realization Y© con-
ditional on Y; = s, and a realization Y1) conditional on Y, € S, ToT =1,
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Te=mand Y g I[Vs € Sillla—1 < B < a+m]=1i Weset

Yt(Sl), iftel'Nja—1,a+ml;
=0y iftela-1); (5.17)
YO, ifte (a+m,n

and on 72~ (Y¥) = I, 724 (YY) = m' define

vV, iftelnja—1a+m];
VP =y ifte[l,a-1); (5.18)
Y9, ifte (a+m, nl,

for each I',m' > 0. Finally, set

o= Y IV €S0 Rai= Y I[YSD € Silds.
s atm) per

With this coupling, the processes @”m and ®,; are the restrictions to I' of
point processes which consist of left and right hand pieces which are identical
except for a shift, together with middle segments which are different in both length
and measure: the stretch from a—I to a+m is empty in @Z’f’m, whereas the stretch
from o — 727 (Y?) to o+ 727 (Y?) in ®,; need not be. Hence the discrepancy
|@7L™(T) — By ()| consists of a contribution from the differing middle segments,
together with contributions from points of the left and right hand pieces which,
because of the shifts, may belong to I' for one but not both of O™ and ®.;.
The calculations made in Erhardsson (1999, Theorem 4.3) suffice to bound this
contribution to 715 of Theorem 4.2:

ZzZE@gZ(F) — @, (D)|mi{a} < 2ny?{co +c1}, (5.19)

i>1  a€el

where
o= Ey(tot) /o and ¢ := Eg {r0" + 710~

For the remaining elements of Theorem 4.2, it can be shown that

Ty < 207 Y E{[B—allYseSilla—18 <B<a+73t]|V, €S}

a€el’ el
< 2mpicy, (5.20)
where ¢, == Eg, {(r%*)2 + (7%7)2}; and since matched points in ©7™ and &,

are at most a do—distance ¢, max{|l — 7%~ (Y?)|, |m — 72+ (Y"¥)|} apart, it follows
that the remaining contribution to 7, satisfies

23"y mifa}E {min(egi(r),cp J(D))dy(Or,, ® )} < o2 {2c+e1 ). (5.21)

i>1 a€l
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Finally, using (5.15) and (5.16), we compute

ZZ limi{a} —ipi| < e, (5.22)
a€l’ i>1
so that, by (4.21) and Lemma 3.5(i), the extra contribution involved in using

CP (py, po, - - -) in place of CP (7, o, ...) is no more than 1.650, /zlﬁlcz.
Putting the estimates (5.19)—(5.21) into Theorem 4.2, it follows that if ip;
decreases with ¢ and p; > 2p, then

< 2071 (1 + logt o1)np?{2(co + 1) + 25 + 2maby (2¢0 + ¢1)} + 1.650, 2 eathy,

with o1 = n(p1 — 2p2) < np;. The estimate is small provided that the quan-
tity 11 log(ny1){1 4+ ni} is small, and that ¢, = Eg {(727)% + (72:7)%} < oo
in contrast, the Erhardsson (1999) bound on the approximation to £(Z(I')) only
involves the first moments of the hitting times being finite.

The element of order ny? log(niy;) arises from the general shift of points in-
volved in matching ©7, to ®,;, and is the major contribution whenever E(Z(T")) =
niy is large. A more appropriate coupling, in which points are generally matched
exactly, without shifts, can eliminate it. The construction is as follows: Y(®) is
taken simply to be Y%, and, with [, m and i as before, define

, Y ) ifternja—1a+m];
Y= v® iftela—1); (5.24)
v, ifte (a+m,n,

where now (Yt(?’) t < a—1)is a reversed Y -process starting with ch?i)l = So,

coupled to (Y}, t < o — ) so as eventually to coincide, and (Y( Jt>a+ m) is

a Y -process starting with YCS +)m = 50, coupled to (Y}, t > a4m) so as eventually
to coincide. Let the coupling time of the reversed Y -chains be denoted by 7,
that of the forward chains by 7. Then set

o= Y YN € Sildg @aii= Y I[YS) € Sildg
Ber Ber
Bé(a—l,a+m)

This again generates the right distributions, but now ©74™(A) = ®,,;(A) for all
AcCT\[a—T",a+T7], so that

1®0i — O™

<ZXHY €S| la-T <f<a—-I+Ia+m<pB<a+T)
BEZ

VP € S)la-T <B<a+ T+]} .
Integrating out the conditioning on the values of 7%~ and 7%, it follows that

E|0%; — ®uil| < 1 (e + B + 787 | 224D) + E{a} =i}) ,
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where c3 := wl_l{eil) +e +ef) +e(,2)} and where eSLl) and ef) are respectively the
expected numbers of visits to S; by coupled Py~ and Pj—chains before coupling,
and eV and ¢® are the corresponding quantities in the reversed chains; all four
are constant in ¢ and «. Hence

S imi{a} B0k, — ®aill < (c1 + c3)¥.

i>1

Thus the element 2(co+c1)+2n11(2¢9+¢1), appearing in (5.23) as a bound for Ty,
can be replaced by 2(c; + c3).

It remains to be shown that couplings can be found such that cs is not au-
tomatically large when 17 is small. One example can be constructed as follows.
Suppose that Py—and Ps —chains are run independently, and that the coupling oc-
curs at the first time 7" that they are simultaneously in sy. Taking the Ps,—chain
first, consider the set 7 of times at which the Py—chain hits so as given; then 7'*
corresponds to a stopping time for the process C1, Cy, . .. of sp-regeneration cycles
of the P;,—chain, and hence, by Wald’s identity, it follows that e$) = E(TT).
Arguing similarly for the other three pieces, and taking account the parts of the
Py—chains before their first visit to sy, we obtain

C3 S 4E(T+) + cq.
This is enough, provided that E(T*) < oo, which, by Chapter 11.4 in Lindvall
(1992), is the case if Ey[(79:7)?] < 0o and Egy[791] < oo, and if Y is aperiodic.

Better couplings can be expected to yield sharper bounds.
If Y has period r, an argument similar to that above can still be used. Defining

20 =Y "IV, € Si]dp
Berl

to be the s—shift of = on I'; it follows that

0 n
G(EW,E) < Y IYVp, €S+ Y I[Yse S| +s¢,
f=—s+1 B=n—s+1

so that da(L(Z)), £(Z)) < 3stp;. Thus, for a contribution of at most 3(r — 1), to
the bound, £(Z*) can be approximated in place of £(Z), where Z* is constructed
from a Y-process under Py, where 1* is 7 conditioned to that of the r periodic
sets which contains sg. For this process, the argument runs much as above, and
since the chains to be coupled are now synchronized with respect to the period,
the coupling is successful.
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