SPECTRAL PROPERTIES IN THE LOW-ENERGY
LIMIT OF ONE-DIMENSIONAL SCHRODINGER
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MICHAEL MELGAARD

ABSTRACT. In this paper we consider the Schrodinger operator
H = —d?/ds? + V in L?>(R), where V satisfies an abstract short-
range condition and the (solvability) condition (1,V1) # 0. Spec-
tral properties of H in the low-energy limit are analyzed. Asymp-
totic expansions for R(¢) = (H — ¢)~! and the S-matrix S(\) are
deduced for { — 0 and A | 0, respectively. Depending on the
zero-energy properties of H, the expansions of R(¢) take different
forms. Generically, the expansions of R(¢) do not contain negative
powers; the appearance of negative powers in (/2 is due to the
possible presence of zero-energy resonances (half-bound states) or
the eigenvalue zero of H (bound state), or both. It is found that
there are at most two zero resonances modulo L?-functions.

1. INTRODUCTION

In this paper we study spectral properties and scattering theory in
the low-energy limit of one-dimensional Schrodinger operators H =
Hy+V in L*(R), where Hy = —d?/dx? and the symmetric operator V
belongs to an abstract class of short-range potentials. In a framework
of weighted Sobolev spaces H™*(R) with regularity m and decay s, we
assume that the potential V is a compact operator from H'? to H%?
for some 3 > 1 and that it extends to a compact operator from H~*
to H 1A=,

The results on the spectral properties of H are expressed in terms of
asymptotic expansions for the resolvent R(¢) = (H — ¢)~! and the S-
matrix S(A\), A = Re(, as ( — 0; this is the low-energy limit. Generally,
the expansions take the form

R(¢) = =¢BY) —i¢ 2B + B + i B oo (L)
S() = S8 + A28 —AS5E 4. (1.2)
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where Im¢ > 0, Im¢'/?2 > 0, A = Re¢ > 0 and |(| — 0. Depending
on the zero-energy behaviour of H the expansions take different forms.
In (1.1) and (1.2) this is indicated by the upper index «. The coeffi-
cients in (1.1) and (1.2) can be found explicitly. Expressions for the
leading coefficients, at least, are given. The expansion (1.1) is valid
in the operator norm in B(—1,s;1,—s') = B(H™%*, H>~*). There is
a complicated relation between the order [ of the expansion and the
required 3 and s,s’. Generally, expansions to a high order [ reguire
large § and s, s’. The expansion (1.2) is valid in the operator norm in
B(C?).

The main two steps towards these results are: 1. A complete analysis
of the zero-energy properties of H. 2. Derivation of the expansions;
we demonstrate that the technique of Jensen and Kato [4] developed
for the three-dimensional Schrédinger operator can be made to work,
despite the additional complications in dimension one (see below).

In comparison with the three-dimensional situation treated in [4], the
study of H is more intricated because the kernel of the free resolvent
has a square-root singularity in the limit as the energy tends to zero.
Due to this property we are forced to make the assumption (1,V1) # 0,
where (-, -) denotes the natural duality between H™* and H~™~°. This
assumption is a natural solvability condition but has no physical expla-
nation. Under this assumption we classify the zero-energy properties
of H. A priori zero can be an eigenvalue of H or a zero resonance for
H, or both. We have a zero resonance (or half-bound state) if Hy =0
has a solution 1) in a space slightly larger than L2. In dimension one it
is natural to assume that a zero resonance belongs to L*°. It turns out
that essentially three cases may occur: H has no eigenvalue zero and
no zero resonance (zero is a regular point), H has no eigenvalue zero
but has a zero resonance (zero is an exceptional point of 1st kind), H
has eigenvalue zero but has no zero resonance (zero is an exceptional
point of 2nd kind), or H has both eigenvalue zero and a zero resonance
(zero is an exceptional point of the 3rd kind). In all cases we derive ex-
pansions of (1 + Ry(¢)V)~! and, via the resolvent equation, R((). As
an application, asymptotic expansions of the scattering matrix are ob-
tained as the energy tends to zero. The singularities (negative powers
in ¢'/2) in (1.1) occur in the exceptional cases. Generically, there are
no negative powers, which explains the terminology of the exceptional
cases.

This work complements the works of Murata [14] and Bollé et al [1].
Murata considers general elliptic differential operators of Schrodinger
type, allowing non-selfadjoint, non-local potentials. Inspired by Vainberg
[18], he develops a method, different from the technique of Jensen-Kato,
to obtain asymptotic expansions for the resolvent. However, the anal-
ysis of the zero-energy properties are not explicit nor complete. For
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Schrédinger operators with multiplicative (local) potentials having ex-
ponential decay at infinity, Bollé et al deduce norm-convergent Taylor
(Laurent, respectively) series of the transition operator (1+uRy(¢)v)™!
as the spectral parameter ¢ tends to zero, where Ry(¢) = (Ho — ¢)™*
is the free resolvent and the (symmetric) weights v and v are defined
as u(x) = |V (x)*? and v(z) = u(z)Sign V(z). For potentials decaying
like O(|z|=?) as |z| — oo for some 3 > 2, their zero-energy analysis is
complete. In particular, they show that zero cannot be an eigenvalue of
H. We extend this analysis to the abstract class of potentials, relying
on the mapping properties only. The classification of the point zero
in the spectrum of H resembles the one in dimension three [4] with
one exception. In dimension three there is at most one zero resonance
function modulo L2-functions, whereas in dimension one there are at
most two. Due to this circumstance, additional subcases arise in the
exceptional cases of 1st (three subcases) and 3rd kind (three subcases).

Related results obtained by entirely different methods are found in [2,
3, 8, 15, 19], wherein the leading coefficients in the expansions of the
scattering matrix are derived. However, these methods do not allow
one to compute higher order terms.

This work is motivated by a number of problems related to the study
of the threshold behaviour of resolvents of 2 x 2 operator-valued matrix
Hamiltonians of the form

Ho) = (7 g ) o (4 ) (1)
in H = H, ® Hp, where H, and H, are Hilbert spaces. Here H,
and H, are self-adjoint operators, Vg, € B(Hp, Ha), Voe = V.5 and
g is a coupling constant. It is assumed that the threshold ), of the
absolutely continuous spectrum of the component Hamiltonian H, is
situated strictly above such a threshold )\, for H,. There are several
possible situations, e.g. the one where H, has an isolated eigenvalue
coinciding with the threshold ),. In an abstract framework in the pa-
per [12], and in mostly fairly singular situations, asymptotic expansions
of the resolvent R(1;¢) = (H(1) — ¢)~! are derived as ( — A,. Appli-
cations of these abstract results to scattering theory of concrete pairs
of two-channel Hamiltonians are given in the paper [13]. In particular,
Hamiltonians with one-dimensional Schrodinger operators as compo-
nent Hamiltonians are studied in details and low-energy expansions of
the scattering matrix are obtained. These results rely explicitly on as-
ymptotic expansions of the resolvent of the component one-dimensional
Schrodinger operators, i.e. the main theorems in the present paper.
Moreover, by modifying slightly the proofs in [12] one can study per-
turbation of eigenvalues and half-bound states of H(0) embedded at
the threshold A,. Detailed results are found in the paper [7], where
it is shown that for instance embedded eigenvalues of H(0) leave the
continuous spectrum of H(g) for 0 < |g| < 7y for some positive 7.
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These eigenvalues may show up as resonances or discrete eigenvalues.
Applications are given to the Friedrichs’ model and Schrédinger-type
Hamiltonians of the form in (1.3).

The abstract theory in [12] can be applied also to the three-dimensional
Schrodinger operator with a constant magnetic field and an axisymmet-
rical electric potential. Under these assumptions the operator can be
represented in a multi-channel framework. For the lowest Landau level
we can fit the problem into the afore-mentioned two-channel frame-
work, apply the results in [12] and, consequently, obtain expansions of
the resolvent and the scattering matrix near the lowest Landau thresh-
old. Tt requires considerable preparation to apply the results in [12]
and a crucial ingredient is asymptotic expansions of the resolvent of an
auxiliary one-dimensional Schrédinger operator with a non-local po-
tential satisfying the conditions in the present paper. Thus, the main
theorems herein are used explicitly. Preliminary results are contained
n [11]. Complete results will be published elsewhere.

Finally we note that we intend to give results under the (comple-
mentary) assumption (1,V1) = 0 in a forthcoming publication.

2. THE FREE RESOLVENT

The basic Hilbert space is L?(R). Let S'(R) denote the tempered
distributions. Let p denote the momentum operator —id/dz, (z) =
(14 |2[*)Y? and (p) = (1 + p*)*/2. We use the weighted Sobolev space
H™s = H™(R) given by

H™(R) = {u € §R)| ||ullm,s = [[{z)*(p)"ullz> < oo}.

