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Abstract

We study smoothing properties and approximations of time derivatives of time
discretization schemes with constant and variable time steps for an abstract homo-
geneous linear parabolic problem. The time stepping schemes are based on using
rational fuctions r(z) which are A(f)-stable for suitable 8 € [0,7/2] and satisfy
|r(00)| < 1, and the approximations of time derivatives are based on using differ-
ence quotients in time. We first consider the problem in a Hilbert space setting
with a selfadjoint, positive definite, unbounded elliptic operator occuring in the
parabolic equation in which case # = 0, and then extend the results to a general
Banach space with a more general elliptic operator. Both smooth and nonsmooth
data error estimates of optimal order for the approximation of time derivatives are
proved. In case of variable time steps only first and second order approximations
are discussed, and under certain restrictions on the time steps. We also apply the
results in the constant time step case in both Ls and L., norms to fully discrete
methods for the homogeneous heat equation using linear finite elements in space.
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1. INTRODUCTION

We consider smoothing properties of time stepping methods and error estimates
of the approximations of time derivatives in the parabolic problem

(1.1) ur+Au=0 fort>0, withu(0)=uo,

in a general Banach space B, and we also apply the results obtained to error esti-
mates for fully discrete methods based on finite elements for the homogeneous heat
equation in a spatial doman 2 in both L, and Ly, norms.

We assume that A is a closed, densely defined linear operator defined in D(A) C
B, that the resolvent set p(A) of A is such that, with § € (0,7/2),

(1.2) p(A) DEs={z€C;d <|argz| <mz#0}U{0},
and that its resolvent, R(z; A) = (21 — A)~!, satisfies

(1.3) IR(z; A)|| < M|z|™t, forze€ X5, with M > 1,
where || - || is the norm in B.

Under these assumptions — A is the infinitesimal generator of a uniformly bounded
analytic semigroup E(t) = e~*4, t > 0, which is the solution operator of (1.1). It
may be represented as

1
B(t) = — / ¢ ' R(z; A) dz,
271 T
where I' = {z : |argz| = ¢ € (0,7/2), with Im 2z increasing}. In particular
the smoothing properties of analytic semigroups are valid for positive time. More
precisely, cf., e.g., Pazy [15], if v € B, we have, with D; = §/0¢,

(1.4) ID{E()l = |4 E(t)o]| < Ct~|jo]l, fort>0, j>0.

which shows that the solution is regular for positive time even if the initial data
are not.

Let k£ be a time step and ¢, = nk, with n > 1. We define a single step discrete
method to approximate u(t,) = E(t,)v by U™, using a rational function r(z)
approximating e~?, so that U™ is defined recursively by

(1.5) U"=FE,U" ! forn>1, withU°=u,

where Ej, = r(kA), with the rational function r(z) defined on o(kA). We may thus
write U™ = E}v.
We say that the time discretization scheme is accurate of order p, with p > 1, if

(1.6) r(z) —e * = 0(xF*), asz—0.

For example, the backward Euler method given by r(z) = 1/(1 + 2) is first order
accurate and the Crank-Nicolson method, defined by r(2) = (1 — 32)/(1 + 12), is
second order. As another example, the method defined by the (¢, ¢+1) subdiagonal
Padé approximation r(z) = p1(2)/p2(2), where p; and ps are polynomials of degree
q and q + 1, respectively, is accurate of order 2q + 1,

Stability and error estimates for single step methods have been studied by many
authors, see, e.g., Thomée [19] and references therein. For instance, if A satisfies
(1.2) and (1.3), and r(z) is A(f)-stable, with 8 € (§,7/2], i.e., |r(z)] < 1 for
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|arg z| < 6, and (1.6) holds, then, we have, see, e.g., Larsson, Thomée and Wahlbin
[11] and Crouzeix, Larsson, Piskarev, and Thomée [7],

(1.7) U™ = u(ta)|| = | Elv — Etn)v]] < CkP||APv||, for v € D(AP).

To obtain optimal order error estimates for nonsmooth initial data, the stability
of the scheme is not sufficient. However, if we require in addition that |r(c0)| < 1,
then the following nonsmooth data result is valid, see, e.g., [11] and [7],

(1.8) U™ = u(tn)ll = | Efv — E(tn)oll < CEPEP (o]l for ¢, > 0.

The condition |r(co)| < 1 ensures that oscillating components of the error are
efficiently damped.

If |r(c0)| = 1, the discrete method (1.5) is not smoothing. However, Luskin and
Rannacher [12] and Rannacher [16] analyzed modified methods in Hilbert space
which combine a stable method of order p and a few steps of method of order p — 1
with good smoothing properties, and showed nonsmooth data error estimates of
order p. For instance, if one uses the Crank-Nicolson method combined with the
backward Euler method at two time steps, then a second order nonsmooth data
error estimates holds. The results in [12] and [16] are generalized by Hansbo [10]
to the Banach space case.

Let us now recall some results about smoothing properties of time discretization
schemes and error estimates for the approximations of time derivatives of the so-
lution of (1.1). When B is a Hilbert space H and A a linear, selfadjoint, positive
definite, unbounded operator, a smoothing property is shown in Thomée [19] for
stable time discretization scheme with r(c0) = 0, namely

(1.9) |ATU™|| = [|AERv|| < Ot |||, fort, >t;, v€H.

Hansbo [10] extends this result to general Banach space, and shows that, if A
satisfies (1.2) and (1.3), and r(z) is A(6)-stable, with § € (6, 17] and r(c0) = 0,
then (1.9) holds. Hansbo [10] also shows an optimal order error estimate in the
nonsmooth data case for the approximation of the first order time derivative of the
solution of (1.1). More precisely, if r(z) is A(#)-stable with r(co) = 0, then

(1.10) JAU™ — wy(tn)|| < CkPE, P ||, forn>1, wveB.

However, we show in Section 3 that (1.9) is not valid when r(c0) # 0. In the
present paper we shall discuss smoothness properties for A(8)-stable discretizations
under the assumption |r(co)| < 1. These will be based on using difference quotients
in time rather than the elliptic operator A in the discrete analogue of (1.4).

Baker, Bramble and Thomée [4] study finite difference approximations for time
derivatives DJu(t,) of the solution of (1.1) of the form

ma

; 1
(1.11) QU™ = 5 > e U™, forn >ma,

v=—mai

where m1, mo are nonnegative integers. When the operator Qi is an approximation
of order p > 1 to Dy, that is, when for any smooth real-valued functions u,

(1.12) Diu(t,) = Qiu™ + O(kP), ask —0, withu™ = u(t,),
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then the following nonsmooth data error estimate for the approximation Qi of Df
in Hilbert space H is obtained in [4]: If |r(A)| < 1 for A > 0, and |r(oc0)| < 1, then

(1.13) QU™ — Diu(t,)|| < CkPt;®+D| |||, for n >my, v € H.

In our paper, we will again consider the approximation of time derivatives of the
form (1.11). In Theorem 2.1, we show the following smooth data error estimate for
an A(6)-stable discretization scheme,

(1.14) lQLU™ — Diu(t,)|| < CkP||APHiv]|, forn > my, v € D(APH).

For A(#)-stable discretization schemes with |r(oc0)| < 1, we find that the discrete
smoothing property (1.9) holds when we replace A with 8, where 9 is the first order
backward difference operator, i.e, U™ = (U™ — U™ ') /k. It is easy to check that
0’ is an approximation of order p = 1 to Dg . More generally, we show, in Theorem
2.5, that if A satisfies (1.2) and (1.3), and r(z) is A(6)-stable, with 6§ € (d,7/2],
and |r(co)| < 1, then

(1.15) 1QiU™| < Ct571loll, forn > j, v B.

Under the assumptions of Theorem 2.5, we also obtain a nonsmooth data error
estimate similar to (1.13) in a general Banach space.

Let us now discuss some properties of the cofficients ¢, in (1.11). With u(t) = e
in (1.12) we have at t, =0

t

m2
k' = P(eF) + O(kP*9), ask — 0, where P(zx) = Z ez
v=—mi
Using Taylor expansion of e’* at k = 0, we therefore easily find that (1.12) is
equivalent to

(1.16) P(e*) — 27 = O(2P17), asz—0,

where z is allowed to be complex valued.

We also note that (1.11) has the form
(1.17) QiU™ = k™I P(Ey)Epv,
which will be useful in later sections of this paper. _ ‘

We now present some examples of finite difference approximation Q3 u™ of Dju(t»)
for different orders of accuracy. It is easy to check that Q}u™ = Ou™ = (u"—u""")/k
and Qiu™ = (3u™ — 2u"! + Lu"72)/k are two examples of approximations of

Dyu(ty), and (1.16) then reads
Ple®)—z=1—-¢€*—2=0(z%), asz—0,

and

3 1
Pe®) —z= 5—26z+§62z—220(23)7 asz =0,

respectively. Their orders of accuracy are p = 1 and p = 2, respectively.
An example of an approximation of D?u(t,) with p =2 is

Q%un — (un+1 — o + Un_l)/k2,
and (1.16) now reads

Pe*) -2 =¢" —24+e % - 22 = 0(24)7 as z — 0.
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A difference quotient approximating Dju(t,) is given by

1
Qium = %(—1/”3 +6u"t?2 — 120"+ 4+ 10u™ — 3um 1),
which is accurate of order p = 2. The corresponding relation is
1
P(e?) — 3 _
() - 2° = 5
In Section 4, we apply the results obtained in Section 3 for the abstract time
stepping method to error estimates for fully discrete methods. We then consider
the following initial boundary value problem for the homogeneous heat equation

(1.18) up=Au inQ, fort>0,

—e% 4 6e?* —12¢* + 10— 3e7%) = O(z°), asz — 0.

u=0 ondQ, fort>0, withu(-,0)=v inQ,

where Q is a bounded domain in R? with smooth boundary 0Q. We define H® =
H3(Q), for s a nonnegative integer, by the norm

1/2
lolls = llelle = (3 1D%[2) ", where || || = - |1
lo|<s

We assume that we are given a family of finite dimensional subspaces S;, of Ly =
Ly(Q) and a corresponding family of operators T}, : Ly — Sy, approximating T =
(—A)~1, with the properties for some r > 2,

(i) Ty, is selfadjoint, positive semidefinite on Lo and positive definite on Sj,
(i) [1(Tn — T) fIl < Ch**?||flls, for f € H* = H*(2), 0< s <7 —2;
the number r is referred to as the order of accuracy of the family {Sh}.

We now introduce a discrete Laplacian Ay : Sp = Sp by Ap = =T} ! When
Sp C H}(Q), i.e., when the elements of S} vanish on 9Q and S}, satisfies

inf {[lv—xll+hll v (=x)lI} < Ch?[lvlls, forl<s<r,
XEOh

then the discrete Laplacian may be defined by

(119) (Ah¢7X) = _(v¢5VX)5 Vl/’aX € Sha

and A, = =T, " satisfies (i) and (ii).
The spatially semidiscrete problem is then to find up : [0,00) — Sp, such that

(1.20) Upt = Apup, fort >0, with up (0) = vp,.

We now apply our above time stepping procedure (1.5) to the semidiscrete equa-
tion (1.20). This defines the fully discrete approximation U™ € Sy of u(t,) recur-
sively by

(1.21) U™ = Ep U™ forn > 1, where Ey, = r(—kAp), with U° = vy.
In Theorem 3.7, we show an Lo error estimate for the approximation Qf;U " of

Diu(t,) in the nonsmooth data case: if |r(A)| < 1 for A > 0, and |r(c0)| < 1, and
if Vp = Ph’U, then

QU™ — Diu(t,)|| < C(h"t,™/*~9 + kPt;P=9)||v||, fort, >0, wv € Ly.



13

Theorem 3.8 contains a smooth data error estimate: for any stable discrete
scheme and any initial data vy € Sy, we have

1QRU™ = Dlu(ta)ll < C(W |v]rra; + K [vl2pt2) + 1A vn = Ao, for tn >0,

where the norm |- | is defined by |v|s = [|[(=A)*/?v|| = ((=A)%v,v)'/? for s > 0.

As for the Banach space case, we restrict our discussion to the problem (1.18)
in two space dimensions, using approximation in space by piecewise linear finite
elements on quasiuniform triangulations of 2. Under the assumption that r(z) is
A-stable and |r(00)| < 1, and vy, = Ppv, we get the following L, error estimate in
the nonsmooth data case, with £, = In(1/h),

1QLU" = Diu(tn)llz.. < CIEF I 0llnw, + K7 0l2s),  for tn >0,
For any A-stable discretization scheme we also show the smooth data error estimate
1Q3U™ = Diu(tn)llr.. < C(BG]|AT vllwz + KP(|APHo||1) + C||Afop — Aoz,

In Section 5, we return to consider the abstract parabolic problem (1.1) in a
general Banach space with variable time steps. Let 0 = tp < t; < --- <t, < --- be
a partition of the time axis and k, = t,, — t,,_1 the variable time steps. Then the
discrete approximation U™ of the exact solution u(t,) of the parabolic problem at
t,, will be defined in terms of a rational approximation 7(z) of e~#, by the recursion
formula

(1.22) U =E,, U™ forn>1, Ey, =r(k,A), withU°=v,

where the rational function r(z) is defined on o(k;A) for j < n and (1.6) holds.

