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1 Background

The fluctuations of traffic low counts in one position can often be regarded
as time independent or at least uncorrelated random variables and the depen-
dency between such counts at different places gives information about the car
flow between the places. This is explicitly or implicitly the basis of much work
on dynamic traffic low estimation. For a background of such estimation we
refer to Cremer and Keller (1987), Nihan and Davis (1987), Bell (1991), Davis
and Nihan (1991), Cascetta et all (1993), Yu and Davis (1994), Hjorth (1999)
and further references given there. However, the use of such estimates in more
complicated traffic structures is not always easy. The presence of traffic lights
violates the time independence of measured fluctuations near the lights since
the traffic streams will then be either highly periodical if the lights are so,
or at least autocorrelated if the lights for example are traffic dependent. If
there are several lights without a synchronised periodicity we have to consider
unsynchronised readings and dependency between both such readings at one
place and at different places.

We also have slow variations in the traffic volumes of the whole network due
to rush hours and more quiet periods in between, which is largely a deter-
ministic effect, and on top of that other more randomly occurring slow vari-
ations affecting measured values in a larger area but not necessarily due to
car movements between the measurement places. We think of such variations
with time periods between about 15 minutes up to whole days. Such slow
variation causes positive covariance or positive regression coefficients between



readings at different places for other reasons than vehicles travelling between
the places. However, under normal circumstances the fast fluctuations will not
be correlated for such reasons. These high frequency variations act as random
deviations from the low frequency levels and, when the traffic counts and the
different traffic lights are all unsynchronised, the natural cause for dependency
between this high frequency part of the counts at different places is vehicles
travelling between the places. A possible source of unwanted dependency at
higher frequencies are traffic lights with matching periods at two measurement
places. We will exclude this situation from our analysis but if this case appears
we can either take the light period as our sampling period or identify the traf-
fic light frequency and filter it out. Operationally we can see if an estimation
method suffers from the problems above by studying estimated parameters of
car movements or other measures of dependency for impossible time differences
such as simultaneous counts at two places where it is impossible to count the
same vehicle.

Both the estimates of vehicle movements and the uncertainty analysis of such
estimates must consider the influence of all these possible effects. In Hjorth
(1999), an analytical analysis of uncertainty was given for the situation with
uncorrelated fluctuations at the origin. Here we will use a different analysis in
order to incorporate all other sources of variation.

2 Data case

As our example we use a measurement program at the Industrigatan in Linko-
ping during four weeks (41, 43, 44, 45) of 1997. The traffic system is shown in
Figure 1 where four measurement places are also indicated as circled numbers.
Industrigatan has a structure with many crossings and traffic lights and a few
roundabout. It is a link from north east to south west which was once the
natural road for long distance traffic going through, but is now more like a
main link for traffic to industries and commercial areas. Only traffic flow in
one direction, from north east to south west was registered so our streams
are going from measurement places with lower numbers to those with higher
numbers except that no traffic moves from place 3 to place 4 since both are
outgoing streams. In each position the passing times of individual vehicles
were registered. In the processing of the data we have turned them into counts
of the number of passing vehicles in rather short time intervals. The counting
intervals are not synchronised with traffic lights and there is no common fix
periodicity in the lights, so in our modelling we will regard the lights as having
random phase compared to one another and to the counting period.
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Figure 1: Map of Industrigatan

The measured traffic is seldom congested but since both the route choices, the
travelling times, the traffic volumes and the traffic light administration may
vary with the hour of the day, we have sectioned our analyses to consider such
effects, and have estimated traffic parameters and filters for the different time
periods.

3 The model

We will use a stochastic process approach to the series of traffic counts. We
may in principle think of these counts as functions of a more basic model where
the traffic is regarded as a random (point) process in space and time. Our
series of counts becomes a discrete time process which is as multivariate as the
number of places where counts are made, but we will only need the two-variate
projections of this process since we are comparing the counts at two places at
a time. Our model is non-stationary due to the varying traffic volume over
the day which is a combination of a deterministic and a stochastic variation
both regarded as slowly varying. Using the language of signal processing we
want to filter out this low frequency part of our process in order to use the
remaining high frequency part as information about parameters describing
vehicle movements. This filtering also removes much of the non-stationarity
and we are left with a series of high frequency variations which can be treated
as approximately stationary over well defined time periods. This supposes that



also the traffic low patterns are stationary over the same periods.