We use (-,-) to denote the inner product on L? and also the natural
duality between H™* and H "™ 5. B(m,s;m’,s') denotes the space of
bounded operators from H™* to H™* with the operator norm. The
Fourier transform is given by

(F)(€) = D(€) = (2m) / e "E(z)dz

R
and is a bounded map from H™* to H*™.

The free Hamiltonian Hy = —d?/dz? is a self-adjoint operator in
L?(R) with domain D(H,) = H%(R) and spectrum o (Hy) = 0.s5(Hy) =
[0, 00), where 0,5 denotes the essential spectrum. Its resolvent Ry(() =
(Ho — ()7, ¢ € p(Hy) = C\[0,00), has kernel [16, Theorem 9.5.2]

() = b ivCla—yl
RO(x:ya C) - 2\/Ze ’ (21)
where, for ¢ € C\[0,0), /C is chosen such that Imy/C > 0. The
following properties of the free resolvent can be easily checked. For
8,8 > 1/2, Ry(¢) is a continuous map from the closure of C\|0, o)
to B(—1,s;1,—s"). Moreover, Ry(¢) = —i¢"*G_; + Ro(¢), where
G_1 = —(1/2)(-,1)1 is a rank one operator and R(¢) is a continuous
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map from C to B(—1,s;1,—s'), s,s' > 3/2. Formally, (2.1) gives the
expansion

o0

Ry(¢) = > (i¢"*)"Gn,

n=-—1

where G, is an integral operator with kernel

1
Gn(z,y) = CESH

For s,s' > n+ 3/2 we have that
Gn € B(—1,5;1,—8'), n=-1,0,1,2,... (2.2)
Let N € N, s,s' > N+3/2 and let  satisfy 0 < # < min {1, min{s, s’} —

N-3/2}. As|¢| = 0,¢ € C\{0},Im+/C > 0, we have in B(—1,s;1, —s')
the expansion

|.Z‘ _ y|n+1‘

Ro(Q) = Y (i¢"*)"Gn + O(I¢|V972). (2.3)

Henceforth we use the notation
Hm,s+0 — U Hm,s’ Hm,st — m Hm,s’.

s'>s s'<s
These are regarded simply as algebraic vector spaces; we do not intro-
duce topologies in them.
The following properties of G will be needed later. First, HyGop = ¢
for any ¢ € H—13/2%% Secondly, using the notation (-) = z, we have
the following result.

Lemma 2.1.

(i) Assume that ¢ € H®>% and (4, 1) = 0. Then Goip € H2~27°NL>.
(ii) Assume that v € H™"* s > 3/2 and (1,1) = 0. Then Goy) €
Hl,—1/2—0 N L>.

(iii) Assume that ¢ € H®*0 (1) = 0 and (¢,(-)) = 0. Then
Goty € H20H0,

Proof. We first prove that ¢ € H%® s > 3/2, and (¢, 1) = 0 imply that
Goop € H* /270 Since

(Gud)(w) = =5 [ (}o = vl = lzolu)dy

we have that Go¢ = G\¢, where G, has kernel Gy(z,y) = |z —y| — |z|.
From ||z —y| —|z|| < |y| the kernel of G, is dominated by |y|, which is
the kernel of an operator that maps H%® to H%'~* for s > 3/2 and also
H%* to L*®. Thus, Go¢p € H> /2700 L™ and since (1 — d?/dz?)Gop =
Gop + ¢ € HO /270 we have that Go¢p € H> /20 This proves
(i). To prove (ii), set ¢ = (p)~'¢. Then ¢ € H®* s > 3/2, and
(#,1) = (1,1) = 0 by assumption. Hence Gop € H> /2700 L>® by
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what was just proved. Then Gy € H» /2790 L* as required. Similar
techniques are used to prove (iii). O

Lemma 2.2. Assume that 1, ¢ € H%2t0. [f (1h,1) = 0, (¢,1) = 0,
(¥, (-)) =0 and (¢, (-)) = O then

(Gath, 8) = —(Gotb, Gog). (2.4)

Proof. First we have to verify that both sides of (2.4) make sense. Now,
¥ € H%2+% implies that G € H 29 by (2.2), so that the left-hand
side of (2.4) makes sense. Furthermore the right-hand side makes sense
because Gy, Go¢p € H**T0 c H®® by Lemma 2.1(iii). The inverse
Fourier transform of 1/(|£]?+¢), € > 0, is given by (1/2,/€) exp(— Ve|zl).
Using Taylor’s formula and taking the limit € | 0, we find that (52 1/) ¢> =

(Go, ), if |z|*p € L' and (2, 1) = 0, which is clearly satisfied. Using
this, in conjunction with (G 19, ¢) = 0 and (G1v, ¢) = 0, (2.4) follows
from

(G, ¢) = lm(—C"){(Ro(C) — Go), 9)

¢—0

= lim(~¢) / [P — )" — I 7] De)d(€)de
= —tim [ 1€(¢P - BB

- /Ww ©a(e)d

= —(I¢17%,167%9)

= —(Goy, Go9).
In the third equahty we apphed domlnated convergence as ( — 0; note
that 1 and & are in C* with ¢( ) = (b(O) = 0. O

3. THE SCHRODINGER OPERATOR H

We consider H = Hy+V where V is supposed to satisfy the following
abstract short-range condition.

Assumption 3.1. Let V be a symmetric operator in L?. Assume
that V is a compact operator from H? to H~1# for some 8 > 1, and
V extends to a compact operator from H"# to H~19. Assume, in
addition, that (1,V1) # 0.

We refer to 3 above as the decay parameter. We have that (p)1 =
Fl(1+|€[%)/2F 1] = 1 in the sense of distributions and 1 € L>~#/2(R)
for 3> 1, hence 1 € H"8/2(R) for 3 > 1. Since V € B(1,—3/2; -1, /2),
we conclude that V1 € H~1#/2(R) and finally we note that H1 —BI2(R)
is the dual space of H—#/2(R). This justifies the assumption (1, V1) #
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0. We note that the potential V is a compact map from H'* to H—1A+s
for any s € R.

Since V is a symmetric operator in L?(R) which by Assumption 3.1 is
Hy-form compact, the KLMN theorem generates a self-adjoint operator
H = Hy + V (quadratic form sense) in L?*(R). Furthermore, H is
bounded from below and any domain of essential self-adjointness of H
is a form core of H. Due to the Hy-form compactness, we have that
Oess(H) = 0ess(Hg) = [0,00). Often H is extended to a larger space.
In the sequel we will work in a framework of spaces H~!* and H>~* in
order to utilize the duality of these spaces.

We introduce the constant ¥ = 1/(1,V1) and define an operator
Q1 by Q16 = v(p,V1)1. Then Q, is a projection in H>~5(R) for
1/2 < s < —1/2. We also introduce its complement Qg =1 — @ in
the same space. We have the following elementary result.

Lemma 3.2. Let V satisfy Assumption 3.1 with 8 > 1. The following
relations holds in HY*(R) for 1/2 < s < 3 —1/2.

VQo=QV, VQi=Q\V (3-1)

G \VQy=0, QVG ,=0 (3.2)

Proof. Writing explicitly Qo+ = 1 — v(-, V1)1, Q§- = 1 — v(-,1)V1
and G_1- = —(1/2)(-, 1)1, we obtain the equalities by straightforward
computations, which are omitted. O

4. THE POINT ZERO IN THE SPECTRUM OF H

We analyze the point zero in the spectrum of H. We assume that
Assumption 3.1 with § > 3 is satisfied. Hereafter, the parameter s is
subject to the restriction 3/2 < s < 3 — 3/2. Define the spaces

M={pe H"*|QuGoVQud=—¢},

N={pe H " |QVGQs = v }.

Notice that QoGoV Gy and QFV GoQ; are compact operators. A priori
these spaces may depend on s, but obviously M is monotone increasing
and N is monotone decreasing in s. By the compactness of QuGoV Qg
and Q3V GoQ; and the duality of H>™* and H~"* we have dim M =
dim N' < oco. Since M and N are monotone in s in the opposite
direction, they must be independent of s € (3/2, 3 — 3/2). Further,

M C HY3/270 N HLA-3/2-0 ¢ g=13/240, (4.1)

Consider a family H,, = Hy+ pV with a real coupling parameter p. Let
M(p) (N (1)) denote the null space of 1+ uQoGoV Qo (14 pQEV GoQ)-
Then M(u) = N (1) = {0} except for a discrete set of p’s, because V
is compact. Thus, generically M = N = {0}.
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Lemma 4.1. (Hy+ V)M = {0} and both Hy and V' are injective from
M onto N.