Variable time steps are particularly useful when the solution changes rapidly
in certain regions of time. Stability results have been considered by, e.g., Bakaev
[2], [3], and Palencia [13], [14]. In the present paper we will consider smoothing
properties of the time discretization scheme (4.1) and the approximation of the
time derivative wu¢(t,) of the solution of (1.1). Before doing this, we show some
estimates for the approximation U™ of the solution of u(t,) of (1.1). Our first
result is the error estimate in the smooth data case: If the scheme is A(6)-stable,
with 6 € (d,7/2], then

U™ —u(ty)|| < CkE ,.|lAPv|| for ¢, >0, where ke = max k;j.

To obtain error estimates in the nonsmooth data case, we introduce the notion
of increasing quasi-quasiuniform grids T in time. Let {7} be a family of partitions
of the time axis, T = {tn, 0 =tg < t1 < --- < tp < ---}. T is called a family of
quasi-quasiuniform grids if there exist positive constants ¢, C, such that

(1.23) ckpt1 < kp < Cty/n.

Further, if ky < kg < --- <k, < ---, we call {T} is a family of increasing quasi-
quasiuniform grids.

For example, if we choose the variable time steps k, = n°k for some fixed s > 1,
with & > 0, then ¢, = k(Z;;l js), and the corresponding family of partitions
{T} is a family of increasing quasi-quasiuniform grids. In fact, it is obvious that
kn/knt1 = n®/(n +1)° > 1/2°. Further, since t,/k = 3°7_; j* > en®*' for some
positive constant ¢, we have k, < Ct,/n for some positive constant C.
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In Theorem 4.4, we show a nonsmooth data error estimate: if {7} is a family of
increasing quasi-quasiuniform grids, and r(z) is A(f)-stable and |r(oo)| < 1, then
U™ —u(ty)|| < CKkEt P|v|, fort, >0, veB.

In order to approximate the time derivative u;(t,) we use the variable step first
order approximation

Um — Unfl
kr, ’
Assume that r(z) is A(f)-stable, and that k;, 1 < j < n is increasing, then we
have the following error estimate in the smooth data case
IOU™ — Dyu(ty,)|| < Ckyl|A%v||, fort, >0, v € D(A?).

Under the assumptions of Theorem 4.4, we have the following smoothing prop-
erty

(1.24) oun =

lou™|| < Ct;Mv||, fort, >0, veB
and the nonsmooth data error estimate
lIOU™ — Dyu(t,)|| < Ckut;%||v]|, fort, >0, wve€B.

We also consider an approximation of the time derivative u;(t,) by means of the
second order backward difference quotient
Un — Unfl Unfl _ Un—2

(1.25) 0°U™ = 4, 0U™ + b,0U™ ! = a, +b, ,
kn kn—l

an = (an + kn—l)/(kn + kn—l); b, = _kn/(kn + kn—l)-

This is a second order approximation of u:(¢,) in the sense that it is exact for
polynomials of degree 2 and it is easy to check that for smooth u we have

gzu(tn) = ut(tn) + O(ki + k?zfl)a as kp,kn—1 = 0.

For this approximation of u;(t,) we show smoothing properties and error esti-
mates in both smooth and nonsmooth data cases.

In Section 6, we give some numerical examples to illustrate our theoretical results.

By C and ¢ we denote large and small positive constants independent of the
functions and parameters concerned, but not necessarily the same at different oc-
currences. When necessary for clarity we distinguish constants by subscripts.
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2. SMOOTHING PROPERTIES AND ERROR ESTIMATES IN BANACH SPACE

In this section, we discuss smoothing properties of time stepping methods in
the general Banach space situation and show smooth and nonsmooth data error
estimates in the approximation QU™ of Dju(t,) in the case of constant time steps,
where U" is defined by (1.5) and u(t,) is the exact solution of (1.1).

We first show that (1.9) is not valid for a scheme with r(co0) # 0. In fact, if
B is a separable Hilbert space H and A is a linear, selfadjoint, positive definite,
unbounded operator, we have, by spectral representation,

tal|AER|| = tu||Ar(KA)*|| = sup |nAr(A)"| = o0, for fixedn > 1.
A€o (kA)

For example, if
1-(1-0)\
1+6A

we have |r(A)| < 1 for A > 0, and r(o0) = (1 —6)/0 # 0. It is easy to check that
r(A) is accurate of order p = 1. Another example is the so called Calahan scheme
defined by

1
(2.1) r(A) = , with 3 <6<,

A V3, A 1
2.2 AN)=1——"—— - Z5(——)% withb= (1 + =).
22) r) T7on 6 Tgpn) c MRe=50+ )
One can show that |r(A)| < 1 for A > 0, since r()\) is a decreasing function on

(0,00) and

V3

1 1
o) =1—2 -l 1551

A simple calculation shows that this scheme is accurate of order p = 3.
This above argument uses that A is unbounded. When A is bounded with
maximal eigenvalue Amax and |r(o0)| < 1, we obtain instead

(2.3) tol|AER|| < Cmax(1l, kAmaxe™ ™).
In fact, it suffices to show
n|Ar(A)"| < Cmax(1, kAmaxe "), for A € o(—kAy),

which we will prove now.
Since r(A) = e~ + O(A\?) as A — 0, we have that, for Ay small enough,

(2.4) [r(A)] < e, for0< A< A, with0<c<1.
Thus
ndr(\)|* <ne™™ < C, for 0 < A < Ao.
For large \, we have, since |r(c0)| < 1, that
(2.5) [r(A)] <e™¢, for A > Ao.
Therefore,
n|Ar(N)|"* < n(kAmaz)e” " < CkApaze ™ for Ag < A < Edmax-

Together these estimates complete the proof of (2.3).
In the application to the fully discrete case using quasiuniform triangulations, if
we take A = — Ay and E? = r(—kAp) in (1.9), where Ay, is the discrete Laplacian
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defined by (1.19), we get, noting that Amax = O(h~2), where h is the spatial mesh
size, see, e.g., Luskin and Rannacher [12],

(2.6) to||AER|| < Cmax(1, kh™2e™°").

This shows that the estimate (1.10) is not valid for A = —Ay, since in this case the
bound of ||ApU™|| will turn to co when h — 0 for fixed k and n. Note, however,
that kh~2e~°" decreases exponentially as n grows, so that max(1,kh~2e~°") = 1
after some steps. Our numerical example will illustrate this.

Before we study the smoothing properties of the discrete method (1.5), we will
show an error estimate for the approximation (1.11) of the time derivative DJu(t,,)
in the case that the initial data, and hence the solution of (1.1), are smooth. Recall
the error estimate (1.7) in approximating the exact solution u(t,) by U™, which
shows that for v € D(AP), the error estimate has the optimal order of accuracy.
Similarly we find in the following theorem that if v € D(AP17), then the error
estimate for the approximation of Dju(t,) has the optimal order of accuracy.

Theorem 2.1. Let u(t,) and U™ be the solutions of (1.1) and (1.5). Assume that
A satisfies (1.2) and (1.3), and that r(z) is accurate of order p > 1 and A(0)-stable,
with 6 € (0,7/2). Let j > 1 and assume that Qf; be an approximation of D{, which
is accurate of order p. Then, there is a constant C such that, if v € D(APT7), we
have

IQLU™ — Diu(ty)|| < Ck?||APHu||,  forn >m,.
For the proof we write, by (1.17),

QLU™ - Dju(ta) = = (P(By) Ev — (—kAY E(ta)v).

ki
With
(2.7) Gn(z) = P(r(z))r(@)" = (~z)’e™"?,
our result will follow from
(2.8) |G (kA)A=PHD || < CKPTI | for n > my.

Before we prove Theorem 2.1 in a general Banach space, we consider the Hilbert
space case and assume that A is a linear, selfadjoint, positive definite operator. By
spectral representation, (2.8) may be written as

(2.9) |Gn(/\)| <O for A € o(kA).

Since o(kA) C [0, 00), it suffices to show (2.9) for A > 0, which we will now do.
First we consider small A. By (2.4), we have

n—1

= () =) Yo ryrte

(2.10) |r()\)" —emmA

.
Il
<}

< CnXPHlee(r=DA < ONP for 0 < A < ).
Further, with A\¢ possibly further restricted,
(2.11) |P(r(X)) — (=A)| < CAPH 0 for 0 < A < Ao
In fact, with 1 + 2 = e*, or A = In(1 + z), we have, by (1.16),
(2.12)  P(1+2) = P(e*) = 0(V) = O((In(1 + z))?) = O(2?), asz — 0,
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which implies that P(z) = O((z — 1)7) as  — 1, and hence P'(z) = O((z — 1)771)
as £ — 1. Thus, Taylor’s formula shows that, for 0 < A < A,

[P(r(V) = P(e )| = P'(&)(r(\) = e™)| < Cléx = 1P IAPH < OAPH,

where £, lines between r()\) and e~*, and where we have used above the obvious
estimate |y — 1] < |r(\) —e ™ +|e”* = 1] < CA for 0 < X < Ag. Together with
(1.16) this shows (2.11).

Thus, by (2.10) and (2.11),

IGaN)| = [(P(r(N) = (=0)7)rN)"™ + (=X (r()" —e™™)
< ONTI for 0 < A< Ag.
For A\ > )g, we have, noting that P(r(\))r(A)"™ = Y72 c,r (N with n > my,

IGaN)] = [P(r(N)r(N)™ = (=3 e™™| < C+ X < OMH,

which shows (2.9)

We remark that estimates similar to (2.4), (2.10), and (2.11) also hold in the
Banach space case treated below, with A replaced with z and |z| < R, |argz| < ¢
for arbitrary R and ¢ € (0,0).

We now turn to the proof of Theorem 2.1 in a general Banach space. We need
the following lemmas, cf., e.g., Thomée [19].

Lemma 2.2. Assume that (1.2) and (1.3) hold and let r(z) be a rational function
which is bounded for |argz| < 4, |z| > € > 0, where ¢ € (0,7/2), and for |z| > R.
Then, if € > 0 is so small that {z;|z| < e} C p(A), we have

1
r(A) = r(co)] + — r(z)R(z; A) dz,
274 J yurFuyR
where ve = {2;]2| = ¢, |argz| < ¢} , TF = {z|argz| = ¢,e < |2| < R}, and
7B ={z;|z| = R,¢ < |argz| < 7}, and with the closed path of integration oriented
in the negative sense.

Lemma 2.3. Assume that (1.2) and (1.3) hold, let ¢ € (0,7/2), and, j be any
integer. Then we have for € > 0 sufficiently small
1

AE(t) = 2_7m/ ] e " 2 R(z; A) dz,
YeUl'e

where v. = {2;|z] = €, |argz| < ¥} and T = {z;|argz| = ¥, |z| > €}, and where
Im z is decreasing along v. UTL'.. When j > 0, we may take € = 0.

Proof of Theorem 2.1. With G,,(2) given in (2.7), it suffices to show that, for A
satisfying (1.2) and (1.3),
(2.13) 1Ga(A)A=FH) | < C.
In fact, with A also kA satisfies (1.2) and (1.3) since, for z € X,
IRz kA | = K~ (kT — 4)~)| < K~ M|k~ = M|,
Hence (2.13) applied to kA yields the desired bound.
By Lemma 2.2 we have, with ¢ € (0,0),
. 1 .
P(r(A))r(A)rA~PH) = — P(r(2))r(z)" 2~ P R(z; A) dz,

2mi YeUTRUyR
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and here, since the integrand is of order O(|z|7?=7~1) for large 2, we may let R
tend to oo. Using also Lemma 2.3 we have

(2.14) Gn(A)A~(HI) = Zim / Gn(2)2~ P R(z; A) dz.
YeUle

Following the proof of (2.9), we find
(2.15) Gn(2) = O(2P17), asz—0, |argz| <.

Combining this with the fact that 0 € p(A), we have that the integrand in (2.14)
is continuous at z = 0, so that we may let ¢ — 0. It follows that

. 1 .
G(A)A-(H) = 1 / Gn(z)2~ P R(z; A) dz.
271 T
We now estimate the above integral. Again using (2.15) and the fact that 0 €
p(A), we find, for 7 small enough,
[Gn(2)R(z, A)l| < C||P*7, for|2] <7, |argz|= 4.
Further, using (1.3) and (2.7) as well as the boundedness of r(z) and e~** on T,

1Gn(2)R(z, A)|| < (C + IZIj)ﬁ, for [z| 27 |argz| =14
Thus
|G (A) A=+ || < /0" CpP+ip=(v+i) gp 4 C/:O(C + pj)ppféjﬂ <C.
Together these estimates complete the proof. O

We now turn to a smoothing property of an A(f)-stable discretization scheme
with |r(c0)| < 1. Before doing this, we show that QU™ defined by (1.11) can be
expressed as a linear combination of 87U™” for some integers v. We have the
following lemma:

Lemma 2.4. Letj > 1 and Qf;U” be defined by (1.11). Then there exist constants
oy, —my +j < p < me, such that
. m2
QUU"= > U™, where U= U"-U"")/k.

u=—mi+j

Proof. We introduce the translation operator J: U™*t! = JU™. Noting that, with
P(z) =32, cva”,

v=—mi
. m2
QLU= Y ¢ JU"=PJ)U",
v=—mai
we associate with this difference operator with the rational function P(z). We
observe that the operator d7U™* corresponds to the rational function P(zx) =
zH(1 —x71)7, since

Ko Uurtt = (I — J~ Y Jrun = P(J)U™.
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Thus we only need to show that there exist a, such that
m2
(2.16) P(z)=(1—21) Z a,zh.
p=—mi+j
But by (1.16) we find PY(1) = 0 for 0 < I < j — 1, which implies that P(z),
and hence 2™ P(z) has the factor (1 — )7, that is, there exist a polynomial P(x)
of degree m; + my — j such that 2™ P(z) = (1 — z) P(x). Denoting P(z) =

g ™27 gy x% for some constants By, we get that there exist some constants a,,
such that
mi+ma—j me
2™ P(z) = (1 —x)’ Z Brzk = (1 —2)7 z Qo™i
k=0 p=—mi+j
which shows (2.16). O

Theorem 2.5. Let U™ be the solutions of (1.5). Assume that (1.2) and (1.3)
hold, and r(z) is accurate of order p = 1 and A(6)-stable with 8 € (6,7/2], and
|r(o0)] < 1. Let j > 1 and assume that Qi is an approximation of Df, which 1s
accurate of order p. Then, there is a constant C such that,

lQLU™ < Ct;7||v]l, forn>mi, we€B.
Proof. By Lemma 2.4, it suffices to show
(2.17) 107U < Ot |loll,  forn > j,
which we shall now do. In this case 7U™ = k=7 P(Ey)E}v for P(z) = 279 (z —1)7.