Let X;(t), t =1,2,..., denote traffic counts in position i aggregated to some
rather short time interval § and with ¢ enumerating the intervals. Let a sub-
stream of the flow past ¢ go on to another position j and use the counts X; ()
and X;(.) together in order to study this sub-stream. Define X;;(t—u,t) as the
(unobserved) number of vehicles moving from 7 to j and counted at ¢t — v and
t respectively. Also introduce X;(¢) as a notation for the counts at ¢ up to and
including time ¢ and X; for all the counts at ¢ without any time restriction.

Consider a time section where the distribution of route selection and travelling
speed is approximately stable. Let p;;(t — u,t) denote the probability that a
randomly selected vehicle counted at the position ¢ at time ¢ — u will also be
counted at j at time £. By a stable route and speed distribution we mean that
pij(t—u,t) are stationary i.e. independent of ¢ during the analysed time period
so that each vehicle can be associated with the same probabilities, otherwise
our method estimates the average distribution. Let

pij(u) = pi;(t — u,t)

denote this stationary value. When there are traffic lights, this assumption
includes the assumption about a random phase between the lights and the
counting intervals.

We have
ZXW )+ Z;(t).

where Z;(t) denotes the counted vehicles at j coming from other sources than s.
Condltlonlng on the flows at i we have E[X;;(t — u, t)|X;(t)] = Xi(t — u)py;(u)
and we may write

ZX u)pij(u) + &(t) + Z;(1), (1)

where €; is the deviation of 7, j-traffic from the conditional expectation. Our
interest is to make inference about the probabilities p;;(u). However, we can
not use this equation as it stands for the estimation. When data from different
weeks and a few hours per day are analysed together we can expect slow varia-
tions in the traffic volumes which may affect all the traffic flows in similar ways
as we discussed in the background section. This may create strong dependency
between for example X; and Z; creating false large values of the probabilities
p if not recognised. For the more rapid variations around the average level, the
high frequency components, we expect no such correlation between traffic from
different sources (except for congested situations when the sub-flows compete



or at synchronised traffic lights which we have excluded). Thus our strategy is
to filter out the low frequency components and then estimate p;;(u) from the
correlated high frequency part of the data.

4 The kernel regression filter

There are many versions of high pass filters but we will use one which relates
to the well-known statistical method of local regression. We first estimate a
local mean m;(t) of X;(t) by a kernel regression where we for each ¢ minimise

QL = 35 R)(Kilt — ) — oy — ufy — w2’ 2)

~

with respect to 3 = (5o, 1, B2)" and take 1;(t) = fo.
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Figure 2: Filter h(u) removing low frequency variation (left) and spectral
weight function for the filter (right), and the autocorrelation function of filtered
white noise (below).

The kernel is chosen as a truncated Gaussian k(u) = exp(—u?/d?), —ug < u <
ug. Defining the vectors u = (—ug, ..., u)", k = k(—uyp), ..., k(up)) and denot-
ing element-wise multiplication as . we find the solution 3 = (X'X) 1 X"(k.
V), where X = (k k.xu k.xu.xu)and Y = (X;(t —ug), ..., Xi(t + up))".
Since only Bo is used as an estimate of m(t) we only need row one and may
see the result as ¥, A(u)Xi(t — u). Subtracting this estimated level from the
observation we get the filtered series



Xi(t) = D h(u)X,(t — u), (3)
u

where h(0) = 1 — h(0) and h(u) = —h(u), u # 0. The filter weights are
plotted in Figure 2 for ug = 50 and d = ug/ V2. The corresponding frequency
domain function is also given in the figure and illustrates the filtration of low
frequencies. Since we sometimes use this filter on uncorrelated data, we also
show the auto-correlation function of the output in that situation. The nega-
tive parts explain a tendency towards negative estimated covariances around
estimated peaks in the cross covariance function which may lead to the same
tendency for (unrestricted) estimated probabilities unless all the probabilities
are estimated together as we will suggest here. Since no traffic light period
was synchronised with our data we were satisfied with the low pass filtering
only, otherwise further filtering might be necessary.