Proof. Lemma 3.2 yields that V' maps M into N. Since HyGy¢p = ¢
for ¢ € M, this also implies that Hy, maps M into N. Let ¢ € M
and assume Hyp = 0. Then ¢(x) = a + yz for some constants «, 7.
Now, ¢ = —QoGoVQod = —QuGoQV ¢ and Q5V ¢ € H* for some
s > 3/2 and satisfies (Q3V ¢, 1) = 0. Hence we can use Lemma 2.1(ii) to
conclude that GoQgVé € H" for any r > 1/2. Since Qo maps H>™"
into itself for any r > 1/2, we get that ¢ € HY " for any r > 1/2. Thus
v = 0. Since ¢ = Qp¢, we have QQ1¢ = 0. But in this case Q1¢ = «,
so a = 0 and we have proved ¢ = 0. Thus H, is injective on M. Since
M and N have the same dimensions, it is also onto. The result for V/
follows from Hy¢p = —V ¢ for all ¢ € M. O

Contrary to the situation for local potentials, we need to introduce
the following space M.

Lemma 4.2. Let

M={peM|GV¢=-¢}.
(i) Then M = {¢ € M|(GoV ¢, V1) =0}. Furthermore, dim M/M <
1

(m) Assume M/M # {0} and let ¢ € M. Then
GoVop=—¢+v(GeVe,VI)1. (4.2)
The last term vanishes for ¢ € M.

Proof. Let ¢ € M. Then ¢ = Quo, since ¢ € M C M and, fur-
thermore, ¢ = Qo¢ implies that Q1¢ = 0. The latter yields that
(¢, V1) = 0. Since ¢ € M it can be rewritten as (GoV¢,V1) = 0.
Hence, M C {¢p € M |(GoV$, V1) = 0}. Conversely, if ¢ € M and
(GoV¢,V1) =0, then

GoV = QiGoV o+ QuGoV¢ = v(GoVe, V1)1 + QoGoV Qod = —¢

as desired. This proves that {¢ € M| (GoV¢,V1) =0} C M. Hence
we have shown both inclusions and this proves part (i). To prove (ii),
suppose ¢ € M, ¢ # 0. Then, as claimed in (ii),

¢ = —G()V(b + Q1GOV¢ == —G()V(b + V(Gov¢, V1>1 (43)

If ¢ € M then the last term vanishes, since (GoV ¢, V1) = 0 by (i). O

4.1. Zero-energy behaviour of H. In this section we describe the
zero-energy properties of H. We use the notation Sign(-) = -/|-|, where
(-) = z (or y). We begin with two lemmas.
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Lemma 4.3. Let Assumption 3.1 with 3 > 5 be satisfied. Let 5/2 <

s < f—05/2. Assume ¢ € M. Then ¢ € L*(R) and Hp = 0 in the
sense of distributions. Moreover,
1.

¢ = QiGoVe + 5Sign ()(Ve, (1)) € L*(R) (4.4)

and

8(£00) = QuGoV6 F (V. (). 4.5

Proof. First we show that ¢ € L*°(R). By Lemma 4.2(ii) we have that
¢ =—GoVo+ Q1GoV . (4.6)

Here V¢ € H ' and, in addition, ¢ € M implies that (¢, V1) = 0.
Therefore, Lemma 2.1(ii) asserts that GoV¢ € L*. Thus, ¢ € L™
as desired. From Lemma 4.1 we have that H¢ = 0 in the sense of

distributions. This proves the second assertion. Let us show (4.4).
Define

3(x) = 6(z) ~ QuGoV6 + SiEn V(@){V, ()
Using (¢, V1) = 0 we find that

¢(z) = Q1G0V¢+%/

o

lz—yl(Vo)(y)dy

1 x

Q1Go Vo — e Ve, () +
I =) (Vo) (y)dy, <0,
! { Jo y=2)(Vo)(y)dy, = >0, (4.7)

where, in the last equality, we have taken into account the sign of z.
In the compact set K = [—a,al, a > 0, ¢ is clearly bounded. Via (4.7),
e.g. for z > a, we find that

i) = [ "y - (V) w)dy.

Using |y — z| < 2|y|?/|z| and ¢ € L™, we obtain the inequality
7 2/|¢lloo [
@) < 20 [ PV @)y

and similar for z < —a. Since 1 € H» ¢ for s > 1/2, we find that
V1 e L** for 1/2 < s < 3 — 1/2. Hence, the latter integral can be
estimated by Holder’s inequality. We find that

T ywldy < ([ ity -y 1/2||V1||L2,s.
/ ( )

Z

For s > 5/2 the integral on the right-hand side is finite. Finally, since
2/|z| € L*(R\K), it follows that ¢ € L?. This completes the proof. [
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The converse of Lemma 4.3 is contained in the next lemma.

Lemma 4.4. Let Assumption 3.1 with > 5 be satisfied. Let 5/2 <
s < B—5/2. Assume that ¢ € H-"3°NL* and Hp = 0 in the sense
of distributions. Then ¢ € M, and the statements in Lemma 4.3 hold
for this ¢.

Proof. Define ¢ = Q1GqV¢p — GoV¢. In order to prove the lemma,
we show that ¥ = ¢ a.e. and ¢ € M. The assumption ¢ € H“=5-0
implies that V¢ € H-13+0. Therefore, Hoth = —V ¢ since Q1 G,V ¢ is
a constant function. But —V ¢ = ¢" by assumption, so 9" = ¢"”. Thus,
for some constants o and v we have that

¥(z) = ¢(x) + a+ yz. (4.8)
Since ¢ € L, we get that

lim ¥lz) = 1. (4.9)

rz—+oo I

On the other hand, we can rewrite v as

Y(z) = Qi1GoV o+ %x(qﬁ, V1) + %%(@ V()+
J7 (=) (Ve)(y)dy, z <0,
" { [y —2)(Vo)(y)dy, z>0. (4.10)

For z > 0, due to |z — y| < 2|y| and ¢ € L, we get the estimate

| - x)(Vcb)(y)dy\ <2oll- [ WV @)

Now, V1 € L?® for 1/2 < s < 3 — 1/2. Therefore, the latter integral
can be estimated by Holder’s inequality. We find that

/ yl[(V1)(y)|dy < (/ yl* (1 + |y|2)sdy) IVA]z2.e
For s > 3/2 the integral on the right-hand side is finite. Hence, the
right-hand side of (4.11) tends to zero as z — 400. The case z — —o0
is handled analogously. Therefore, we obtain from (4.8) and (4.10) that
v = +1(¢,V1). Hence v = 0, which imlies that Q¢ = 0. Moreover,
@1¢ = 0. Thus, by (4.8) 0 = Q1(¢— ¢) = a and we have shown ¢ = ¢.
We conclude that ¢ + QoGoV Qo = 0 as claimed. From here one can
follow the proof of Lemma 4.3. O

The following result is crucial for our considerations. We empha-
size that the proof differs from the analogous proofs in dimensions
3,4,5,.... Compared with [10], which treats local potentials, some
modifications are necessary.
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Lemma 4.5. The geometric null space M coincides with the algebraic
null space of the operator 1+QoGoV Qo in QoH ™%, 3/2 < s < —3/2.
Thus there exists a projection operator U and a linear operator L in
H3/278+0  both in B(HY*) such that

U?=U, UL=LU=0, (4.12)
(14 QoGoVQo)U = U(1 + QyGoV Qo) =0, (4.13)

(14 QoGoVQo)L = L(1+ QoGoV Qo) =1 -U (4.14)

Similar results hold for the null space N of 1 + Q§V GoQ§ with U and
L replaced by U* and L*, respectively.

Proof. Tt suffices to show that (1 + QyGoVQo)%¢ = 0, ¢ € QoH" %,
implies that (1 + QOGOVQO)¢ = 0’: Define w = gl + Q()G()VQo)(ﬁ SUC}I

that (1 4+ QoGoV Qo) = 0. Let ¢ = V¢ and ¢ = (1 + Q;VGoQ5)¢-
Then (1, %) = (1 + QoGoV Qo)*®, ¢) = 0. On the other hand,

0= () = ~(GoQV v QGVv) = (V. GV )
if |z2QiV € L and (1, Q5V ) = 0. Now, QiVy = Vip—v(Vh, 1)V1
and V1 € H%~1/2=¢since 1 € H>~'/2=¢, Therefore |z|>V1 € H*~5/2=¢,
By Cauchy-Schwarz’ inequality H>* C L' for s > 1/2 and as a con-
sequence |z|?V1 € L! for 3 > 3. From Lemma 4.3 we have that
¥ € L* and therefore we also have that |z[?V+ € L!'. In addi-
tion, (Q§V1,1) = 0. Hence, computing in momentum space, we get

tlf:<G0Q3V¢,Q3V¢> = —||(1/1EN(QsV )35, which implies that
(QsVY)(£) = 0 a.e. and therefore Q5Vy = 0 in L2, Thus, v =0. O

Next we study under which conditions ¢ € M is a zero-energy eigen-
function for H or in other words, when ¢ € M belongs to L?. Let P,
denote the orthogonal projection in L? = H%? onto the eigenspace for
the eigenvalue zero for H. If zero is not an eigenvalue, we set Py = 0.