As in the proof of Theorem 2.1, we first consider the case of a Hilbert space H.
We then need to show that, for n > j,

(2.18) [P(r(A\)r(N)"| = [r(\)™ 7 (r(A) = 1) < Cn™7, for A >0, n>j.
For small A, using (2.4) and 7(A\) =1+ O(\) as A — 0, we have
(2.19) [r(A\)" 7 (r(\) = 1))| < CMe ™™ < Cn9, for0< A< A, n > J.
For large A\, we have, by (2.5) and the stability of (),

Ir(\N)* 7 (r(\) —1)7| < Ce ") < Ce™™ < Cn™3, for A\> X, withn > j.
Together these estimates show (2.18).

We now turn to the proof in a general Banach space. We show that

[P(r(A)r(A)" || = [Ir(A)" 7 (r(4) = )| < Cn™? forn > j.

As in the proof of Theorem 2.1 this then also holds with A replaced by kA, and
thus shows the result stated.

Since r(z) is A(f)-stable with 6 € (4,7/2], and |r(c0)| < 1, we have by Lemma
2.2

r(A)" I (r(A) = 1)7 = r(c0)" ¥ (r(o0) — 1)1
1 . )
+ — r(2)" 7 (r(z) — 1) R(z; A) dz.
2mi yeUDRUyR

Clearly |r(o0)| < e~¢, with ¢ > 0, so we have, for n > j,

[r(00)" ™7 (r(00) — 1)7| < Ce™" < Cn7.
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To bound the integrals over the three components of the path of integration, we
first fix R > 1 large enough that |r(z)| < e™¢ for |z| = R and hence

[ L rE)" () = 1 R(z A)dz| < Cen L el < o,

r |zl

For the other two components of the path of integration, since 0 € p(A), we may
let € tend to 0, it suffices to bound the integral over I'ff. But by (2.4) and since
r(z) — 1= 0(z), as z — 0, we have

1 ; ; B , ;
H—/ r(2)" I (r(z) — 1) R(z; A) dz < C/ e ™ pi~tdp < Cn~I.
27 FOR 0
Together these estimates complete the proof. O

We remark that when |r(oo)| = 1 with 7(c0) # 1, then the conclusion of Theorem
2.5 is not valid. For example, let us consider the Crank-Nicolson scheme, with
r(oo) = —1. Assume that A is a linear selfadjoint, positive definite, unbounded
operator with a compact inverse in Hilbert space #, and A has eigenvalues {A;}32;
and a corresponding basis of orthonormal eigenfunctions {¢;}?2,. Then, with
v = ¢;, we have, noting that 7(c0) = —1,
tn||OU™|| = nlr(kA)" ' (r(kA) — 1)v| = n|r(kX;)" ' (r(kX;) — 1)] = 2n, asj — occ.
which implies that there does not exist a constant C' such that

ta||OU™|| < C||v||, forn >0, v€H.

However if r(c0) = 1, the conclusion of Theorem 2.5 holds in special cases: Let
us consider the (2,2) Padé scheme,

_l/\_,_L)\Z
2.20 N = 2° 127
(220 r) L4+ 32+ 5227

We show that in this case ¢,||0U"|| < C||v||. In fact, for this it suffices to show
(2.21) [nr(A\)""t(r(A\) = 1)| < C for A > 0.

For small A this follows directly from (2.19) and it remains to consider large .

Noting that |r(A)| < e=A™" for A > )¢, with constant c, see, e.g., Thomee [19,
Lemma 8.2], we have

Inr(N)™ 1 (r(X) = 1)] < C(nA™ e =D < ¢,
which shows (2.21).

Our next result is an error estimate in the nonsmooth data case. The estimate has
optimal order of accuracy for ¢, bounded away from zero, but contains a negative
power of ¢, on the right. Comparing with the error estimate (1.8), we find that ¢,,?
has been replaced by ¢,777 in our theorem. The proof in the Hilbert space case

can be found in Baker, Bramble, and Thomée [4]. Here we extend the result to a
general Banach space.

Theorem 2.6. Let u(t,) and U™ be the solutions of (1.1) and (1.5). Assume
that (1.2) and (1.3) hold, and r(z) is accurate of order p > 1 and A(6)-stable with
0 € (6,7/2], and |r(o0)| < 1. Let j > 1 and assume that Qf; is an approrimation
of D{, which is accurate of order p. Then, there is a constant C such that,

1QLU™ — Diu(ty)|| < CEPt; ®+D|jw|l,  forn >my, v € B.

where r(00) = 1.
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To prove this theorem, we need the following lemma, cf., e.g., Thomée [19].

Lemma 2.7. Assume that the rational function r(z) is A()-stable with 6 < /2,
and that |r(co)| < 1. Then for any ¢ € (0,0) and R > 0 there are positive C and c
such that, with k = r(oo),

[r(2)® — k™| < Clz|"te™ ™,  for|z| > R, |argz| <, n > 1.
Proof of Theorem 2.6. As above we now need to show, with G,,(2) given by (2.7),
|Gn(A)]| < Cn=@PH),
We set
Gn(2) = Gu(2) — P(k)K"z/(1 + 2);
note that G, (c0) = 0. Since |k| < 1 and [|A(T + A)~'|| < 2M, we have
IP()R™ AT + A) 1| < 2M|P(R)K"| < O~ 0+,

and it remains to show the same bound for the operator norm of G,,(A4). We may
now use Lemmas 2.2 and 2.3 to see that

Gn(d) = /  Cu(aR(z ) d

T 2w

Note that Gy, (2) = O(1) as z — 0 and 0 € p(A). Thus the integrand is continuous
at z = 0, so that we may let € tend to 0. We therefore have, with T' = { 2; |arg z| =

Y },v €(0,0),
G(A) = % /F Go(2)R(z; A) dz.
We write
Gn(2) = (P(r(2)) — (=2) I)r(2)" + (=2)/ (r(2)" — e %)) — P(k)K"2/(1 + 2).

Using the estimates (2.4), (2.10), (2.11) in Banach space case, and [1/(1+ z)| <1
for Re z > 0, we have for |z| <1,

IGn(2)R(z, )| < (ClalPtie el 4 |2 (Cnlzfrtteeml=]) ) |2~ + Cr" < Cn7#

Further, we rewrite

Gnlz) = (P(r(z))r(z)" - P(n)n") + P(r)&" /(1 + 2) — (—2)ie ™=,
By Lemma 2.7 and since |1 + z| > |2| for |Rez| > 0, we get, for |z| > 1
IGa(2)R(z, Al < (Clel e + k72| ) 2] + ClzP e
SO P2 2+ [z 7).
Thus
1G(A)] < /0 “Cnridp+ /1 T On I (57 g dp < O,

Together these estimates complete the proof. [l
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3. FurLry DISCRETE SCHEMES WITH CONSTANT TIME STEPS

In this section we study fully discrete schemes of the initial boundary value
problem

(3.1) ug=Au in§, fort>0,

u=0 ondQ, fort>0, u(-,0)=v inQ,

where (2 is a bounded domain in R? with smooth boundary 0.
The spatially semidiscrete problem is then to find up : [0,00) — Sj, such that

(3.2) upt(t) = Apup, fort > 0, with up(0) = vp,

where Ay, : S, — Sp, is the discrete Laplacian defined by A, = =T}

We now apply our above time stepping procedure (1.5) to this semidiscrete equa-
tion (3.2). This defines the fully discrete approximation U™ € S}, of u(t,,) recursively
by

(3.3) U" = EpUn ! forn > 1, where Eyj, = r(—kAy), with U° = vy,.

We shall first derive Ly error estimates in the approximations Qi U™ of the time
derivatives Du(t,) of the solution of (3.1), where U™ is obtained by applying our
time stepping methods (1.5) to the spatially semidiscrete equation (3.2). We shall
also consider L, error estimates for the same approximations of time derivatives,
but here we restrict ourselves to the two-dimensional case and to piecewise linear
approximating functions.

3.1. L Error Estimates. In this subsection, we shall consider Ly error estimates
in the approximation of time derivatives of the solution of (3.1). To do this, we first
show some error estimates for time derivatives in the spatially semidiscrete case.
For the nonsmooth data case, we quote the following result from Bramble, Schatz,
Thomée, and Wahlbin [5].

Theorem 3.1. Let u(t) and up(t) be the solutions of (3.1) and (3.2) and j > 1.
Assume that (1) and (i) hold, and v, = Pyv. Then we have

1D (un(t) — u(®))|| < Ch"t~ "> jo||  fort > 0.

The error bound in Theorem 3.1 depends in a singular way on ¢ as ¢ tends to 0,
and the singularity is of order O(t~"/2~7) when v is only in Ly = Ls(Q2). We will
show in the following theorems that the order of the sigularity in the error bound
depends on the smoothness of v. To express this we shall use the space H* = H 5(2)

for s a nonnegative integer. Recall that for 2 an appropriately regular domain in
R H® = H*(Q) is defined by the norm

1/2
lells = llella = (32 UD0lP) ", where |- = |- [ls.-
|| <s
To define H*, we consider the eigenvalue problem
—Ap=XAp inQ, withp=0 ond.

As is well-known, this eigenvalue problem admits a nondecreasing sequence { A\, }5°_,
of positive eigenvalues which tend to oo with m, and a corresponding sequences
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{¥m }m—1 of eigenfunctions which form an orthonormal basis for L,. For s > 0, let
H? be the subspace of Ly defined by

lv|s = ( i Afn(v,wm)2)1/2 < o0.
m=1

It is known that, for s a nonnegative integer, see, e.g., Thomée [19],
H®={ve H;Alv=0 ondQ, forj<s/2},

where the boundary conditions are interpreted in the sense of traces in L2 (012), and
that the norms |- |, = || - || 5. and || - ||s = || - ||z are equivalent in H?®, with

[|APv]], if s = 2p,
[v]s =

|7 APof|, if s =2p+1,

where p is a nonnegative integers. Based on the properties of space H?, the following
regularity result is shown in [19].

Lemma 3.2. Forv € Ly, the solution u(t) = E(t)v of (3.1) belongs to H? for any
§>0,ift>0. If0<s<qandl >0, and if v € H®, we have

|Dlu(t)|, = |DLE(t)v|, < Ct~ @92y, fort > 0.

To clarify how the order of ¢ of the singularity in the error bound depends on
the smoothness of v, let us first consider the case v € H”. We find in the following
theorem in this case that the order will be O(¢t ), instead of the O(¢t~"/2~7) in the
case of v € Lo, i.e., the singularity is weaker for these more regular initial data.

Theorem 3.3. Let u(t) and up(t) be the solutions of (3.1) and (3.2) and j > 1.
Assume that (1) and (i7) hold, and v, = Pyv. Then, if v € H", we have

1D (un(t) — u(@)|| < Ch"t™|o],  fort > 0.
The proof of the result depends on the following lemma, see, e.g., Thomée [19],

Lemma 3.4. Assume that T}, is positive semidefinite on Ly and that

Thes +e=p, fort>0, withTre(0)=0.
Then, for € > QO arbitrary,

lle@)Il < esup(sllp:(s)l]) + Cesup|lp(s)l, fort > 0.
s<t s<t

Proof of Theorem 8.3. The proof will be by induction over j. The case j = 0 can
be found in Thomée [19, Theorem 3.1]. Assume thus that the result is already

shown for j — 1 with j > 1. We note that this semidiscrete analogue of (3.1) may
also be written

(3.4) Thupt +up =0, fort>0, withup(0)=vs.
Similarly, for the continuous problem, we have

(3.5) Tus+u=0, fort>0, withu(0)=nwv.
Setting e = up — u, we have by (3.4) and (3.5)

(3.6) The; +e=p, wherep=—(T, —T)Au.
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Denoting e/ = Dle, we have, by differentiation of (3.6),

(3.7 Thegj) +e) =pl9  where p¥) = Dip=—(T), — T)DI™p.