5 Relations between filtered series

We apply the filter (3) to all the measured series. This will change the au-
tocorrelation of the series but will not change the probabilities describing the
relation between counts at different places as is seen from the following com-
putation. From model (1) the filtered process at j can be written

X t):Zh Zpu )Xi(t —u—v) + &t —u) + Z;(t — u))

=Y pijlv Zh J(t—u—0) —f—Zh )Zi(t —u) + > h(u)é;(t — u)

u

=2 _pii () Xi(t —v) + Z;(t) + 5 (1). (4)

We have here removed the “-symbol for components filtered by the kernel
regression filter, this means also for Z;(¢) and ¢;(¢). Under the assumption
that the high frequency variations for Z and X; are uncorrelated, the p;;(.) can
be found from the auto and cross covariances, or equivalently by multivariate
regression of X,(¢) on the X;(t — v). We also see from the relation that the
probabilities p;;(v),v = 0,1, ... define a filter relating the counts at 7 as input
to the part X;;(.) of the counts at j as output. The filter is linear and causal
for each analysed section of data, but this does not exclude non-linearities
when regimes of different traffic conditions are compared since we may then
estimate significantly different such filters. An overall linear such filter would
require the same route selection probabilities and travelling time distribution
to be always valid and this is seldom reasonable in true traffic.
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6 Estimation

The covariance structure of the filtered counts will be estimated from several
pieces of data collected during the same hours at different days. This follows
the standard procedures of analysing stationary processes in the time domain
via their covariance functions. We have between 12 and 20 useful working
days for the different combinations of places and hours. The lower number
is for combinations involving place 1 and at least 16 days are available when
the other places are combined. As before we consider traffic from ¢ to 7. Let
the index d be an enumeration of the useful days. Estimate first the cross
covariances on every piece of data

rij,d(“) = ;Xi,d(t)Xj,d(t — ?})/Td, (5)

where the sum is over t = v + 1,...,7T; and let the auto-covariances be given
by the same expression with j = 4. Since the T, are approximately equal we
take the averages

rij(v) = Z rij,a(v)/ D, (6)

as our estimated covariance functions for the combined data. The auto-
covariances at position 2 and cross covariances between 2 and 3 are given
in Figure 3 and the periodic nature in some of the plots shows how the traffic
light becomes important during some periods but not during other. In Figure
4 we show covariances estimated on individual days together with bootstrap
results for the average covariances as described later.

Define a maximal lag vy and the covariance matrix C' with elements ¢y =
ri(|l — k|) for 0 < k,1 < vy and the vector r;; of cross covariances between
place ¢ and j for the same lags. Then

p=C""ry (7)

gives the unrestricted vector of estimated probabilities p;;(v) for the corre-
sponding lags. We may also compute the solution restricted to positive prob-
abilities. One such solution is given by minimising p'Cp — 2p'r;; under this
restriction. We made a faster solution by forcing the most negative estimate
to 0 and recalculating p iteratively until all remaining probabilities were posi-
tive. This solution saves time in the bootstrap calculations and will often lead
to the same result.
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Figure 3: Estimated auto-covariance functions of high-pass filtered counts at
place 2 (left) and cross covariances between place 2 and 3 (right) for time
periods 1 (top) to 6.



Unrestricted estimates of p;;(u) are shown as a central line in the bootstrap re-
sults of Figure 5 and the corresponding restricted estimates are given in Figure
6 together with plotted bootstrap results described in the next section. Notice
that the estimates are low for impossible time differences which indicates that
we were successful in eliminating other sources for the covariances than the
car flow between the places.

7 Bootstrap analysis of estimation uncertainty

Every working day gives about the same information and can be considered in-
dependent. Our estimation and subtraction of mean levels by the kernel filter
are also made on each day independently of the others. Thus, in the covariance
estimates we are averaging over as many independent daily estimates as there
are useful days. This makes it very natural to re-sample at a high level and not
go down into the series of counts and re-sample there by some of the methods
(block, residual or spectral re-sampling) that have been studied for processes.
Readers interested in such process re-sampling may consult for example Davi-
son and Hinkley (1997), Efron and Tibshirani (1993), Hjorth (1994), Kunch
(1989), Nordgaard (1996) where bootstrap methods are discussed.