Lemma 4.6. Let ¢ € M. Then ¢ € H*® if and only if 1) = Hyp =
—V ¢ satisfies both Q1Gotp = 0 and {1, (-)) = 0. In this case actually
¢ € H> 1270 We have PL*(R) = {¢p € M| (V¢,(-)) =0} and
dim (M/PyL?*(R)) < 1. In particular, P3V1 = 0, PVz = 0 and
PyGyV1 =0.

Proof. Suppose that ¢ € M N L2 From Lemma 4.3 we have that
Q1Gov = 0 and (¢, (-)) = 0. Conversely, suppose that ¢ € M and
both Q1Goyy = 0 and (¢, (-)) = 0. As in the proof of Lemma 4.3
¢ € M implies that ¢ can be written as in (4.7). Then Q;Gov) = 0
and (¢, (-)) = 0 imply that, e.g. for z > 0,

o(x) = / T2V )dy.
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Next one imitates the proof of (4.4) in Lemma 4.3 to conclude that ¢ €
L%(R). Finally, let us show that ¢ € MNL? implies that ¢ € H“~1/270,
Now, if ¢ € M then V¢ € N by Lemma 4.1. Thus, V¢ € N C
H=13/240 and from Lemma 2.1(ii) we infer that GoV¢ € HV~1/2-0,
Moreover, since ¢ € M N L? we have from above that Q,G\V ¢ = 0.
Hence ¢ = —GoV¢ € H""1/270 a5 desired. The remaining assertions
are obvious. O

By Lemma 4.2 and Lemma 4.6 P,L>(R) C MNH"1/270 TLet {¢,}
be an L?-orthogonal basis for PyL*(R). Then Py = Y (-, ¢n)¢n, and
thus P, extends to an operator from H~11/2+0 to g1.-1/2-0,

4.2. Decomposition of H''~*. We shall decompose the space H»~*
according to the description above. We have already decomposed H>~*
with respect to the projections )y and @1, viz. Qg + Q1 = 1. Fur-
thermore, RanU = M C QuH“~%; in particular, U = QoU = UQy.
Hence we need not decompose Q1 H"~*. By Lemma 4.5 we decompose
QoHY~* with respect to U and its complement Uy := Qo — U; here
Up = QoUpy = UpQy. We call any v € M\PyH®® a zero resonance
function. Lemma 4.2 and Lemma 4.6 assert that dim (M\H%%) < 2,
so there is at most two (linear independent) zero resonance functions
modulo L?-functions. In comparison, in the three-dimensional case
there is at most one zero resonance function [4]. Next, we introduce a
projection onto PyH%°. To construct it, we need the following lemma.

Lemma 4.7.

—POVG2VPO = P().

Proof. Tt suffices to prove that —(GyV Pyt), V Pagd) = (Pot), ¢) for i, ¢ €
H%%. From Lemma 4.6, we have that (V Py, 1) = 0, (VPy¢,1) = 0,
(VPy, (-)) =0 and (VFyo,(-)) = 0 and, by means of Lemma 2.1, we
get

—(G2V P, VPyg) = (GoV Poyp, GoV Pogh).
But GV Pyyy = —Pytp since Py € M. This yields the result. O

From (2.2) we have that VG,V € B(1,—s; —1, s) for any s satisfying
7/2 < s < f—T7/2. Lemma 4.7 implies that — P,V G5V is a projection in
HY%~%. With the projection U from Lemma 4.5 we have from Lemma, 4.6
that UPy = Py. Therefore, also —Py)V G,V U is a projection in H~*,
and in M. Hence, we have projections

UO = QO - Ua
Uy = (14 BRVGV)U,
Uy = —-PVGVU
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with the following properties

U;jUg = 0;4Ux, ,J,k=0,1,2 (4.15)
and the decomposition
U+ Ui+ Uy + Q1 =1 (identity in H7%). (4.16)

In view of Lemma 4.2 and Lemma 4.6 U; H~* is at most two-dimensional.
If U; # 0 there exists functions ¢; and ¢, in M satisfying

<¢1, VG0V1> 7é 05 <¢1, V()) 7é 05 (4'17)

<¢2,VG0V1> =0, <¢25 V()) # 0, (4-18)

The dual elements in N are ¢; = V¢, and ¢ = Vo. We choose the
normalization

For 7 = 1,2, introduce the constants

& = v(GoVe;, V1), &) = (Ve (), (4.20)

where the functions ¢; are described above. Then we make the follow-
ing classification of the zero-energy properties of H: Zero is a regular
point for H when U; = Uy, = 0. Zero is an exceptional point of the 1st
kind for H when U; # 0 and U; = 0. Here we make the subclassifica-
tion:

Type 1. dim M = 0,

Type 2. dimM =1,

Type 3. dimM = 2.

Zero is an exceptional point of the 2nd kind for H when U; = 0 and
Us # 0 and finally zero is an exceptional point of the 3rd kind for H
when U; # 0 and U, # 0. Here we make the same subclassification as
when zero is an exceptional point of the 1st kind. The classification has
the following meaning. If zero is a regular point for H there are no zero-
energy resonances or zero-energy bound states for H; this represents
the generic case. If zero is an exceptional point of the 1st kind for
H there are zero-energy resonances of H but no zero-energy bound
states. Zero is an exceptional point of the 2nd kind for H if there are
zero-energy bound states but no zero-energy resonances. Finally, zero
is an exceptional point of the 3rd kind for H if zero is both a resonance
and an eigenvalue. In all exceptional cases we have (¢;, V1) = 0. It is
convenient to collect the following relations in one place.

Lemma 4.8. The following relations are valid.

QOQI = QlQO = 0, UUO = U()U = 0, (421)
QU =UQ,=0, QU=UQy =1, (4.22)
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Q1+ Ui + Uz +UgQo =1, (4.23)

U;Up, = 01Uy, 3,k =0,1,2, ( )

QoU; =U;Qo=U;, j=1,2 (4.25)

QolUo =UpQo =Up — Q1 = Qo — U, (4.26)

U; =U;Q:=0, j=1,2, (4.27)

QL=LQ1=Q1, QL=LQy=L~-Q1, Q1LQy=0,  (4.28)
H,U =U*Hy,, VU =U"V. ( )

Proof. Equalities (4.21)-(4.22) follow from the definitions of Qy, Q1, Uy
and U. (4.23)-(4.25) are just (4.15)-(4.16). Furthermore, (4.26) follows
from the definition of Uy, for instance UyQy = QolUy = Qo(Qo — U) =
Qo — U. Equality (4.27) follows from (4.25)-(4.26) and (4.28) follows
from Lemma 4.5. The operator Hy maps UH» * = M into N by
Lemma 4.1, hence H)U = U*HyU. By taking adjoints, the equality
HyU = U*H, follows. The proof of the remaining equality in (4.29) is
similar. O

5. EXPANSIONS OF R(() FOR SMALL (

In this section we obtain expansions for R(¢) as ¢ — 0. The order of
the expansion is dependent on the decay parameter 3 for the potential
V. Generally, expansion to a high order requires a large 5. The proof is
based on the method introduced in [4] adapted to the current context.
The crucial technique is contained in [4, Lemma 3.12]. For the sake of
convenience we state it here.

Lemma 5.1. Let X, Y, X and Y be vector spaces. Let A : X — Y,
B:X = X,C:Y —Y belinear operators. Define A =CAB. IfA™!
exists, then A~ = BA1C provided B is surjective and C is injective.