We further set w = w(j,t) = t/el9), and write

Thwi +w = Tyt D)), 4t/
= ) 4 1T = 43 pli) 4 jti=1(pliD) _ li-D) = p
By Lemma 3.4 we find
lw(@)|l < esup(s|lne(s)[|) + Ce sup [[n(s)]-
s<t s<t

Here
In()1l < 871169 (8)I] + 37~ 1p9 =D (s)I] + jllw(i = 1, 5)]]
and
sllne(s)1| < 24571019 (81| + 87 109D ()| + (G — 1)~ [V~ ()]
+3G =D YV ()] + fllw(, 5)]]-
With e = 1/(4j), say, we conclude, for all ¢ > 0,

1
. 1 , I .
lw(G, )|l < 5 sup [lw(j, s)[| + C sup ( > s pH ()| + [[w(j - I,S)II)-
s<t s<t I——1

Choose 7 = 7(t) such that sup,; [[w(j, s)|| = [[w (4, 7)[|, we have,
1
o, 0l < o, Dl < Csup (3 T ] + s - 1,)])
S =11

Now since p(?) = —(T}, — T)ul?t), we have by (i) and Lemma 3.2, for any ¢ > 0,
s91p'9 (s)|| < Ch" sl (s)|p—o < CB vy,

and, using our induction assumption, ||w(j — 1,s)|| = ||s’~te =1 (s)|| < Ch"|v|,,
which completes the proof of Theorem 3.3.

Theorems 3.1 and 3.3 show error estimates for v € L, and v € H”, separately.
Using interpolation theory, we obtain the following theorem which shows how the
singularity in an optimal order error bound depends on the smoothness of v.

Theorem 3.5. Let u(t) and un(t) be the solutions of (3.1) and (3.2) and j > 1.
Assume that (i) and (i1) hold, and vy, = Pyv. Then, ifv € H® and 0 < s < r, we
have

IDfun(t) = Diu(t)]| < CHE=T=/2=3]u], fort > 0.

We now consider error estimates for time derivatives for the semidiscrete problem
which hold uniformly down to ¢ = 0. In this case, in order to obtain optimal order
results, a special choice of initial data has to be made and more smoothness than
before has to be required from the initial data.

Theorem 3.6. Let u(t) and un(t) be the solutions of (3.1) and (3.2) and j > 1.
Assume that (i) and (ii) hold, and vy, = Pyv. Then, if v € H™2/ | we have

(3-8) | D}un(t) = Dju(®)|| < ChT[v]r125 + C||AJvn — Av||  fort > 0.



25

Proof. We assume first v, = TJ(—A)/v. In this case AJv, = Adv, so that the
second term on the right in (3.8) vanishes. Recall that e%) satisfies
Thegf) +e@ = pl),
With vy, = TJ (—=A)Jv, we have
TheW (0) = Th(A) v, — Alw) = 0.
Hence by Lemma 3.2 and (ii), for s > 0,
199 ()l = (T = T)DJ*u(s)l| < OB [[D]+ u(s) |-
= O A u(s) =5 < CHT[o] 425,
and
sllp” ()| = sl|(Th — T)DI u(s)|| < Ch"s| D} u(s)|r—2
< Ch"s| AT u(s)|r—2 < CH s|u(s)|2jri2 < OB [0]r1aj,
Together with Lemma 3.4 these estimates show
(3.9) ID}un(t) — Diu()ll < Ch"[vlsyaj, fort >0,

which completes the proof of (3.8) for the present choice of vy,.

It remains to consider the contribution to the semidiscrete solution of the initial
data vy, — T} (—A)iv. If Ex(t) = e®#t is the solution operator of the semidiscrete
problem (3.2), then we have by (3.9)

D] Ew(8)(T}(—A)v) — Diu(t)|| < Ch"[v]rya.
On the other hand, by the stability of Ej(t),
1D} En () (on — T (=AY 0) || = | Ba(t)(Afon — Al)|| < Cl|AL v — Adv]|.
Together these estimates complete the proof of (3.8). [l

We remark that if v € H™ax(r+21=2.2p+2j) with | > j, we also obtain the optimal
order convergence for the choice of initial data v, = T} (—A)'v, which follows from
Theorem 3.6 and the following fact, for present choice of vy,

I—j
1Afon = Aol = [|(=Tn)' P Alo — Aol = 7 Ty (T — T)AT ™|
m=1

< CW||(Th = T)Alv]| < OW [l pai—2-

With (4,1) replaced by (m, j) this means that the error bound of Theorem 3.6 holds
also for || Di™(un, — uw)|| when m < j. A similar remark applies to Theorems 3.8 and
3.17 below.

We are now ready to consider the fully discrete schemes defined by application
of our time stepping procedure to the semidiscrete equation (3.2). We begin with
a nonsmooth data error estimate.

Theorem 3.7. Let u(t,) and U™ be the solutions of (3.1) and (3.3). Assume that
(2) and (i) hold, and that the time stepping method defined by (3.3) is accurate
of order p, with p > 1, and |r(A)] < 1 for A > 0 and |r(co)| < 1. Let j > 1 and
assume that ch is an approzimation of D{, which is also accurate of order p. Then,
if v, = Ppv, we have

1QRU™ = Diu(t)ll < C(ht;™/>7 + kP42~ |oll,  for t, > 0.
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Proof. By Theorem 2.6, applied to the semidiscrete equation (3.2), we have
IQLU™ = Dlun(tn)l| < CKPEP~7 || Pyol| < CRP£,7~ o).
Together with Theorem 3.1 this completes the proof. O

We shall now turn to error estimates in the smooth data case. In this case, in
order to obtain optimal order results uniformly down to ¢ = 0, as in the semidscrete
approximation considered above, a special choice of discrete initial data v, and
smoothness of the initial data v for the continous problem have to be required.

Theorem 3.8. Let u(t,) and U™ be the solutions of (3.1) and (3.3). Assume that
(7) and (it) hold, and that the time stepping method defined by (3.3) is accurate
of order p, with p > 1, and |r()\)| <1 forX>0. Let j > 1 and ssume that

7 is an approzimation of D}, which is also accurate of order p. Then, if v €

Fmaz(r+25:2042)) ye have
(3.10)
IQLU™ = Dju(tn)l| < C(W [v]ry2j + kP |v]2p2j) + CllAon — Alv]l,  fort, > 0.
In order to show the estimate stated, we need the following lemma.

Lemma 3.9. Assume that the discretization scheme is accurate of order p, with
p > 1, and that [r(X)| < 1 for A > 0. Let Gpn s = Gn(—kAp)T}, where Gp(X) is
given by (2.7). Then, we have

(3.11) Gri4jll < CEH, for0<1<p, n>0,
and
(3.12) IGrill < CE'n™I,  for0<1<p, n>0.

Proof. Since

1Gnirsll <EH sup  ATHDG, (V)]
AEo(—kAp)

it suffices for the proof of (3.11) to show that |G, ()| < CA*J for A > 0,0 <1 < p.
But, by (2.9), we have, with A\ € (0, 1),

IGL(V)] < CXNFI for0<I<p, 0<A< A,
and, using the stability of r(\),
|Gn(N)| <C+CN <CXNHI for0<I<p, A>,

which shows (3.11).
To prove (3.12), we need to show

(3.13) IGo(N)| < CXn7I, for0<I<p, A>0.
We have, by (1.16) and (2.4), with A € (0, 1),
(3.14)  |(P(r(N) = (=X)")r(W)"| < (CXF)e ™ < CXn~7, for 0 < X < Ao,
and, by (2.10),
(=N (r(\)™ —e™™)| < CN(CAH e cm=DX) < ONn™d, for 0 < X < Ao,
which shows that (3.13) holds for 0 < A < Ag. Further, using (2.11),
A | P(r(A)r(W)| < OAglniec(m=m1) < O, for A > Xy, 0< 1 < p,
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and

A I (=A)Te ™™ < Mgt (nA) e ™™ < €, for A > N, 0 <1 < p.
Hence, (3.13) holds also for A > Ag. Together these estimates complete the proof.

O
Proof of Theorem 3.8. Assuming first that v, = T,Z(—A)j v we may write
QLU™ — Diup(tn) = k3G, j(=A)0.
We now note that if we set
Vg = Z (v, 1)1,
kA <1

where ¢; and ); are the eigenfunctions and eigenvalues of the differential operator
—A, with vanishing boundary values, then vy € H? for each s > 0. Further, by the
definition of the norm in H?®, we find easily

(3.15) (=A) (v = vp)l| < CkP|v|2psa;,
(3.16) (=)o || < Cll(=A)"H vl = Clv|apt;,
and

(3.17) |Vk|rt2i42j < k7 olrgnj, for0<I<p—1.

Applying now the identity
p—1
v=Y THT —Tp)(-A) v+ TP (—A)Pv, forve HPH,
=0
to (—A)vy, we have

(3.18) G i (=AY vy, = Gr(=kAR)TI (= A) vy
p—1
= G (T = To) (=) 0y + Gy (= A)P .
=0

Here, by (3.11) and (3.16),
1G it (=) 0| < CRPH||(=A)PH o || < CRPH g |2pr25 < CRPH 0] 2;.
Further, using also property (ii) of T; and (3.17), we obtain
1G5 (T = Tn) (=) oy || < ORI T = T) (= A) 7 |
< CEHIRT|[(=A)F 9+ o[l —2 = CEHIRT |0 |r 2012
< CK B |v)py2j, for0<I<p-—1.
Together these estimates imply
|G (=AY o]l < CK (B [v]rr25 + kP [0]2pt25)-
Since obviously, by (3.11) and (3.15),
1G5 (=AY (v = vp)|| = Gn(=kAR)TL (=AY (v = vg)|
< CK|(=A) (v = vi)l| < CkP |v]2p425,
we conclude that
(3.19) QU™ — Diun(tn)l| = k™G i (=A) 0|l < C(R"[0]r42; + kP [0]2p125),
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which completes the proof of (3.10) for the present choice of vy,.
It remains to consider the contribution to the fully discrete solution of v, —
T} (—A)7v. By (3.19), we have

1QLER T (=AY v — Djun(tn)|l < C(h7[0]r425 + K[0]2p425)-
Further, using (2.11) and the stability of r(}),

1Q4ER (vn — T} (=AY)oll < sup — |P(r(A)r(A)" A7 |[|Aon — Al]|
AEa(—kAp)

< C||A) vy, — Aol

Together with the estimate (3.8) for the semidiscrete problem this completes the
proof of Theorem 3.8. O

Theorem 3.8 shows that the optimal order convergence uniformly down to ¢t = 0
depends upon the smoothness of v and the choice of initial data vp. One may want
to choose v, = Ppv, where v is smooth enough. In this case, we are able to obtain
optimal order convergence, but not uniformly down to ¢ = 0. We close this section
by stating an estimate for v € H™ax(m2P) and vy, = P,v. We omit the proof which
is similar to the proof of Theorem 3.8.

Theorem 3.10. Let u(t,) and U™ be the solutions of (3.1) and (3.3). Assume that
(2) and (i1) hold, and that the time stepping method defined by (3.3) is accurate of
order p, with p > 1, and |[r(A)| < 1 for A > 0. Let j > 1 and assume that ch is
an approximation of D{ , which is also accurate of order p. Then, if v € H™ax(r2p)
and vy, = Ppu, we have

1QRU™ — Dlu(ta)ll < Ct 7 (W7ol + KP|v]2p),  for t, > 0.

3.2. Ly, Error Estimates. In this subsection, we will derive L, error estimates
for approximations of time derivatives of the solution of (3.1) in two spatial vari-
ables, using piecewise linear approximating functions in space on quasiuniform tri-
angulations of the spatial domain.

We first show some Ly, error estimates in the spatially semidiscrete case. We
begin with an error estimate in the nonsmooth data case.

Theorem 3.11. Let u(t) and up(t) be the solutions of (3.1) and (3.2) and j > 1.
Then, if v € Ly, and vy, = Ppv, we have

| D3 up (t) — Diu(t)||r. < Ch2€i+jt_j_1||v||Lm, where £, = In(1/h).

The proof of the result depends on the following lemmas. The first lemma
concerns error bounds for the Lo and Ritz projections in maximum-norm.

Lemma 3.12. Let u(t) be the solution of (3.1) and j > 1. Then, we have, for
p=(Rn—TIuandn=(Py—IDu,
(3.20) (110D )l +alnP @Iz ) < CH2E ol

Proof. With I, the standard interpolation operator into Sp, we have, cf., e.g.,
Brenner and Scott [6],

| Thu — ul|lL., < Ch2_2/3||u||W3, for 2 < s < oo, ue W2=W2nH;.
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Noting that by the logarithmic maximum-norm stability of Ry, in Ly, i.e., (cf.,
Schatz and Wahlbin [18)), [|Rpullz., < Clh||ullL,,, we have, since P9 = (Ry —
ID}u = (R — I)(Dju — I Diu),

oo ?

1pPNe < CwllInDiu — Diullr.. < Clah*=*/*||Dfullws.
By the Agmon-Douglis-Nirenberg [1] regularity estimate

lullwz < Cs||Aullz,, for2<s< oo, ue€ W2,

we hence obtain, using also the smoothing property (1.4),
1P )|z, < CH*7*/*Lys||AD]u(t)||z, < CH*=*/*lyst™7 o]z,
< Ch2_2/8£h’rt_j_1 [|lv]|L, -

With s = £, this shows the bound in (3.20) for p()(¢). The proof of the bound for
n(j) (t) is analogous, with one less factor £, because Py is bounded in L. O

We also need the following lemma which shows that the discrete solution operator
E}(t) is stable in Ly, norm and has a smoothing property.