If the days d = 1,2,..., D are available for the covariance estimates and for
the estimates of the probabilities p etc., then in every bootstrap run we draw D
days at random and independently from the set d = 1,..., D. This produces a
vector k* = (kf,..., k)" of nonnegative integers summing to D and describing
how many times each original day is drawn in the bootstrap sample. Our
bootstrap covariance estimates are then given as

D
ri(v) =Y kirija(v)/D. (8)
d=1
Such bootstrapped covariances are illustrated in Figure 4.

From these covariances the probabilities p;;(v) are estimated just as in the orig-
inal estimates and by simulating this we get an illustration of the uncertainties
for the estimates. We have made 499 such bootstrap simulations of each case.
(This number splits the probability distribution into 500 pieces with the same
expected probability 0.002.) In Figure 5 we give one example of such bootstrap
results for unrestricted estimates and in Figure 6 the corresponding bootstrap
results are given for positively restricted estimates. In both illustrations we
draw a central line connecting the original estimates and we also draw two
outer lines embracing 90% of the bootstrap distribution. In the plots we use



Figure 4: Re-sampled autocovariances at place 2, upper left, and cross co-
variances between place 2 and 3, upper right. Corresponding daily estimated
covariance functions on which re-samples are based (below). Afternoon, time
period 4.

the trick of randomly disturbed time values in order to show the data without
too much overlap.

In the next section we show several cases of estimates of this type without plot-
ting the individual bootstrap data. Since some of the estimates have skewed
distributions and especially the restricted estimates of low probabilities will
have an atom at 0 the exact interpretation of the 90% bootstrap interval is diffi-
cult to make. We do not state this as a 90% confidence interval although Efron
(1993) has done so by one of his methods in other skewed situations. However,
the bootstrap gives us the order of uncertainty and for the more symmetrical
unrestricted estimates the confidence interval interpretation seems adequate.

8 Results

Each day has been divided into 6 time periods corresponding approximately
to the morning rush, before lunch, lunch rush, afternoon, afternoon rush and
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Figure 5: Bootstrapped unrestricted probability estimates with central line
showing original estimates and with (pointwise) 90% of the bootstrap results
inside outer lines. Traffic from place 2 to 3, time period 4.
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Figure 6: Bootstrapped positively restricted probability estimates, same case
as Fig. 5.
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evening. More exactly we use

Period 1: 05.30 - 08.30,
Period 2: 08.30 - 11.00,
Period 3: 11.00 - 13.30,
Period 4: 13.30 - 16.00,
Period 5: 16.00 - 18.30,
Period 6: 18.30 - 24.00.

Next, we have studied the traffic from place 1 to the places 2, 3 and 4, and the
traffic from 2 to 3 and 4. This gives 5 combinations of origin and destination.
(The combination 3 to 4 is not useful since the measured flows at 3 and 4 are
both leaving the area in different directions.) We have also limited ourselves to
working days mainly because this gives a good basis for the bootstrap analysis
but also because this is from some aspects the most interesting days for a link
dominated by industry and commercial traffic.

The setting of parameters was the following. As time resolution we selected
20 seconds. This was our compromise between noisiness and resolution of
travelling times. The kernel filter (3) was used with uy = 50 which means that
it uses 17 minutes before and after for fitting and subtracting a second degree
polynomial but with a strong down-weighting of the outer ends. The kernel
filter was run on unbroken data sequences for whole weeks before the data
were divided into days and time periods. Thus we have minimised the effects
of boundaries, but at the beginning and the end of the weeks a truncation
of the filter was made so that as much as possible of the same weights was
used. For each studied origin and destination and for each time period we
have estimated the probabilities and bootstrapped the estimates as described
above. A set of such results for unrestricted estimates are plotted in Figure 7 in
a similar way as Figure 5 above with boundaries around the original estimates
covering 90% of the simulated bootstrap distribution, but the individual points
are not given there because of the small scale.