Proof. Let D = BA™'C. AD = ABA~'C, hence CAD = CABA™'C =
C or C(AD — 1) = 0. Since C is injective, we conclude AD = 1.
Likewise, DA = BA 'CA such that DAB = BA 'CAB = B or
(DA —1)B = 0. The surjectivity of B implies that DA = 1. O

We proceed to give the necessary definitions. Throughout this sec-
tion we impose Assumption 3.1 with 8 > 3 on V, at least. Moreover,
we impose at least the restriction 3/2 < s < 3 — 3/2. We divide the
analysis according to the zero-energy properties of H. In all cases we
begin by obtaining an expansion for (1 + Ry(¢)V)~" around ¢ = 0 and
then proceed to obtain the expansion for R(() via the second resolvent
equation R(() = (1 + Ro(Q)V) ' Ro(C)-
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5.1. The regular case. We assume that zero is a regular point for
H. Under this assumption Qy(1 + GoV)Qy is invertible in QyH"~*
according to the analysis in Section 4.2. We denote by K the inverse
to Qo(1 + GoV)Qo in QoH"* and extend K to the whole of H~* by
setting K1 = ()1 K = 0. Thus the following relation hold:

KQ()(l + G()V)Q() = Q()(]. + G()V)Q()K = Qo, (51)

Furthermore, using the definitions we find that —iQ{VG V@, =
%(-,Vl)Vl. The inverse of this operator, which maps @Q;H"~* into
Qi H~14, is given by —2i1%(-,1)1. With these observations we are ready
to state the following lemma.

Lemma 5.2. Assume that zero is a regular point for H.
(i): Assume that 3 > 5 and let s satisfy 5/2 < s <  —5/2. For

¢ — 0 we have in B(1,—s;1, —s) the expansion
(14 Ro(Q)V) " = D¢ +i¢* D} + 0(¢) (5.2)
with
DY = K, (5.3)

DV = —_KG\VK — 20°(-, V1)1 + 2°(-, V1)K GoV +
+202 (-, K*(V + VGoV)1)1 = 20% (-, K*(V + VGV 1) KG,V. (5.4)
(ii): Assume that 8 > 7 and let s satisfy 7/2 < s < 3 —7/2. For
¢ — 0 we have in B(1,—s;1, —s) the expansion
(L+ Ro(QV) ' = D" +iC 2D = (DY + 0(C**) - (5.5)
with D(()O) and D§O) gwen above and

DY = _KGyVK + KGiVKG VK + 22 (VG VK-, 1)1+
— 42 VIV (1 + GoV), D1+ 20° (-, VI)KG,V +
=202 VI)KG1VKG,V — 20 (V(1 + GoV)KG VK-, 1)1 +
+44 (L VINV (1 + GoV), 1)KGoV +
+4A V(1 + GoV) K-, 1) {(V (1 4+ GoV)1, 1)1 +
+4 (-, VINV (1 + GoV)K Gy V, 1)1. (5.6)
Proof. We prove (i). The proof of (ii) is similar. Let s satisfy 5/2 <

s < 3 —5/2. In order to apply Lemma 5.1, we define the following
spaces and operators:

X=Y=H"5,
X=QX®QX, Y=0QX®QH ",

A=1+Ry(C)V, B=(By,B1)=(Qo,¢""Q),
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_( Co\ _ Q
(&) (ot )

Obviously, B is surjective. Moreover, C is injective. To prove this,
assume that ¢ € Y and C¢p = 0. Then QQy¢ = 0 such that ¢ = Q1¢ =
v(p, V1)1. Moreover Q;V¢ = 0, which means that v(¢, V1)V1 = 0.
Since V1 # 0, we get (¢, V1) = 0 and hence ¢ = 0. Thus, we have
proved that C is injective.

We define A = CAB and use matrix-notation for A. Using the
asymptotic expansions for Ry(¢) from (2.3), we get

A=14+Ry(Q)V =1—iC2G_V + GV +iC2G1V — CG5V + 0(C),
under the assumptions § > 5 and 5/2 < s < 3 — 5/2. Further,

(G _( GoAB, CoAB,
A= ( Cy >A(B°’Bl) = < C1AB, C,AB, > '

Using Lemma 4.8 and QoG _1V @1 = 0 we have

A = Qo(1+ GoV)Qo +iC?QuG1V Qo + O(C),
An = (MQo(1+ GoV)Q1 + i QeG1V Q1 + O(CY/Y),
Ap = IV + GoV)Qo + i *QIVGIV Qo + O(CY),
A = —iQIVG_VQi + (*QIV (1 + GoV)@Qy

+ICQTV GV Q@ + O(/).

Our assumption 5/2 < s < f —5/2 is necessary and sufficient to make
this computation. Let us verify this for two of the terms. The remain-
ing terms can be seen to make sense by similar arguments. Consider
QuG1VQ first. Ifu € HY ™, Quu e H"* for 1/2 < s < 3 —1/2, so
VQiu € H =% and G1VQu € H" % for 3—s > 5/2 and s > 5/2, or
5/2 < s < 8 —5/2. Qo maps H>* into itself, thus QyG,1V Q; makes
sense. Next, consider 7V GV Q) and show that this operator maps
Qi HY *into QTH ¢, Ifue HY %, Quu e H" *for1/2 < s < 3—1/2
and VQuu € H Y%=, Then G1VQiu € H " * for 5/2 < s < 8 —5/2
and thus VG1VQu € H 14~ C H 1%, Therefore, Q{V G,V Q1 maps
in the desired way.
We decompose A = D + S with

D — ( Qo(1 + GoV)Qo 0 )
0 —iQIVG V@ )-

We also have, with an obvious notation, the order estimate
/2 ,1/4

From the observations previous to this lemma we know that Qq(1 +
GoV)Qo has inverse K in QoH> * and 1QiVG_1VQ, = (¢/2)(-, V1)V1
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has inverse —2iv%(-,1)1. Therefore, D has inverse

L (K 0
D —<o —22(, 1)1 )

This means that for sufficiently small {, A is invertible and the inverse
can be computed using the Neumann series:

A'=D'-D'SD'+D'SD'SD "' —---
Using the finite version of the expansion we obtain asymptotic expan-
sions of (1 + Ro(¢)V)~! to a certain order, in the current case up to
terms of order ¢'/2 with an error of order O(¢). For this purpose the
first three terms written above will be needed. Using the expansion for

A! Lemma 5.1 then yields an expansion for A~!. The calculations
are tedious, but straightforward. This completes the proof of (i). O

We are ready to state the main result for the resolvent of H.

Theorem 5.3. Assume that zero is a reqular point for H. Suppose that
V satisfies Assumption 3.1 with 3 > 7. Let s satisfy 7/2 < s < f—T7/2.
For ¢ — 0 we have in B(—1,s;1,—s) the expansion
R(¢) = By +i¢"*B" + 0(¢)
with
B = QoK GoQp + v(-, 1)1, (5.7)

BY = KG, - KGiVKGy + v{-,1)KG,V + v{-,}KG,VKG,V+
+202(V (1 4+ GoV)K Gy, 1)1 — 203 (V (1 + GoV)KGy+, 1)Qo
+203(V Gy, 1) KGoV + 202 (-, 1)V (1 + GoV), 1) (1 — KG,V)
—202(V Gy, 1)1 — 203 (- 1NV (1 + GoV) K GV, 1) 1. (5.8)

Proof. Tt follows from Lemma 5.2, (2.3), KG_; = 0 and the second
resolvent equation. O

5.2. Exceptional case of the first kind: Type 1. By assumption
dim M = 1 and dim M = 0. We define the projection U,- = (-, <;~51)¢1,
where ¢, and ¢; satisfy (4.17) and (4.19). Hence the starting point of
the analysis is the decomposition Q; + U; + UyQo = 1. It follows from
the definitions of Uy, U; and @, and Lemma 4.8 that we decompose us-
ing three commuting projections. For convenience, define the operator
Uo = UpQy- We shall use the following two lemmas.

Lemma 5.4. The following relations hold.
QU =0, (U))'Qi=0, (U))'VG.U, =0, (5.9)

(U V(1 +GoV)U; =0, UiGeVTy=0. (5.10)
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Proof. The equalities are straightforward consequences of the defini-
tions of the various operators, (4.17) and Lemmas 4.8. O

Bear in mind that the operator L was introduced in Lemma 4.5.

Lemma 5.5.

(i) The inverse to Uy(1 + GoV)Uy in B(UyHY#) is L.

(ii) The inverse to (i/2)(-, V1)V1in B(Q:H"*, Q1 H *) is —2iv*(-, 1)1.
(iii) The inverse to (-, gbl)Vl in BUHY*, Q1 H™"*) is v{-,1)é,.

(iv) The inverse to (-, Vl)qbl in B(Q1H1 = (U') H=Y%) s v{-, ¢1)1.

(v) The inverse to (-, ¢1)¢y in B(U,H"* (U) H=5%) 4s (-, ¢1) 1.

Proof. (i) follows immediately from (4.26) and (4.14); in this order.
The proofs of (ii)-(v) are straightforward. O

Introduce the constant d; = —v2/[|c{V|2 + |V [?]. Note that d is
always finite, according to the subclassification in the exceptional case
of first kind.