Lemma 3.13. With S;, the piecewise linear finite element spaces and Ep(t) the
solution operator of (3.2), we have

(3.21) 1En(t)vnllLe + (¢ + )| BL(E)vrllz. < Cllonllra,, fort > 0.
Proof. We know from Thomée and Wahlbin [20] that
|EL(t)onlloe + tIEL#)vnll. < Clloallr.,, fort>0.
By the inverse property ||Anx|lz.. < Ch~2||x||L., for x € S, we get
IEL @) onllree = 1ARER()vnlr. < CllAvallL. < Ch72||uallr.. -

Together these estimates complete the proof. [l

Proof of Theorem 8.11. The proof will be by induction over j. The case j = 0 can
be found in Thomée [19, Theorem 5.4]. Assuming now that the result is already
shown for j — 1, with j > 1, we write up(t) — u(t) = (up(t) — Pru(t)) + (Pru(t) —
u(t)) = ¢ + 1. Here n¥) is bounded as desired by Lemma 3.12 and it remains to
bound ¢ = DI¢ = DI (up(t) — Phu(t)). Since

G — AnC = —ApPap,
we find
(FTCD) = Ap(@ (D) = (G + DI + (¢ - Angi)
= (j + D (AU — Ay P, plU=1) — 8111 A, P00
Thus, we obtain by integration, noting that Ejy(t — s)A, = E} (t — s),

L () = — /0 Ej(t = 5)((G+1)sCUD(s) = ( + )5 Pupi=1(s)

_ gi+Lp, i) (s))ds — I+ II+III
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By the induction assumption, s7(|¢=1) (s)||r.. < Ch?£37||v||1... Thus, combining
this with Lemma 3.13, we have, for A < hg and ¢ bounded,
S SRR
I <C —— ||V d
Mo <€ [ a1 6 s
< CRAG In((h* + ) /%)L < CR2 ||z -

Similarly, by Lemma 3.12 and 3.13, we have
|
Mlse + 10, < CH6 [ dslplls.. < CREu]..
0 s+

Together these estimates complete the proof. O

We now turn to an error estimate in the smooth data case.

Theorem 3.14. Let u(t) and up(t) be the solutions of (3.1) and (3.2) and j > 1.
Then, if v € W2+2 we have

(322)  [Dfun(t) — Diu(®)|lr.. < CR*G[lolly2i+2 + CllA oR — RaATo||1,.
The proof will depend on the following;:

Lemma 3.15. Let u(t) be the solution of (3.1) and j > 1. Then we have, for
p = Rpu — u,

169 ®)low + tpTH ) Lo < CH?G||0llgy2i42,  forj >0, ve WIH
Proof. The case j = 0 can be found in Thomée [19, Lemma 5.6]. Hence
169 (D2 + tPH B2 < CHG]|IDIu(0)]| < CH?G[v]l y2i+2,
which completes the proof. [l

Proof of Theorem 8.14. We assume first v, = T,{H(—A)Hlv. In this case Aflvh =
{%hAj v, so that the second term on the right in (3.22) vanishes. We write, with
6 = D] (up, — Rypu) and p = D} (Rpu — u),

&(t) = Dlun(t) — Diu(t) = 8(t) + p(t)-
Here j(t) is bounded as desired by Lemma 3.15. To estimate 6(t) we write, noting
that 8(0) = 0,

B t/2 ¢
a(t) = —(/ +/ )Eh(t — 8§)Pupu(s)ds = I + I1.
0 t/2
Here by Lemmas 3.13 and 3.15,
t
Wl <C [ o)ls.ds < CHE ol
t/2

For I we integrate by parts to obtain

/2 t/2
I=—[E(t-5)Pp(s)]| - [ B~ ) Pa(s)ds.

Again using Lemmas 3.13 and 3.15 we have
1En(t = 8)Pup(8)[|Le < ClIA(S)Ine < CH2G|[0]liy2i+2,  for s =0,2/2.
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and, using [|E} (t)|| < Ctjvn||L..
¢/2
|/

which shows (3.22) for present choice of vp,.
The argument of the proof of Theorem 3.6 completes the proof for a general
choice of vy,. O

/2
B (t - s)Phﬁ(s)dsHL < c/o (t = )M |3(s) || ds < CH2E [0l 212,

Now we consider error estimates for the fully discrete scheme (3.3). Combining
Theorem 3.11, for the error estimate in semidiscrete case, and Theorem 2.6, applied
to the semidiscrete equation (3.2), we obtain the following error estimate in the
nonsmooth data case.

Theorem 3.16. Let u(t,) and U™ be the solutions of (3.1) and (3.3). Assume
that the time stepping method defined by (3.3) is accurate of order p, with p > 1,
and that r(z) is A-stable and accurate of order p and |r(c0)| < 1. Let j > 1 and
assume that ch is an approximation of D{, which is also accurate of order p. Then,
if v € Loo and vy, = Ppv, we have

1QLU™ — Diu(tn)llr., < C(W*E 1,77 + k8,7 ) ||oll1.,  fortn > 0.
We now show an error estimate in the smooth data case.

Theorem 3.17. Let u(t,) and U™ be the solutions of (3.1) and (3.3). Assume
that the time stepping method defined by (3.3) is accurate of order p, with p > 1,
and that r(z) is A-stable and accurate of order p. Let j > 1 and assume that Qi 18
an approximation of D{, which is also accurate of order p. Then, if v € D(AP1Y),
we have

1Q3U™ = Dju(ta)llr.. < C(RG[0llyzi+2 + K ll0lly2wen) + CllAon — A1,
In order to prove the theorem, we need the following lemma.

Lemma 3.18. Assume that r(z) is A-stable and accurate of order p and that j > 1.
With G, s given in Lemma 3.9, we have

IGnitjwllie, < CE V|, for0<I<p, n>m.

Proof. By Pazy [15, Theorem 2.5.2], we see that (3.21) implies that Ej (¢) is an ana-
lytic semigroup, uniformly in h, and lead to a resolvent estimate on an appropriate
sector in the complex plane

IR(z, —An)lL.. < Cl2|™t, ¢ <larg z| <m, ¢ €[0,7/2).
Applying Theorem 2.1, we obtain
(323) N Gnitjvlli. = 1Ga(=kANTHw]| < CE Y |lwlz.,, for0<1<p.

Note that if r(z) is accurate of p it is also accurate of order [ with 1 <1 < p, which
shows (3.23) for 1 <1 < p. The case [ = 0 follows by the direct proof as in the case
l=p. O

Proof of Theorem 3.17. By Theorem 3.14, Lemma 3.15 and the estimate
A% vn — RAIv|lp., < (1A on — Aol + [[(Re — D) ATv|| L.,
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we only need to show
(3.24)
1Q4U™ = Diun(tn)l|r., < C(W*E;|lollyzi+2 + K llvlly204) + Cll A vR — Av|..
Assuming first that v, = TJ (—A)7v, we have

QU™ — Djup(tn) = k Gy i(—A)0.
From Thomée [19, Theorem 8.6], we choose ¥, such that, with C independent of
S,

(3.25) 1(=4)! (v = )|z, < CRP|AP 0|z, < CKP||v]l 20+
(3.26) [(=2) |1, < CIIAPH ||, < [Jolly2e+s
(3.27) FI(=A)YH 5 lwz < Csl|Avlyz for0<I<p-1,2<s< .

Following the proof of Theorem 3.8, we will use the equality, cf., (3.18),
G i (=AY Ty, = Gr(=kAR) T (—A) 5
p—1
= én,l—i—j (T - Th)(_A)l+j+11~1k + én,p_{_j(—A)p—i_jﬁk.
=0
By Lemma 3.18, we have, since (T'— Tp)A = R, — I,

1G4 (T = Tn) (=) 0y |1, < ORI = Ri)(=A) 0|1 -

Using the following bound for the Ritz projection in maximum-norm, see, e.g.,
Thomée [19, Lemma 5.6],

1(Rp — Dl < Ch2_2/35h||v||wsz, for 2 < s < .
and choosing s = ¢;, we therefore obtain
|Gt (T = Th) (=AY |, < CEHIR2T25 0 || A 5 gy
< CK sh® 220 || A v|lwz < CK W26 ||v]|asva, for 0<1<p—1.
For the case | = p we have by (3.26),
G (=D 0|1, < CRPH AP 5|1, < CRPH AP v]| 2040
Together these estimates imply
G (=2 Tel|z.. < CK (W2 L]|A V|| 2542 + KP[[0ll y2400),  for > 0.
Since obviously, by Lemma 3.18 and (3.25), we have
1G5 (=A) (0 = Bl Lee = IGn (kAT (=A) (v = )|l 1.
S OKN(=A)Y (v = Tp)llLe < CRPH [[0]] 20049 -
We conclude that
1Q4U™ = Diun(tn)llr.. = k77 G j(=A)0]|L..
< C(R*GNAT ] yzi+2 + k2|0l 2040),s

which shows (3.24) for present choice of vp. Following the proof Theorem 3.8, we
also need to show

(3.28) [P(r(=kAR)r(=kAR)" (kAR L., < C.
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In fact,
. 1 .
P(r(—=Ap))r(=Ap)"(=Ap) ™7 = 5 P(r(z))r(2)" 277 R(z, —Ap)dz.
r
Since 0 € p(—Ay), P(r(z)) = O(27) as z — 0, there exists small 5 > 0, such that
|R(z,—Ap)||z.. < C and |P(r(z))z 7| < C for |z| < 5. Thus we have, noting 7(2)
is bounded on T,
d

H /F P(r(z))r(z)”z‘jR(z,—Ah)dzHLw < /0 "o+ /n h pjfl <0c,

which shows (3.28). The proof is now complete. O
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4. VARIABLE TIME STEPS

In this section we will consider time stepping methods with variable time steps.
Let 0=tg < t1 < ---<t, <--- be a partition of the time axis and k, = t, — tp—1
the variable time steps. Recall from introduction we have defined the following
single step discrete method for (1.1),

(4.1) U" =E, U™ forn>1, Ej, =r(k,A), withU°=v,

where the rational function r(z) is defined on o(k;A) for j <n and (1.6) holds.

We will study the smoothing properties of the time discretization scheme (4.1)
and show error estimates for the first and second order approximations of the time
derivative Dyu(t,) = ut(ts) of the solution of (1.1).

4.1. Some Basic Stability and Error Estimates. We first quote the following
stability result, see, e.g., Palencia [13].

Theorem 4.1. Assume that A satisfies (1.2) and (1.3), and that v(2) is accurate
of order p =1 and A(0)-stable, with 6 € (§,7/2], and |r(c0)| < 1. Let k;,1 < j < m,
be time steps. Then there is a constant C such that

(4.2) H ﬁr(ij)vH < Clloll, fortn> 0.
j=1

If we remove the restriction |r(oo)| < 1, the bound on the right side of (4.2) will
depends on the variable time stepsizes. More precisely, if |r(co0)| < 1, we have, see,
e.g., Bakaev [2],

| TL s 400 < €101 + e il x>
j=1

where kmaa: = maXji<j<n k‘j, kmin = minlsjsn k]

We begin with some error estimates for the approximation U™ defined by (4.1)
of the solution u(t,) of (1.1). Our first result is an error estimate in the smooth
data case in which there is no restriction on the time steps k.

Theorem 4.2. Let u(t,) and U™ be the solutions of (1.1) and (4.1). Assume that
A satisfies (1.2) and (1.3), and that r(z) is accurate of order p > 1 and A(0)-stable,
with 8 € (6,7/2]. Let k;,1 < j <mn, be time steps. Then, there is a C' such that

U™ = a(t)ll < CRggllAP0ll,  forn > 1.
In order to prove Theorem 4.2, we need the following lemma.

Lemma 4.3. Assume that r(z) is A(6)-stable and accurate of order p > 1. Let kj,
1 < j < n, be any positive numbers. Then for arbitrary R > 0 and ¢ € (0,0) there
are ¢,C > 0 such that, for |kmaz2| < R, |arg z| < 1,
n
‘ H r(k;z) — e7%| < Clkmag2|Ptn|z]le ™ *1 < Cnlkmazz|P e et 171,
Jj=1

Proof. Since r(z) is A(#)-stable and accurate of order p > 1, we have

(4.3) |r(z) —e ?| < Clz|P™ for |z| < R, |arg z| < 1.
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We also have, with ¢ = cos ),
(4.4) le™?| = e7fex < e¢I*l for |arg 2| < 4.
Thus we have, for |knaz2| < R,

‘ ﬁ r(kjz) — e~in?
j=1

= ‘( (klz —e ) f[ (ﬁe—ka) (r(knz) _ e—k"z)
<3 T () 1T roue)

g=1 s=1 I=j+1
<C i( —ctj-1/7| (kj|2)Pte c(tn—tj)|z|)

< Ce S (g )P < Clla 2Pl 2le 1
j=1

< Cnlkmagzz|PTre et 2,
which completes the proof of Lemma 4.3. [l
Proof of Theorem 4.2. With F,(z) = ]—[] 1 r(kjz) — e7t*, it suffices to show

1 (A) (kmas A) 77| < C.

S~ince H;;l r(kj2)(kmazz) PR(2; A) is bounded for |z| > R, with some positive
R > 0, thus, we have, by Lemma 2.2,

TT ks A) (i A) 7 = —— H (k;2)(kmasz) PR(z; A) dz.