The estimates related to traffic from place 2 are very clear with a well defined
peak as can be seen in Figure 7 for unrestricted estimates and in Figure 8
for positively restricted estimates. The estimates related to traffic from place
1 are more or less dominated by noise. It seems as if the probabilities are
very small and that the vast majority of the vehicles has taken other routes
than past positions 2,3,4. Nevertheless, for the unconstrained estimate the
sum of estimated probabilities from position 1 to 2 (the total route selection
probabilities 3", p12(u)) shows a positive result which is supported by another
499 bootstrap simulations. In Table 1 we give these estimates together with
the standard deviations from the bootstrap. No significant results were found
for the traffic from 1 to 3 or 4 and they are therefore left out.
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Figure 7: Unrestricted estimated travelling probabilities. Limits covering the
central 90% of 499 bootstrap simulations. Traffic from place 2 to 3 left, from
2 to 4 middle and from 1 to 2 right.. Time periods 1 to 6 from above.
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Figure 8: Positively restricted estimated travelling probabilities, as Figure 7.
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The constrained estimates are for obvious reasons biased upwards for small
probabilities and their sum has also a large positive bias compared to uncon-
strained estimates (which we believe are nearly unbiased), so there is no, or
at least not enough, observed compensation for this in the larger estimated
probabilities. A bootstrap study of the true bias is difficult in our high level
bootstrapping because there is no obvious true value of the parameter for the
empirical distribution.

Table 1. Estimated total route selection probabilities from position 1 to 2,
> . P12(u), and standard deviations from 499 bootstrap simulations in paren-
thesis. Unrestricted estimates.

Time period Estimate  (std)
05.30 — 08.30 14 (.10)
08.30 — 11.00 10 (.08)
11.00 - 13.30 09 (.05)
13.30 - 16.00 14 (.06)
16.00 — 18.30 12 (.05)
18.30 — 24.00 15 (.06)

9 Classical uncertainty analysis

It is possible to produce a set of iid estimates of p;;(u) if we skip the averaging
of the daily covariance estimates and instead use the estimates of type (7) on
covariances (5) estimated from each day by itself. Since we have 20 useful
days of data between points 2 and 3 this gives 20 estimated pos-vectors plotted
in Figure 9. Averaging these estimates gives another unique estimated p-
vector. We expect the averaging of covariance estimates (the bootstrapped
unrestricted version) to be more stable than the averaging of 20 p-vectors,
since the inversion of the matrix C could be crucial, but since the data are
rich, both versions turn out to be useful here. Individual 90% confidence
intervals were produced by standard methods for the normal distribution, i.e.
the estimated average p + as/v/D where a is the appropriate value from the
Student’s distribution with D — 1 degrees of freedom (1.73 if D = 20) and
s = s(u) is the estimated standard deviation for the estimates at time u. The
results of this computation for time period 4 and places 2,3 are shown in Figure
9 and the confidence intervals given in one of the sub-plots are only marginally
wider than the corresponding bootstrap intervals, so the two methods give in
fact very similar results.
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Figure 9: Daily estimated p and the average (left), 90% confidence intervals
and estimated standard deviations of the daily estimates (right). Traffic from
2 to 3 in time period 4. “Classical” analysis.

10 Discussion

In the presence of traffic lights the process of traffic counts is like an unsyn-
chronised random process with a strong periodicity and considering the phase
as random it can be modelled as a stationary process during limited periods of
time. This is of course an approximation since the traffic intensity is actually
varying all day, but what really matters is that the route selection probabilities
and the travelling time distribution will stay constant. Since the dependency
and the structure of the data is fairly complex the uncertainty analysis by
classical methods using individual counts would be difficult and based on ap-
proximations. However, the statistical similarity between different traffic days
gives us a sample of highly multivariate data sets, one for each day, which are
both equally distributed and independent by natural assumptions. Thus the
high level bootstrap analysis comes as a natural tool. Of course this is also in
a sense an approximate method, but it does not use any simplified assump-
tions about the inner structure of the data from different traffic days, only
the iid properties of the whole daily data sets. As an example of another and
different application of bootstrap methods to dependent processes in traffic
we refer to the block re-sampling used in Bergendorff (1999). As it turned
out, a classical high level analysis leads to almost the same result as our boot-
strap method. We could not be sure of this in advance, since the estimate is
non-linear and uses matrix inversion and the uncertainties of estimated covari-
ances seem larger than just small disturbances. In retrospect, however, this is
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a positive sign for both methods.

The modelling of counts and filters acting on the counts has many similari-
ties with classical signal processing in other areas such as tele communication.
Not only the high pass filter used as a tool in the estimation but also all fil-
ters described by the probabilities p;;(u) relating upstream data with subflows
downstream are of interest. Identifying filters for different traffic elements is
one way to describe the system with much appeal to communication engineers
and may lead to some new useful understanding. This work is just one step in
such a direction.
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