Lemma 5.6. Assume that zero is an exceptional point of the first kind
for H (Type 1). Let Assumption 3.1 with > 7 be satisfied. Let s
satisfy 7/2 < s < 3 —"T7/2. For { = 0 we have in B(1,—s;1,—s) the
expansion

(1+ Ro(QV) " = L0 Gy + DY + 0(¢),

(1,1)

where the constant term Dy’ is given by

L g (e g
R 7 SN R G KLY ST P

e . d e . .
o (80 U6LU(1 + GoV)1 = 55 (-, 61) Do LUn G161

- . d N
L LV 4+ VGV)Uo LUy, 1)y — —1(G1VUOLU0-, é1)1 +

)ed?
2v3

LGV, V1)+

V2

1)2 2
+{|C1 | G+ vy, 1+ 4 Gy

C(l)dz
21/

LGV, ) + d—(G2V¢1, (151)} (-, 1)1+



SPECTRAL PROPERTIES IN THE LOW-ENERGY LIMIT... 19

V2

|C(1)|2d2 o
+ 1 L H(V + VGoV)To LU (1 + GoV)1, 1)+

() a3
2v3

A

2u3

) B N - ~
+%<G1VU0LU0G1V¢1, ¢1>} (-, $1) 1

+

(V +VGWVULUGLV y,1) +

+

(GiVU LU (1 + GoV)1, 1) +

Proof. The set-up needed to use Lemma 5.1 is as follows. The spaces
are X =Y = HV~5,

X=UpX®QXBUX, Y=UX®QH & U)H"
and the operators are

A=1+4Ry(Q)V, B =Ty, ("*Qs,¢ U},

Uy
c=| ¢
YUYV

From the definition, B is obviously surjective. Moreover, C' is injective
as we will show now. Assume that C¢ =0, ¢ € Y. This means

Upp =0, QVo=0, (U)Veé=0.

Now, (U,)*V¢ = VU,¢ and V is injective on M, so U;¢ = 0. Due to
¢ = Qo(1=U)p+U;¢+Q19, Qo(1 —U)¢ = 0 and U;¢ = 0 imply that
Q10 = ¢, or explicitly ¢ = Q16 = v{p, V1)1. Now, Q;V¢ = 0 yields
(¢, V1)V1 = 0 or (¢, V1) = 0, hence ¢ = v{p, V1)1 = 0. Thus, we
have proved that C is injective.

We define A = CAB and use matrix-notation for A; explicitly

C()ABO C()AB1 C()ABQ
A == CAB = ClABO ClABl 01A32
C2ABy CyAB, CyAB,

From (2.3), requiring 7/2 < s < 3 — 7/2, we obtain

A = 1+ RV
= 1—iCTV2G_1V + GoV +iC2GV — (GLV + O(¢3?),
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and via Lemma 3.2 and Lemma 5.4 we get the following expansions for
the individual terms in A:

Ay = Uo(1+ GoV)U, + i UGV Uy 4 O(C),

Ay = CYAQI(V + VG\V)Uy +iC*QIV GV Uy + O(CY),
Ay = Z'CIM(U{)*VGHV[?O +0(¢**),

Ap = CM'TO(1+ GoV)Qi + i TGV Q1 + O,

Ay = %vcgl + CI2QH(V + VGoV)Q1 + O(C),

Ay = VUGVQ:+ i XU VGLVQ:L + 0(C),
Ay = i§1/4(~]0G1VU1+O(C3/4),

Ay = QVGVU, +i("*QiVGVU, +0(Q),
Ay = i(U)'VGVU, = (V?(U)'VG VU, 4 0(Q).

Our assumption 7/2 < s < # — 7/2 is necessary and sufficient to make
this computation. Let us verify this for two of the terms. The remain-
ing terms can be seen to make sense by similar arguments. Consider
UGV Q first. Ifu € HY 5, Quu € H " * for 1/2 < s < —1/2, so
VQuu € H Y% and GVQu € H>* for § —s > 5/2 and s > 5/2,
or 5/2 < s < 3—5/2. Py, as well as @y, maps H"™* into itself,
thus UpyG1VQiu makes sense for 5/2 < s < 8 — 5/2. Next, con-
sider (U;)*VG,VU, and show that this operator maps U H> * into
(U)*H Y. Ifu € Hv*, Uu € H» * for 3/2 < s < 8 —3/2 and
VU € H-Y5=5. Then GyVUu € H>* for 7/2 < s < § — 7/2 and
therefore VGoVUu € H™ =5 ¢ H=%%. Thus, (U,)*V G2V P, maps in
the desired way.

As in the regular case the idea is to extract a leading invertible
operator. We extract the following leading term operator

Us(1+ GoV) Uy 0 0
D= 0 (%<, V1>V1~ cgl) <', &1)}/1~
0 (N VDG 20| 2( b1y

Due to Lemma 5.5, a simple computation shows that this operator is
invertible, and the inverse is given by

L 0 0
D'l=| 0 2id|c"2(-, 1)1 —@@,(plﬂ
0 —CUhL g G (b
At this point we have A = D + S, where
Cl/2 C1/4 Cl/4

S=0 C1/4 Cl/? C1/2
§1/4 C1/2 Cl/?
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and
C1/2 4-3/4 C3/4
2 — 9) C3/4 €1/2 <1/2
4-3/4 C1/2 <1/2

Hence A is invertible and the inverse can be computed using the Neu-
mann series. The expansion in the lemma requires the first three terms
in

A"'=D"'-D'SD'+D'SD'SD" +---

Lemma 5.1 then yields the desired expansion after some elementary
computations, which are omitted. O

Remark 5.7. To obtain the leading order term in the asymptotic ex-
pansion of the S-matrix (see Section 6) when zero is an exceptional
point of 1st kind for H (Type 1), it is necessary to know explicitly the
coeflicient Dgl’l) of the next term in the expansion above. It turns out
that the expression for Dg’l)
we do not duplicate it here.

takes up a lot of space. As a consequence,

The main result for the resolvent of H is:

Theorem 5.8. Assume that zero is an exceptional point of first kind
for H (Type 1). Let Assumption 3.1 be satisfied. Assume 3 > 7 and
let s satisfy 7/2 < s < 3 —7/2. For ( — 0 we have in B(—1,s;1,—s)
the expansion

R(Q) = ¢ 0 61)1 + O().

Proof. 1t follows from Lemma 5.6, (2.3) and the second resolvent equa-
tion, in combination with the relations (¢, V1) = 0, UyG_; = 0 and
Lemma 4.2(ii) O

5.3. Exceptional case of the first kind: Type 2. By assumption
dimM = 1. We may define the projection U;- = (-, d3)¢hs, where
¢5 and ¢, satisfy (4.18) and (4.19). Hence, the basic decomposition
is Q1 + U, +UpQo = 1. It follows from the definitions of U, U,
and @); and Lemma 4.8 that we decompose using three commuting
projections. For convenience, define the operator Uy = Uy@,. We shall
use the following lemma.

Lemma 5.9. The following relations are valid.

QU =0, (U))*Qi =0, (U))*'VG_VU, =0 (5.11)
(1+GWVU, =0, (U)*V(1+GoV)=0. (5.12)

U, GoVUy =0 (5.13)
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VU GVQ1 =0, QVGVU, =0, (5.14)
U VGV, =2/ (-, ¢s)bo. (5.15)

Proof. The equalities are straightforward consequences of the defini-
tions of the various operators, (4.17) and Lemmas 4.8. O

We introduce the constant dp = —v2/|c$?|2. Note that ds is always
finite, according to the subclassiﬁcatlon in the exceptional case of first
kind, type 2.

Lemma 5.10. Assume that zero is an exceptional point of first kind
for H (Type 2). Let Assumption 3.1 with 8 > 7 be satisfied. Let s
satisfy 7/2 < s < B —"7/2. For ( = 0 we have in B(1,—s;1,—s) the
eTpansion

(1+ Ro(g)vr1 =¢2DYY + D{HY + 0(¢?),

where the coefficients D ) and D( ) are given by

i d ~
DU = 22, ) o (5.16)
and

do do
D(()I’Z) = UpLUy+ — 2,2 5 (s $2)Uo LU,G1 62 + <G1VU0LU0  62) b2+

_ (;f) (, $2)(Gaba, do) o +

2
+ <£> (, po)(GLV UL LUGG 12, ho) ho. (5.17)

212

Proof. With some obvious modifications the proof is similar to the
proof of Lemma 5.6. O

The main result is:

Theorem 5.11. Assume that zero is an exceptional point of first kind
for H (Type 2). Let Assumption 3.1 be satisfied. Assume 3 > 7 and
let s satisfy 7/2 < s < 3 —7/2. For ( — 0 we have in B(—1,s;1,—s)
the expansion

R(Q) = ¢ 22 62)n + (L)

Proof. With some obvious modifications the proof is similar to the
proof of Theorem 5.8. O
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5.4. Exceptional case of the first kind: Type 3. By assumption,
dim M = 2. In view of Lemma 4.2 and Lemma 4.6 we can choose a
basis {¢1, ¢} in M satisfying

(61, VGoV1) #0, (¢1,V(-)) =0,

($2, VGoV1) =0, (¢, V(")) #0,

Together with this basis we choose the dual basis in A, {$1, ¢2}. Define
the projections

Ui = <" Q~31>¢15 Uil = <" Q~32>¢2

Then the basic decomposition in HY % is Uy+U, +U; +Q, = 1, where
as usual we have introduced Uy = UyQy. We shall use the following
lemma.