21 Ve UFR U’Y

We may further let R tend to co since the 1ntegrand has no poles when |z| > R.
Using also Lemma 2.3 we therefore have
1

F,(A)(kmaz A) P = — F,(2)(kmazz) PR(z; A) dz.
277'@ ~eUT

By Lemma 4.3 we see that F,(z) = O(zP*1) as 2 — 0 and thus the integrand is
bounded, so that we may let € — 0. It follows that
dp

1 E7(A) (kmaz4) 7| < C/OOO(IFn(peiw)l + IFn(peii’”)l)(kmawp)’p?-

Noting that r(z)™ and e ** are bounded on I' we find

*° : »ap > dx
F, e:l:ub kmaz — < C/ <C
J 1ot tmanp) 7 <0 [ <

Further, we have, by Lemma 4.3,

R/kmaz ) dp R/kmax
L B ey * % <0 [ ety <
0 0

Together these estimates complete the proof. O
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We now show a nonsmooth data error estimate. To do this, we need the notion
of increasing quasi-quasiuniform grids introduced in the introduction. Let {7} be
a family of partitions of the time axis, T = {tn, 0 =t < t1 < -+ < tp < --- }.
{T} is called a family of quasi-quasiuniform grids if there exist positive constants
¢o, Co, such that

(45) Cokn+1 S k‘n S Cotn/’l’b.

Further if k1 < ky < -+ < kp < ---, we call {T} is a family of increasing quasi-
quasiuniform grids. We have the following

Theorem 4.4. Let u(t,) and U™ be the solutions of (1.1) and (4.1). Assume that
A satisfies (1.2) and (1.3), and that 7(2) is accurate of order p > 1 and A(6)-stable,
with 0 € (§,7/2] and |r(c0)| < 1. Assume further that {T} is a family of increasing
quasi-quasiuniform grids. Then, there is a constant C such that

U™ —u(tn)ll < CRLEP(lv]l,  forn > 1.
To prove Theorem 4.4, we need the following lemma.

Lemma 4.5. Assume that the rational function r(z) is A(8)-stable with 6 < /2,
and that |r(c0)| < 1. Then for any ¢ € (0,0) and R > 0 there are positive ¢ and C
such that, with k = r(00), for any sequences ky < ks <--- <k,

‘ Hr(ka) - n"‘ < Clkrz|™'e™ ™, for|kiz| > R, |arg z| < 1.
j=1

Proof. Since r(z) — k vanishes at infinity and |r(z)| < 1, we have
Ir(z) — k| < Clz|™t, for |z| > R, |arg z| < .

Further, |k| < 1 implies that

(4.6) [r(z)| <e”¢, for|z| > R, |argz| <.

Hence, we have, for |k12| > R, noting that k < e~ ¢ for some c,

‘ H r(kjz) — k™| = ‘(r(klz) - K) H r(kjz) + -+ " r(kn2) — k)

i=2

n
< Ce_cnz lkjz| ™' < Clk1z| 'ne™" < Clkrz|'e™",
=1

which completes the proof of Lemma 4.5. O

Proof of Theorem 4.4. With F,,(z) as in the proof of Theorem 4.2, we need to show
1Fa(A)| < CREE?.
Set F,(2) = Fp(2) — £"knz/(1 + kn2). Since |k| < 1, and by the obvious fact that
|k A(I + kn A)7Y| < C, we have, noting that t,/k, < n,
|6 "knA(I + knA)7H| < Cls|™ < Cn™P < CKRL;P,

and it remains to show the same bound for the operator norm of Fy(A). Since
[T}, r(kjz) — £"kpnz/(1 + kyz) vanishes at 2 = oo, and 0 € p(A), we may use
Lemmas 2.2 and 2.3 to see that with I' = {z : |arg z| = ¢, ¥ € (4,6)},

F.(A) = QLm /F Fo(2)R(z, A)dz.
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Since F,(2) = (IT}=s r(kjz) — £™) + £7/(1 + kpz) — e~*»*, Lemma 4.5 shows
0 ) dp
P e
R/k1 p R/k1
Using also Lemma 4.3 and |1/(1 + k,2)| < 1 for Rez > 0, we have

R/kx d R/kn o d R/kn
[ R L < [T R L [ el
0 P 0 P 0

R/kx dp
<cC / (hup)+e=etron L 4l
0

o0

(e ap) () 4 o) L < Cze

R/ky,
(4.7 = Ckfbt,j”/ (tnp)Pe P (nky)dp + C|k|™
0

R/kn
< C’kﬁt;”/ e~ “Pt,dp + C|k|™ < CkPtP.
0

It remains to consider the integral over the interval [R/k,, R/k1]. To explain our
estimates in a precise way we introduce constants ¢; and g such that |r(z)| < e/l
for |z] < R,|arg z| < 9, and |r(2)| < e~ for |z| > R, |arg z| < 1. We remark that
¢2 can be chosen arbitrary small. Assuming that |kn2| < R,|km+12| > R, with
some m < n, we have, for ¢ small enough,

n
(48) ‘H T‘(ka)‘ < e—c1tm|z\e—02(n—m) < e~ c2n (6C2me—C1tm|Z|) < e—CQne—csm,

because it follows from (4.5) that citm|2| = c1(tm/km)(Em/km+1)(Emt1]2]) >
clc()C_ Rm = ¢3m, so that (4.8) holds if ¢z < ¢3.

We write F,(z) = [T, r(kj2) —e7*% —knz(1+ k,2)~'k". We have, using (4.8)
and noting that In(k;,41/km) <InC < C,

R/ki, n R/km , 1 o
r(k; pe®?) ‘ dp < / r(k; pett¥ ‘_p
~/R/kn Jl:[ Z R/km 41 ]:1_11 (s : P
R/km dp n—1
(4‘9) < Z / e~ C2ng—cm < e~ c2n Z e—cm ln(km+1/km)
B/kmt1 P m=1
n—1
< Ce o2 Z e < Cem" < On~P < CkPEP.
m=1

Further, we have, using (4.4) and noting that (4.5) implies t,p > cn for p €
[R/knR/k1], and In(k, k1) = S0 In(kmar /km) < Cn,

R/k1 5 R/k1
(4‘10) / (‘eftnpei ¥ + k"p Hn) @ S / efcn@
R/kn 1+ knp p R/kn p

< e "In(k,/k1) < Cne " < CkPt,?.

Hence we get
R/k1
.

Together these estimates complete the proof. O

- . d
Fn<peiw)\7” < CRZt,P.
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4.2. A First Order Approximation of the Time Derivative. In this section,
we shall consider smoothing properties of the time discretization scheme (4.1) and
error estimates for the first order approximation of the time derivative u(t,) of the

solution of (1.1) defined by
n _ yrn—1
(4.11) o™ = %, forn > 1.

We begin with a smooth data error estimate for the approximation (4.11).

Theorem 4.6. In addition to the assumptions of Theorem 4.2, let k;,1 < j <,
be increasing. Then, there is a constant C such that

(4.12) 10U™ = uy(tn)|| < CknllA%v[l,  forn > 1.

Proof. Setting G,(z) = H?:_ll r(k;jz)(r(knz) — 1) — (—knz)e ™%, our result will
follow from

”Gn(A)(knA)_2” <C, forn>1

For the same reason as in the proof of Theorem 4.2, we have

Goo(A)(l A)2 =

27'” ~eUT

Gn(2)(knz) 2R(2; A) dz.

From the proof below we see that the integrand is bounded, so that we may let
€ — 0. It follows that

Gn(A) (knA)2 = — / Gn(2)(knz)~2R(z, A)dz.

We now estimate the integral. Since 0 € p(A4) and ( )=—1+42 = 0(z2) for z = 0,
there exists a constant R > 0, such that |R(z,4)| < C, |r(z) — 1+ 2| < C|z[?, and
|r(2) — 1| < C|z| for |z| < R. We write

Gn(2) = Gy (2) + GL(2) + G (2),

where
n—1
Giz(z) = H T(ka)(r(knz) -1+ knz)a
Jj=1

and, with F,(2) = [[;_, r(k;j2) —e™"%,
n—1
G%(2) = knz H r(kjz)(1 —r(kn2)), G2(2) = kn2Fy(2).
j=1
We have, using Lemma 4.3,

(4.13) H/Rkn Y(kn2) 2RzAdzH<ZH/R/kn 2)(knz)~ 2RzAdzH

N/

R/kn R/kn dp
<c / e ctn-1pdp 4 O / (ko) ((knpe™ " 4,0) (k)22 < €.
0 0 P

Further, by the boundedness of G,,(2),

H/m Gn(2)(knz)~2R(z, A) dz‘ < C/ )—2% <C.
R/kn

R/kn
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Together these estimates complete the proof. [l

We now turn to smoothing properties of (4.1). Recall from the introduction that
the smoothing property (1.9) is not valid even with constant time steps if 7(o0) # 0.
However, if r(co) = 0, the analogue of (1.9) holds also for some special schemes
r(z) with no restriction on the time steps, cf., Eriksson, Johnson, and Larsson [8].
We have the following smoothing property for general r(z).

Theorem 4.7. Assume that (1.2) and (1.3) hold, and r(z) is accurate of order
p =1 and A(6)-stable with 0 € (6,7/2], and that k = r(co0) = 0. Let {k;} satisfy
ckj < kjp1 < Ckj. Then there is a constant C such that

(4.14) HAH r(ij)vH <CtMHll,  forn > 2.
7j=1
Proof. We show that, with g,(2) = tn2 [T}, r(k;2),
lgn(A)]| < C, forn>2.

Since k = 0, we have, see, e.g., Thomée [19, Lemma 7.3],
4.1 < —
(1.15) ) < T

which implies that g,(2) is bounded for |argz| < ¢ and g,(o0) = 0. Thus there
exists a positive R such that g,(z) is bounded for |z| > R. Lemma 2.2 shows that

n =g [ @R
uxs UTRUyR

for |arg z| < 1,

Noting that g,(z) is analytic for |z| > R, ¢ < |argz| < 7, and gn(z) = O(|z|) as
z — 0, we may let R — oo and € — 0, so that

3n(4) = 5 [ (I RGz, )

We split the path of integration as T’ = I‘R/t" UT%, . Noting that |r(z)| < e~/

R/tn"
for |z] < R, |arg z| < 1, we have

H /R R(z,A) dz| <C/R/tn . dp o
- p

We now consider the integral over I'% Ve - I kpaz < tn/2, we have

= i K+ kiky < Bmaatn + Y kiky < 6/24+ ) kikj,

=1 I#j I#j I#35
and hence by (4.15)

* tnp dp

R ayis| 0 [ e e

H /R/t R/ta 1o (1 +ckjp) p
<c tn dp<C tn

TTaadp <
R/t, L Ctap+cp® 30, kik; R/, 1 +cp?t]

If kppaz > tn/2, we have k,, = kjyqp for some m with 1 < m < n. Hence, using
that k., 1/km is bounded above and below, we have, since n > 2,
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H/R/t zAdz‘<C/R/t #mp)?dp

tn
<C — = _dp<C.
= o, Q+ctapp ™=

Together these estimates complete the proof. O

As for the constant time step case, using difference quotients in time rather than
the elliptic operator A in (4.14), we have a smoothing property as follows.

Theorem 4.8. Let U™ be the solution of (4.1). Assume that (1.2) and (1.3) hold
and that the discretization scheme is accurate of order p = 1, and A(0)-stable
with 8 € (0,7/2], and |k| < 1. Assume that {T} is o family of increasing quasi-
quasiuniform grids. Then, there is a constant C such that

(4.16) loum| < Ct3tlloll,  forn > 1.

Proof. We want to show that, with g,(z) = t,/kn H] B r( 2)(r(knz) — 1)
lgn(A)|| £ C, forn >1.

It is obvious that there exists a positive constant R > 0, such that for fixed n, n(2)
is bounded for |z| > R. Lemma 2.2 implies that

Gn(A) = Gn(o0)I + i./ o Gn(2)R(z, A)dz.
2l Uyl

27

Since the integrand is bounded for |z| > R, we may let R tend to oo. Moreover,
Jgn(z) = O(|z|) as z — 0, so that we may let € — 0. Thus we have

Gn(A) = gn(o0)I + % dn(2)R(z, A)dz.

Clearly, noting that since k,, is increasing we have t,,/k, < n,
1Gn ()| < [tn/knk™ " (r(k) = 1)| < Cne™" < C.

Recall that there exists a positive constant R such that |r(z)| < e~t*l |r(z) —
1| < Clz| for |z]| < R and |r(2)| < e~ for |z| > R. Note that the integrand
is bounded when |z| > R/ki. In fact, if |z| > R/k1, we have ||§n(2)R(z, 4)|| <
(tn/kn)e=c2("=1)(e=¢2 4-1). Therefore the integrand has no poles when |z| > R/ky,
and hence we can replace the path of the integration by I = I‘(I)2 [kn=1y ngi LU
~F/k1 We now estimate the integral on the three different parts. We first have,
noting that ¢,/tp—1 =14+ kp/tn—1 < C,

H/ - )R(z, Adz‘ <C/R/kn ' (tn/kn)e— =17 (K, p)dp

R/kn_1
< C/ tn_1e C1n-1Pdp < C/ e dr < C.
0 0

Here we have used |r(k,z) — 1| < Cky,|z|, since k,|2| = |(kn/kn—1)kn-1|2| < CR,
when |z| < R/k,_1, which will be satisfied when we choose CR instead R. The
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same argument is used in the proofs of Theorems 4.9 and 4.12 below. We also have,
using |r(z)| < e~° for |z| > R, and the stability of r(z) and t,,/k, < n,

H /m R(z, A) dz| < c/ b Jhne=2-D P < ¢

R/kq pP
Further, recalling (4.9) with p = 1, we have, since k,_1/tn—1 < Ckyp /[ty

H /R”“ )R(z, A < ZH /// )R(z, Ay
<tk 12/

Together these estimates complete the proof. [l

R/km 17—
Hrk;peiw ‘ < Cty, k‘ ( n— 1t;£1)50

R/km+1 =1

Our next result is an error estimate of the approximation (4.11) of time derivative
ut(t,) of the solution of (1.1) in nonsmooth data case.