Lemma 5.12. The following relations are valid.

VU, = (U)V, VU, = (U,)"V, (5.18)

QU = (U))'Q1 =0, QiU, = (U)"Q} =0, (5.19)
QVU, =0, (U))'VQ: =0, (5.20)
(U)*V(1 4+ GoV)Uy =0, Ug(1+VGy)U, =0, (5.21)
(14+GoWV)U, =0, (U)*V(1+GeV)=0 (5.22)
(U)V(1 +GeV)U, = 0. (5.23)

U V(14 GoV)Q1 = (&) (-, V1), (5.24)
QIV (1 + GV, = V(. ¢)V1, (5.25)

(U VG, VU;- =0, (5.26)
(U)'VGVU,-=0, (U)*VGVU,- =0, (5.27)
(U))VGVU = 2187 (-, 62) o, (5.28)

Proof. The relations follow from Lemma 3.2, the properties of ¢; and
¢2, Lemma 4.8 and straightforward computations. O



24 MICHAEL MELGAARD

Lemma 5.13. Assume that zero is an exceptional point of the first
kind for H (Type 3). Let Assumption 3.1 with 3 > 7 be satisfied and

let s satisfy 7/2 < s < 8 —17/2. Let ey = 1/ and ey = 1/, For
¢ — 0 we have in B(1,—s;1,—s) the expansion
(14 Ro(Q)V) ™" = —i¢™ DY + DFY + 0(1),

where

DA = |€1|< b1)pr + = |€2|2<',<52>¢2-

D&M = UgLUs — (1/2)]er]*(-, $1)0o LUsG11
—(1/2)ex|*(-, $2) Uo LU G162
—(1/4)|e1)*[ea] (-, 2)(V G2V s, 61) b1
—(1/4)|ea|*(:, 2)(V G2V 62, $2) 5

(1/4) e[V GV U LUGLV 1, 1) (-, $1) 1

(1/4)

(1/4)

)

_|_

+(1/4) e1*lea| X (VGL1V U LUGLY 2, $1) (-, o)1
+(1/4 |€1|2|€2|2<VG1V[70L00G1V¢1,¢52><'a(!~51)¢2
+(1/4 |€2\4<VG1V(~]0LUOG1V¢2,(152)(',(/;2)@
+ver (-, )1 +vey (-, V1),

—vet (-, ¢ YU LUy (1 4+ GoV)1

—ve (V(1+ GV U LUy, 1),

—(v/2)|e1Per (-, d1)(VG1V 1, 1)y

—(v/2)|e2er(:, o) (VG1V 3, 1)y
—(/2)lea)€1 (-, p:1)(VG1V1, ¢3) o
—(w/4)lerleal* (-, $)(V G2V 1, do)bs
+(v/2)|e1er(V (1 + GoV)Uo LU, G1V 1, 1)(-, 1)
+(v/2)|e1 23 (VG VU LU (1 + GoV)1, ¢ ) (-, b1) s
+(v/2)|e2’e1(V (1 + GoV)UgLUgG1V 62, 1)(:, d2) 1
+(v/)2)|ea?e (VG VU LU (1 + GoV)1, ¢o) (-, b1 ) o

—Vle X (V (1 + GoV)1, 1)(:, $1)
+1%e1 PV (1 + GoV)Uo LUo (1 + GoV)1, 1)(-, 1)

Proof. The set-up needed to use Lemma 5.1 is as follows. The spaces
are X =) = HY %,

X=UX®oQXOU XU X

Y=0UX®QH "o {U)H e U )H"
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and the operators are
A =1 + Ro(C)V, B = ([70, C1/4Q1, C_1/4U17 <_1/4U]’.,)7
o
O C1/4Q1V

YUV

SR AR
From here the lemma is proven in a similar way to Lemma 5.2; we use
Lemma 5.12. We omit the tedious details. O

The main result for the full resolvent is given in the following theorem.

Theorem 5.14. Assume that zero is an exceptional point of first kind
for H (Type 3). Let Assumption 3.1 be satisfied. Assume 3 > 7 and
let s satisfy 7/2 < s < 3 —7/2. For ( — 0 we have in B(—1,s;1,—s)
the expansion

- 1 e
R(¢) =i¢™* e e i 2

2|c(2)|2<'a¢2)¢2 + 0(1). (5.29)

Proof. Except for a few modifications, the proof is similar to the proof
of Theorem 5.8. The details are omitted. O

5.5. Exceptional case of the second kind. We assume that zero is
an exceptional point of the second kind for H. By definition U; = 0 and
U, # 0. Hence, the starting point of the analysis is the decomposition
Q1+Us+UpQo = 1. It follows from the definitions of Uy, Us, ()1 and Qg
and Lemma 4.8 that we decompose using three commuting projections.
As usual, let U = U Q-

Lemma 5.15. The following relations hold.

QVG_ VU, =0, UVG_1VQ, =0, (5.30)
(14+GV)Uy =0, UiV(14GV) =0, (5.31)
U,VGVU, =0, U;VGLVTU, =0, (5.32)
U;VG VU, = 0. (5.33)

Proof. The relations follow from straightforward computations using,
in particular the definition of Uy and Lemma 4.6. O

Furthermore, we need the following result.

Lemma 5.16. We have that UV G2V Uy = —UsUs, and this operator
is invertible in B(UyHY ™5, Us H™"*). Moreover, Us(UsUs)~'Us = .
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Proof. Let {1;} be an L?-orthonormal basis for UyH~* = PyH®0. Let
{x;} be the dual basis in UyH~"*. Then Uy = Y (-, x;)¢;, Us =
(s vixs and P = 7., ¢;);. Note that Us actually maps in
H%2 " and that U extends to H 2. Thus U;U, makes sense.
Lemma 4.7 and PyUs = Uy imply Us VGV Uy = —U5U,. Furhermore, a
computation shows that U;Us = - (-, x;)X;. Hence, Uy(U;Us)~'U; =
PO. D

Then we can establish the following result.

Lemma 5.17. Assume that zero is an exceptional point of second kind
for H. Let Assumption 3.1 be satisfied. Assume that 8 > 9 and let s
satisfy 9/2 < s < B —9/2. For ( — 0 we have in B(1,—s;1,—s) the
eTpansion

(14 Ro(Q)V) ' = —¢'D¥) —i¢™?D¥) 1 0(1) (5.34)

with
D% =—py, (5.35)
DY = —RVGVRV — 22(VGV RV~ 1)RVG V1. (5.36)

Proof. We only give the basic set-up. To apply Lemma 5.1 we need the
definitions

X=Y=H""
X=UX®QXBUX, Y=UX®QH ¥ eU;H ",
A=1 + RO(C)‘/’ B = (UO: C1/4Qla 471/2U2)a

U
c=| ¢
UV
From here the proof follows the pattern of the proof of Lemma 5.2.

The actual computations are quite lengthy and tedious. Details are
omitted. O

The main result for the resolvent of H is given in the following theorem.

Theorem 5.18. Assume that zero is an exceptional point of second
kind for H. Let Assumption 3.1 be satisfied. Assume 3 > 11 and let s
satisfy 11 < s < B —11/2. For { — 0 we have in B(—1,s;1,—s) the
expansion
R(¢) = ="' BE —i¢ 2B + o(1)
with
BY) =P, (5.37)
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B® = PVG3V Py + 2°(VGsV Py, 1) PV G, V1. (5.38)

Proof. 1t follows from Lemma 5.17, (2.3) and the second resolvent equa-
tion, in combination with the relations Uyl = 0 and PyV'1 = 0. O

5.6. Exceptional point of the third kind. We collect the main
results in the subcases 1, 2 and 3. No proofs are given. For (1 +
Ry(¢)V)~! we have the following three lemmas.