Theorem 4.9. Under the assumptions of Theorem 4.4, there is a constant C, such
that

1OU™ — Dyu(ty)|| < Cknt;%||v]|, forn > 1.
Proof. With the notation of Theorem 4.6 we need to show
IGn(A)| < Ck2t,%, forn > 1.

We set G (2) = Gn(2) — 6" 1 (k — 1)kn2/(1 4 kn2). For the same reason as in the
proof of Theorem 4.4, we have

|£" (6 = Dkn AT + k, A7V < Ol < On™2 < Ck2t,?

G(A) = ﬁ/rén(z)zz 2, A)dz

and we may write

Since
n—1
Gn(2) =( TT rks2) (k) = 1) = " (= 1)
+ 6"k = 1) /(1 + knz) — (<kn2)e” "%,
we have

* ~ i d * —can n - —c d
[ Gatoe 0L <c [ (e ap) ™ + )+ (Rup)eeer)
R/k1 P R/k1 p

< Ck2t,”.

Using |1/(1+ky2)| < 1 for Rez > 0 we have, with G, (), = 1,2, 3 as in the proof
of Theorem 4.6,

R/kn-1 _ ) R/kn_1 d R/kn_1
[ G < [ Galpe o e [ i hadp
0 P 0 P 0

R/kn_1

<2/ TeAEa +0| n.
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Obviously

R/kn—1 d R/kn-1 d
4.17 1 2y 4P < C/ —catn-1p( 2 @p
@ [T ek rie L <o [ et 2 2L

R/kn_1
< CK2t;? / e~c2tn=1742 pdp < Ck2t, 2.
0

Here as in the proof of Theorem 4.8, we use |r(knz) — 1 + knz| < Cky,lz| and
|r(knz) — 1] < Cky|z|, since ky|2| < CR when |z| < R/kp_1.
Following the proof of (4.7), we have

R/kn_1 R/kn_1
e s [T et
0 P 0 P

R/kn—1
< C’k‘it;2/ e~ P (t,p) nk,dp
0

< Ck2t,? / e "x?dr < Ck2t, 2.
0
Thus, combining this with |k|* < Cn=2 < CkZt; 2, we get
R/kn—l ~ . d
[ Galoe= ) < oz
0 P
It remains to consider the integral on interval [R/k,, R/ki]. We rewrite

knz

n_ ,n—1
1+k‘nZ(H K )

én(z) = ”1:[ r(k;jz)(r(knz — 1) — (=knp2z)e tn% —

We have, recalling (4.9) with p = 2, and noting that k2_,t.%, < Ck2t;2

R/k1 n ) —1
/ II ’"(kjpeiw)‘d—: < / 1 7k pe
j=1

R/kn_1 R/kn—1 ' 524

R/k1

iw)‘@
p

n—2 R/km n—1 ) d
<X [ Ttk < onutizy < onps”
m=1" B/km+1 " ;21 p

Further, recalling (4.10), we get, noting that this time t,p > C(n — 1) for p €
[R/kn—1,R/k1], since we have t,p > (tn/kn-1)R > (tn—1/kn—1)R > C(n —1),

R/k1 ; d R/k1
(4.18) / e e (k)P < / e~ kodp
R/kn_1 p R/kn_1

R/k1 . oo .
< e“’"/ e 2Pt dp < e_m/ e 2%x < C’kit;z,
0

R/kn_1
and
R/k1 k d .
/ L P Ck2t, 2.
R/kn_1 L+ knp P
Thus

R/k1 N . dp

| 1Galoe )% < o2ty
R/kn_1 p

The proof is now complete. O
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4.3. A Second Order Approximation of the Time Derivative. In this sub-
section we shall consider the following second order approximation of u:(t,) of the
solution of (1.1),

Un — Un—l Un—l _ Un—2

(4.19) o*U™ = a,0U" + b,0U™" " = a, + by, ,
kn kn—l

anp = (an + kn—l)/(kn + kn—l); bn = _kn/(kn + kn—l);

where U™ is the discrete solution of (1.1) defined by (4.1). Combining (4.19) and
Theorem 4.8, we obtain the following smoothing property of discrete scheme (4.1).

Theorem 4.10. Under the assumptions of Theorem 4.8, there is a constant C,
such that

16°U"|| < Ctt|oll,  forn > 2.
Note that (4.19) can also be written in the form

_ 1
(4.20) U = - (coU" +oUn cQUH),

where ¢; = 1+ y,,¢c0 =72 /(1 +7n), co = ¢1 + ¢o and 7, = ky, k1.

We shall now consider the error estimates for the approximation (4.19). We
begin with a smooth data estimate.

Theorem 4.11. Under the assumptions of Theorem 4.6, there is a constant C such
that

(4.21) |0*U™ — Dyu(ty,)|| < Ck2||A%v]|, forn > 2.

Proof. With P(z,y) = co + c1y~! + cox™1y~! and
Gn(z) = H r(kj2)P(r(kn-12),7(knz)) — (—knz)e "7,
7j=1

we want to prove
G (A)(knA) 2| < C, forn >2.

For the same reason as in the proof of Theorem 4.6, we have
1
Gn(A) (knd)~3 = / G (2) (k) R(z, A)dz.
271 T

It is easy to check that there exist a constant R, such that, noting that 0 € p(A),
|R(z,A)| < C, for|z| <R,
and
|P(e=kn-1% e=knZ) _ (_Ek,2)| < Clknz|?, for |knz| <R,
and
|P(r(kp_12),r(knz)) — P(eFn=1% e7*n%)| < Clknz|* for |knz| < R.
We write

(4.22) Gulz) = GA(2) + GA(2) + G3(2),
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where

G1(2) = ] ) (Plrhms2), r1n2)) = Pleomr%,e74e2)),
and, with Fy,(2) = [[;_, 7(k;j2) — e %,
= H r(ka)P(e_k"—lz,e_k"z) — (=kn2), G2 =kn2F,(2).

We have, recalling (4.13),

H/R/kn Y(knz)2R(z, A dzH < Z H/R/kn Gl (2)(kn2)3R(z, A dzH

B/kn —ctn—_1p B/kn 2 —ctnp -3 dp
<C A dp+C ; (knp)((knp) e (tnp))(knp) 730-

Further, by the boundedness of G,,(2),

H/m Gn(2)(knz) 3 R(z, A) dz‘ < C/ )—3% <C.
R/kn

R/kn

[y

Together these estimates complete the proof. [l

We close this section with an error estimate of the approximation (4.19) of the
time derivative u(t,) of the solution of (1.1) in the nonsmooth data case.

Theorem 4.12. Under the assumptions of Theorem 4.9, there is a constant C,
such that

(4.23) 1820 — Dyu(ta)| < CR2E2loll, for > 2.
Proof. With the notation of Theorem 4.11 we need to show
IGn(A)]] < Ck3t;3, forn > 2.

By the argument in the proof of Theorem 4.9, we may write

Gal =om / G R(z,A)dz,
where G(2) = Gn(2) — K" P(k, £)knz/(1 + kp2).
We rewrite
= ([T r(s2) P n-12), 7(kn2)) = 5" P(5, )
j=1
+k"P(k,8) /(1 + kp2) — (—knz)e %,
we have

> ~ i d > —can - n - - d
[ (Gl N L <0 [ (o) + )+ (ape) L
R/k1 P R/k1 p

< CE3t)3.
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Using |1/(1 + kp2)| < 1 for Rez > 0, we get, with n > 2,

R/kn_2 _ 4 R/kn_s
/ 1Gn(pe=)| % / (" kndlp
0 14 0

3 R/kn_2
<y
=170

where G (2), I = 1,2,3 are defined by (4.22). Obviously, recalling (4.17),

R/kn_2
L
P 0

R/kn_2 dp
| e+ ieanE < ok
0

Here we use
|P(e=Fn-17 e=Fn?) — (—k,2)| < Clknz|?,
and
|P(r(kp_12),r(knz)) — P(e”Fn=1% e7kn2)| < Clk, 2%,
which follows from k,|z| = (kn/kn—2)(kn—2|2|) < CR, when |z| < R/kp_2.
Further, recalling (4.7), we have

R/kn_o d R/kn_o d
/ IGilf < C/ (knp)(knp)%*“t""n?p < Ckt°.
0 0

It remains to consider the integral on interval [R/ky, R/k1]. We rewrite

(4.24) Gn(2) =co ﬁ r(kjz) + a ﬁ r(k;z) + ¢ Tﬁ r(k;2) — (—knp2)e tn?

_ knz
1+ kp2z
Recalling (4.9) with p = 3, we have, noting that k3 ,t.%, < Ck3t;®

R/k1 n—2 n—3
/ H r(kjpeiw)|@ < 2/
j=1 P m=1

(cok™ + k™ 4+ 02mn_2).

R/km

n—2 ] dp
[T r(kspe*)| 2
R/kn_» R/km41 | j=1 p

< Ckyy oty 2y < Chpty®.

Further, recalling (4.18), we have, noting this time that t,p > C(n — 2) for p €
[R/k’nfg, R/kl], since tnp Z R(tn/k’nfg) 2 R(tn,Q/k'n,Q) Z C(TL — 2),

R/k:
S

Bk d
npP n n—1 n—2y 4P 3,-3
Ccok" + c1K + ok — < Ck>t_~°.
/_R/kn_z 1+knp( ) p n'n

Together these estimates complete the proof. O

,tnpei“l’

€ n’'n

(knp)% < Ckjt,°

and
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5. NUMERICAL ILLUSTRATIONS

In this section, we show some numerical results illustrating our theoretical anal-
ysis. We consider a one-dimensianal problem with nonsmooth data,

(5.1) Up — Ugy =0, in[0,1], withu(0,t) =u(1,t)=0, fort >0,

u(z,0) = v(z), in[0,1],

where

(5.2) oo b ifl<o<3,
0, otherwise.

We have that v € H®, for 0 < s < 1 /2. In fact, we consider the eigenvalue problem
—¢"'=Xp for0<z<1l, ¢(0)=¢pl)=0.

As is well-known, the eigenfuctions ¢, = v/2sinnzz , n = 1,2,--- form an or-
thonormal basis in L2(0,1), and the corresponding eigenvalues are \, = n?n2.

Thus, if 0 < s < 1/2, we have

ols = D A5 (v,00)% =Y 4((2n — 1)m)* > < o0,
n=1

n=1

which implies that v € H* for s < 1/2. We also note that v € Lo, but v ¢ W2 for
any s > 0.
The exact solution of (5.1) is

u(e,t) = = i(—l)" sin 20— 17

™
n=1

(2n — 1)~ Le~(@n=Dm% gin(9n — 1)7z,

and the derivative of u(z,t) is

= 2n — 1 2
ug(z,t) = 4w Z(—l)""‘1 sin %(Qn —1)e~ (=™t 6in(2n — )7z,
n=1

We define Sy, to be the set of continuous piecewise linear functions on a uniform
mesh of size h which vanish at £ = 0 and x = 1. As explained in the introduction,
the semidiscrete problem may be written

(5.3) Unt = Apup, fort > 0, with up(0) = Pyu,

where A}, is the discrete analogue of A = —d?/dx?, defined by

1
(Ant, X) = / WX'dz, V1, X € Sh.
0

We first compute the approximate solution U™ of (5.1) by applying the constant
step time stepping method U™ = r(kA)U"~! to the semidiscrete problem (5.3),
where r(\) will be specified in our examples below. As mentioned in the intro-
duction, if r(c0) = 0, then up (t,) can be approximated by —A,U™ and the error
estimates (1.10) holds. Recall from (2.3) that this approximation is not so good if
r(o0) # 0. Therefore we then use QrU™, defined by (1.11) to approximate wu¢(ty),
and Theorems 3.7 and 3.16 show error estimates for the fully discrete method with
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nonsmooth data in Ly and L norms. More precisely, if |r(c0)| < 1, we have in L,
norm, for 0 < s < 2, see, e.g., Thomée [19],

(5.4) U™ — u(ta)|| < Ct, /D (k + B2)|],.

and it follows from Theorem 3.7 that

(5.5) 10U™ — wi(ta)|| < Cty; @~/ (k + h?)|v],.

Here, in order to be able to use v in (5.2), for which v € H*, for any s < 1/2, we
have interpolated between smooth and nonsmooth data error estimates.

For the approximation —A,U™ of us(t,) when r(oo0) = 0, combining (2.3) and
Theorem 3.1, we have the same error bound as in (5.5).

In our experiments, we consider different time stepping methods, namely, the
backward Euler method, the #-method defined by (2.1) with § = 2/3, and the
Crank-Nicolson method. Since we are mostly interested in the time stepping, we
choose h very small and a moderate and variable k. We will thus use h = 1/200 be
fixed, and the time step k be chosen as 1/20,1/40 and 1/80.