Lemma 5.19. Assume that zero is an exceptional point of the third
kind for H (Type 1). Let Assumption 3.1 with 3 > 9 be satisfied. Let
s satisfy 9/2 < s < f—9/2. For ( — 0 we have in B(1,—s;1,—s) the
eTpansion

(1 + RO(C)V)_I — _C—IDE‘}Z,].) _ iC—l/?DE))il) + 0(1),
where
B%Y = —pyV,

3,1
D&Y

d - (1) *d
st aye - e Ry 1,

d - M
LGV PV, i)y — ——

202 v

— o2 01 PV Gady — BV GV RV

<‘a¢~51>P0VG1V1

+2d, |V P(GLV PV -, V)PV GV
_ (i) ds
vV
Cgl)dl

(GLV Py V-, V1)PyV Gody

(G.VPV-, )P VGV

d 8 §
_—1<G2VP0V', 1) PoVGaoy.

202

Lemma 5.20. Assume that zero is an exceptional point of the third
kind for H (Type 2). Let Assumption 3.1 with 3 > 9 be satisfied. Let
s satisfy 7/2 < s < f—7/2. For { = 0 we have in B(1,—s;1,—s) the
eTpansion

(1+ Ro(¢Q)V)™" = =¢7'D%Y —ic™2DEP + 0(1),
where

B%) = Ry,
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d -
DED = — 5 do)da — BVGsVRY

_2<: QE2)P0VG2$2

A

_£<G2VP0VH $2) b2

242

202 (G VP)V-, V1)P,VG,V1
d - -
2 (GoV PV, o) PV Gay.

22

Lemma 5.21. Assume that zero is an exceptional point of the third
kind for H (Type 3). Let Assumption 3.1 with 3 > 9 be satisfied. Let

s satisfy 9/2 < s < f—9/2, e; = 1/09) and ey = 1/052). For ¢ — 0 we
have in B(1,—s;1, —s) the expansion

(1+ Ro(O)V) L = ¢ 'Ry —i¢ 2D + 0(1),
where

DY = (1/2)[e1*( 1) + (1/2) ex] (-, d) o
+ve (VGL1V RV, D¢ + (1/2)‘€1|2<G2VP0V', q31>¢1
+(1/2)|e2| (G V Py V-, do) o + vel (-, b1) PV GV 1
+(1/2)le1*(-, 1PV GaV 1 + lea|*(-, do) PoV Gy
—|ea>?PyV GV PV + ve  (VGLV Py V-, 1) P,V Gahy
+ve {(GyV PV -, )P, VG V1
+(1/2)|e1[H{GLV Py V-, ¢1 ) PV Gahy
+]ea| GV RV -, gZNSQ)POVGQgZQ.

Due to the complexity of the computations, we only give the leading
cofficient in the main result for the resolvent:

Theorem 5.22. Assume that zero is an exceptional point of third kind
for H (Type 1,2 or 3). Let Assumption 3.1 be satisfied. Assume
B > 9 and let s satisfy 9/2 < s < B —9/2. For ( — 0 we have in
B(—1,s;1,—s) the expansion

R(¢)=C"Py+ O(C11?).

Thus, the leading coefficients for the three subcases are identical as
expected. Obviously, if we include the next term in the expansion, the
coefficients are different in the three subcases.
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6. THE ON-SHELL SCATTERING MATRIX AT LOW ENERGIES

Under Assumption 3.1 with § > 1 the results of [9] hold for H.
Hence the wave operators W, exist for the pair of operators (H, Hy)
and the wave operators are strongly complete, viz.

Ran (W,) = Ran (W_) = Heo(H), o0s(H) =0,
In particular, the scattering matrix S(\) has the following representa-
tion:
S(A) =1 = miA 2y (A FV (1 4+ Ro(A +i0)V) L F o (AY2)",
(6.1)

where F is the Fourier transform and vy (u) is the trace operator defined
by

1/2
o) f = ( Je ) feHOR), s> 1/2, p=E.

(A proof of (6.1) can be found in [11, Appendix A]). The scattering
matrix is a unitary operator in B(C?). In this section we derive asymp-
totic expansions for the scattering matrix S(\) for the pair of operators
(H7 HO)

To derive asymptotic expansions for S(\) we need expansions for the
operators yp(A/2)F and F*y(A\/2)*. Formally, we have that

WA F = (A7) (6.2)
7=0

where
_ . —x)
;o em e ().
This follows from a formal expansion of

1/2 ) ~1/2 exp(—iA/2z)
WO < (om) (RS,
We see that

I'; € B(L**(R),C?), s> j+1/2.

The expansion in (6.2) is valid as A | 0 in the sense that if yo(\'/2)F
is approximated by the finite series up to j = k, k being the greatest
integer satisfying s > k 4 1/2, then the remainder is o(\*/?) in the
norm of B(L**(R), C?). We are ready to give:

Theorem 6.1. Assume that zero is a reqular point for H. Assume
B > 5. In the norm of B(C?) we have as A | 0 the expansion

SO\ = ( O ) +o(1) (6.3)
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Proof. The assertion follows from Lemma 5.2, (6.1) and (6.2) in con-
junction with the relations KT =0 and I'(\V K = 0. O

Remark 6.2. For local potentials, the leading coefficient in Theorem 6.1
agrees with the results, obtained by other methods, in [2], [3] and [15].
In the limit A | 0 we have total reflection.

Theorem 6.3. Assume that zero is an exceptional point for H of first
kind (Type 1). Assume 8 > 9. In the norm of B(C?) we have for A | 0
the expansion

S(A) = S5+ o(1) (6.4)

with
gD 2—es) 2 —2e{D (V)
ef 24§12 [l 2|l 2

(LY _
SitY = . (6.5)
260(c5)r  Jefl) 2 eg)p?

5215 12 e 2+

Proof. In view of (6.2), Lemma 5.6 and (6.1) we have that
where the coefficients S(1 2 S(_l’l) and S(l’l) are given by
SUY = —ixTov DI,

S = 7 (F1VD(,1{1)F(’; TV DS — FOVD(fl’l)F]“) . (6.6)
and
S =1 — 7LV DT — inly VDT 4
+wr0VD§1 V1 + 70, VDT
+milVDEITE + in DV DYV, (6.7)
We show that S a1 S(_ll’l) = 0. Since (1,$;) = 0 implies that [y¢; =
0, we infer that S(1 Y — 0. Via the relations oy = 0 and UOFS =0it

follows that S(_lll) = 0. Finally, we turn to (6.7). Due to Tod; = 0, we
find that [,V DUUTE = 0 and, likewise, inToV DT = 0. Obviously,

rd L
—z7rF1VD(1 I)F* = 1/; (,T1¢1)1 1. (6.8)

Furthermore, we have that

(1)y+
7TF1VD(()1’1)F3 _ _7T(C1 )*dy

14

(-, ToV1)T16;. (6.9)
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Via Tody = 0 and TyVUy = ['yVQoUp = 0, we find that

chl)dl

—aToV DT = (-,T161)ToV 1. (6.10)

Next, we rewrite the term WFOVD§1’1)F3 via the explicit expression
for Q?’” (see [11] for details). Using that I'g¢y = 0, U’y = 0 and
['yWUy = 0, we find that

ALV D ITs = 21dy |V 2 (-, ToV 1)V 1 (6.11)
Adding this by (6.8), (6.9) and (6.10) yields

d ~ ~
S6 = 1+ 2mdi[ e[, TV DLV + 2 (- T161)T 141+
(1) B (1) * ~
+0 dl(-,rlcmrom—M@Fomwl- (6.12)

Finally, we rewrite this to obtain (6.5). (Here we use that (cgl))*cgl) =
cgl)(cél))*, since ¢; is unique up to multiplicative constants). This com-

pletes the proof. O

Remark 6.4. For local potentials, the result in Theorem 6.3 agrees
with [1, Eqn. (4.15)]; the result in [1] has been obtained by combin-
ing Jost functions techniques with Fredholm methods, hence the entire
approach is quite different from the present. More importantly, the
method in [1] does not allow one to treat the abstract short-range po-
tential V.

In a similar way we obtain the following theorems.

Theorem 6.5. Assume that zero is an exceptional point for H of first
kind (Type 2). Assume (3 > 9. In the norm of B(C?) we have as A | 0
the expansion

S(\) = ( o2 ) +o(1). (6.13)

Theorem 6.6. Assume that zero is an exceptional point for H of first
kind (Type 8). Assume 3 > 9. In the norm of B(C?) we have as A | 0
the expansion

S() = ( v > +o(1). (6.14)

Theorem 6.7. Assume that zero is an exceptional point for H of sec-
ond kind. Assume (3 > 13. In the norm of B(C?) we have as X | 0 the
eTpansion

S() = ( o) ) +o(1). (6.15)
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Theorems 6.1-6.7 treat the most significant cases. Results on the
scattering matrix when zero is an exceptional point of the third kind for
H (three subcases) are omitted, since the computations are extremely
tedious and lengthy.
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