We begin with the backward Euler method, so that r(A) = 1/(1 + A), with
r(00) = 0. Denote e(k) = e(k,t,) = ||[U™ — u(ty)||, and let p(k1,k2) = e(k1)/e(kz).
Table 1 shows the L, norm of the error of the approximation U™ of u(t,) at time
t,. The results show the expected O(k) order of convergence. We also see that the
error becomes large when t tends to 0.

In Table 2, we show the results of the approximation U™ of u(t,). Here
e(k) = e(k,t,) = ||OU™ — us(ty)||, and again p(ki, k2) = (k1)/e(k2). The results
confirm the expected O(k) order of convergence and the singular behavior of the
error as t — 0. Note that in this case 0U™ = —A,U" so that the approximation
using —A,U™ is the same as OU™.

t | £(1/20) | e(1/40) | £(1/80) | p(1/20,1/40) [ p(1/40,1/80)
0.1 | 4.867E-02 | 2.629E-02 | 1.375E-02 1.85 1.91
0.2 | 3.952E02 | 2.062E-02 | 1.053E-02 1.01 1.95
0.3 | 2.440E-02 | 1.217E-02 | 6.062E-03 2.00 2.00
0.4 | 1.343E-02 | 6.398E-03 | 3.101E-03 2.09 2.06
0.5 | 6.952E-03 | 3.154E-03 | 1.487E-03 2.20 2.11
0.6 | 3.463E03 | 1.494E 03 | 6.8545-04 2.31 2.17
0.7 | 1.681E-03 | 6.886E-04 | 3.070E-04 2.44 2.24
0.8 | 8.020E04 | 3.112E-04 | 1.348E-04 2.55 2.30
0.9 | 3.775E-04 | 1.385E-04 | 5.826E-05 2.72 2.37
1.0 | 1.759E-04 | 6.009E-05 | 2.487E-05 2.88 2.45

Table 1: Backward Euler method with the approximation U™ of u(ty).
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t | £(1/20) | (1/40) | e(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 8.158E-01 | 3.113E-01 | 1.430E-01 2.62 2.17
0.2 | 3.907E-01 | 2.036E-01 | 1.040E-01 1.91 1.95
0.3 | 2.409E-01 | 1.202E-01 | 5.984F-02 2.00 2.00
0.4 | 1.326E-01 | 6.315E-02 | 3.061E-02 2.09 2.06
0.5 | 6.862E-02 | 3.113E-02 | 1.468E-02 2.20 2.11
0.6 | 3.418E-02 | 1.474E-02 | 6.765E-03 2.31 2.17
0.7 | 1.658E-02 | 6.797E-03 | 3.031E-03 2.44 2.24
0.8 | 7.916E-03 | 3.071E-03 | 1.330E-03 2.57 2.30
0.9 | 3.725E-03 | 1.367E-03 | 5.750E-04 2.72 2.37
1.0 | 1.736E-03 | 6.020E-04 | 2.455E-04 2.88 2.45

Table 2: Backward Euler method with the approximation U™ of uy(t,,).

We next consider the #-method defined by (2.1), with 8 = 2/3, ie., 7(A) =
(1—2X)/(14 2X), with 7(c0) = 1/2, which is also accurate of order p = 1. Table 3
shows the L, error estimates of the approximation U™ of u(t,), and Table 4 shows
the Ly error estimates of the approximation U™ of u(t,), Tables 3 and 4 again
confirm our theoretical results.

Table 5 shows the Lo error estimates of the approximation —A,U™ of u(t,).
Since r(c0) # 0, the error estimate (5.5) is not valid for —A,U™. Now e(k) =
e(k,tn) = [|JARU™ — ug(tn)||- By (2.6), we have [|A,U"|| < Cmax(t,!, h=2e~").
When n is small, the term Ch~2e~°" dominates, so that we cannot expect —A,U™
to be a good approximation of u;(t,), but this term becomes exponentially smaller
with n. For example, for ¢, = 0.4 we have n = 8,16, and 32 when £ is chosen as k =
1/20,1/40, and 1/80. We see that p(1/20,1/40) is much larger than p(1/40,1/80):

Ch~2e~" is much smaller for n = 16 than for n = 8.

t | £(1/20) | (1/40) | e(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 4.453E-02 | 1.122E-02 | 4.492F-03 3.96 2.49
0.2 | 1.420E-02 | 6.329E-03 | 3.369E-03 2.24 1.87
0.3 | 6.661E-03 | 3.593E-03 | 1.901E-03 1.85 1.89
0.4 | 3.284E-03 | 1.815E-03 | 9.538E-04 1.80 1.90
0.5 | 1.565E-03 | 8.618E-04 | 4.484E-04 1.81 1.92
0.6 | 7.206E-04 | 3.923E-04 | 2.024E-04 1.83 1.93
0.7 | 3.231E-04 | 1.736E-04 | 8.888E-05 1.86 1.95
0.8 | 1.420E-04 | 7.532E-05 | 3.824E-05 1.88 1.97
0.9 | 6.146E-05 | 3.215E-05 | 1.618E-05 1.91 1.98
1.0 | 2.628E-05 | 1.356E-05 | 6.765E-06 1.93 2.00

Table 3. §-method, # = 2/3, with the approximation U™ of u(ty).



t | £(1/20) | (1/40) | e(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 2.863E-00 | 9.914E-01 | 1.676E-01 2.88 5.91
0.2 | 6.390E-01 | 1.540E-01 | 7.213E-02 414 2.13
0.3 | 1.872E-01 | 6.786E-02 | 3.352E-02 2.75 2.02
0.4 | 6.867E-02 | 3.048E-02 | 1.507E-02 2.25 2.02
0.5 | 2.817E-02 | 1.331E-02 | 6.555E-03 2.11 2.03
0.6 | 1.193E-02 | 5.729E-03 | 2.806E-03 2.08 2.04
0.7 | 5.067E-03 | 2.430E-03 | 1.184E-03 2.08 2.05
0.8 | 2.140E-03 | 1.019E-03 | 4.938E-04 2.09 2.06
0.9 | 8.980E-04 | 4.240E-04 | 2.039E-04 2.11 2.07
1.0 | 3.745E-04 | 1.749E-04 | 8.358E-05 2.14 2.09

Table 4. §-method, § = 2/3, with the approximation U™ of uy(ty,).

t | e(1/20) | e(1/40) | e(1/80) | p(1/20,1/40) | p(1/40,1/%0)
0.1 | 2.277TE4+03 | 5.674E+402 | 3.504E+01 4.01 16.1
0.2 | 5.686E+02 | 3.532E+01 | 1.388E-01 16.0 254.5
0.3 | 1.420E+02 | 2.198E+00 | 1.877E-02 64.5 117.4
0.4 | 3.546E+01 | 1.380E-01 | 9.414E-03 256.9 14.6
0.5 | 8.857TE+00 | 1.204E-02 | 4.427E-03 735.5 2.71
0.6 | 2.212E400 | 3.909E-03 | 1.998E-03 565.8 1.95
0.7 | 5.524E-01 | 1.714E-03 | 8.774E-04 322.1 1.95
0.8 | 1.379E-01 | 7.435E-04 | 3.773E-04 185.5 1.97
0.9 | 3.446E-02 | 3.174E-04 | 1.597E-04 108.5 1.98
1.0 | 8.609E-03 | 1.338E-04 | 6.678E-05 64.3 2.00

Table 5. §-method, § = 2/3, with the approximation —A,U™ of us(ty).
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In the following Tables 6 and 7 we present maximum-norm error corresponding
to Tables 3 and 4.

t | £(1/20) | e(1/40) | =(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 1.669E-01 | 4.343E-02 | 6.465E-03 384 6.71
0.2 | 4.794E-02 | 8.957E-03 | 4.764E-03 5.35 1.87
0.3 | 1.537E-02 | 5.082E-03 | 2.688E-03 3.02 1.89
0.4 | 5.498E-03 | 2.570E-03 | 1.348E-03 2.13 1.90
0.5 | 2.214E-03 | 1.218E-03 | 6.342E-04 1.81 1.92
0.6 | 1.020E-03 | 5.548E-04 | 2.863E-04 1.83 1.93
0.7 | 4.572E-04 | 2.456B-04 | 1.257E-04 1.86 1.95
0.8 | 2.009E-04 | 1.065E-04 | 5.405E-05 1.88 1.97
0.9 | 8.693E-05 | 4.548E-05 | 2.288E-05 1.91 1.98
1.0 | 3.717E-05 | 1.918E-05 | 9.568E-06 1.93 2.00

Table 6. #-method, with the approximation U™ of u(¢,) in L., norm.
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t | e(1/20) | e(1/40) | £(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 9.664E+00 | 4.558E+00 | 6.097E-01 2.11 TAT
0.2 | 2.460E+00 | 3.964E-01 | 1.020E-01 6.20 3.88
0.3 | 6.737E-01 | 9.585E-02 | 4.741E-02 7.02 2.02
0.4 | 1.939E-01 | 4.30E-02 | 2.123E-02 450 2.02
0.5 | 5.960E-02 | 1.883E-02 | 9.270E-03 3.16 2.03
0.6 | 1.970E-02 | 8.102E-03 | 3.969E-03 2.43 2.04
0.7 | 7.118E-03 | 3.437E03 | 1.674E-03 2.07 2.05
0.8 | 3.018E-03 | 1.442E-03 | 6.983E-04 2.09 2.06
0.9 | 1.268E-03 | 5.996E-04 | 2.884E-04 2.11 2.07
1.0 | 5.293E-04 | 2.474E-04 | 1.182E-04 2.13 2.09

Table 7. §-method, with the approximation U™ of u(t,) in Lo, norm.

Finally we consider the Crank-Nicolson method. Tables 8, 9, and 10 show the
error in U™, U™ and —A,U" in Ly norm. Note that because this method is not
smoothing, the error estimates (5.4) and (5.5) are not valid. Thus, in Table 8 we do
not attain the full O(k?) convergence which holds for smooth data. Further, inTable
9, the error does not decrease with k, because the difference quotient contains
Finally, in Table 10, the error is very large and depends on the
multiplication by the ill-conditioned operator A, of the oscillating components of

a factor k1.

U™, which are now not small.

t | 2(1/20) | e(1/40) | (1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 1.764E-01 | 1.249E-01 | 8.750E-02 1.41 1.42
0.2 | 1.489E-01 | 1.047E-01 | 7.263E-02 1.42 1.44
0.3 | 1.345E-01 | 9.437E-02 | 6.481E-02 1.42 1.45
0.4 | 1.250E-01 | 8.752E-02 | 5.958E-02 1.42 1.46
0.5 | 1.181E-01 | 8.249E-02 | 5.566E-02 1.43 1.48
0.6 | 1.128E-01 | 7.856E-02 | 5.259E-02 1.45 1.49
0.7 | 1.084E-01 | 7.534E-02 | 5.003E-02 1.43 1.50
0.8 | 1.048E-01 | 7.263E-02 | 4.785E-02 1.44 1.51
0.9 | 1.016E-01 | 7.030E-02 | 4.596E-02 1.44 1.52
1.0 | 9.895E-02 | 6.825E-02 | 4.428 E-02 1.44 1.54

Table 8. Crank-Nicolson method, with the approximation U™ of u(t,).
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t | e(1/20) | e(1/40) | £(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1] 0.1369 | 0.1843 | 0.2534 0.74 0.72
0.2 ] 0.3691 | 0.5100 | 0.70 0.72 0.72
03] 0.6693 | 0.9285 | 1.26 0.72 0.73
04| 1.0235 | 1.4207 | 1.92 0.72 0.73
05| 1.4242 | 1.9756 | 2.65 0.72 0.74
0.6 | 1.8664 | 2.5856 | 3.45 0.72 0.74
0.7 23462 | 3.2450 | 4.30 0.72 0.75
0.8 | 2.8607 | 3.9496 | 5.19 0.72 0.76
0.9 | 3.4074 | 4.6056 | 6.13 0.72 0.76
1.0 | 3.9844 | 5.4802 | 7.10 0.72 0.77

Table 9. Crank-Nicolson method, with the approximation U™ of u(t,).

t | e(1/20) | e(1/40) | e(1/80) | p(1/20,1/40) | p(1/40,1/%0)
0.1 | 9.109E+03 | 9.083E+03 | 8.986E+03 1.00 1.01
0.2 | 9.100E403 | 9.050E+03 | 8.864E+03 1.00 1.02
0.3 | 9.091E+03 | 9.017E+03 | 8.750E+03 1.01 1.03
0.4 | 9.083E+03 | 8.986E+03 | 8.640E+03 1.01 1.04
0.5 | 9.074E+403 | 8.955E+03 | 8.534E+03 1.01 1.04
0.6 | 9.066E+03 | 8.924E+03 | 8.431E+03 1.02 1.05
0.7 | 9.056E+03 | 8.894E+03 | 8.332E+03 1.02 1.06
0.8 | 9.050E+403 | 8.864E+03 | 8.236E+03 1.02 1.07
0.9 | 9.042E403 | 8.835E+03 | 8.142E+03 1.02 1.08
1.0 | 9.033E+03 | 8.807E+03 | 8.050E+03 1.03 1.09

Table 10. Crank-Nicolson method, with the approximation —A,U™ of wu(ty,)-
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