SPECTRAL PROPERTIES AT A THRESHOLD
FOR TWO-CHANNEL HAMILTONIANS.
I. ABSTRACT THEORY

MICHAEL MELGAARD

ABSTRACT. Spectral properties at thresholds are investigated for
two-channel Hamiltonians in various, mostly fairly ’singular’ set-
tings. In an abstract framework we deduce asymptotic expansions
of the resolvent as the spectral parameter tends to a threshold.
The results are based on given asymptotic expansions of the com-
ponent Hamiltonians. Applications to scattering theory are given
in a companion paper.

1. INTRODUCTION

In the first of a series of papers we study spectral properties at thresh-
olds of two-channel Hamiltonians of the form H = H 4,0+ V ¢, where

H, 0 0 v,
Hdiag:<0 Hb)’ Voff:<vba 0b> (1.1)

act on the Hilbert space H = H, ® H,. We assume that H, and H, are
self-adjoint operators in H, and H;, respectively. Moreover we assume
that Vo, € B(Hp, Ha), the space of bounded operators, and require
Via = (;;;-

Due to the diagonal structure of H 4,4 its spectrum can be an arbi-
trary combination of those of H, and Hy. There are several possible sit-
uations, and we have only treated some of them in detail. A case of par-
ticular interest is the following. We assume o(H,) = 0..(Hy) = [\, 00)
and o, (Hp) = [A1,00) for some A\; > A. Furthermore, we assume that
A is an isolated eigenvalue of Hj with eigenprojection FPy. Thus H gia4
has an eigenvalue embedded at the threshold A. Our aim is to derive
an asymptotic expansion of the resolvent R(¢) = (H — ()™' of H as
the spectral parameter ( tends to the threshold A. To obtain results
we require some a priori information on the threshold of H,. More
precisely, let I, be a Hilbert space, which is densely and continuously
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embedded in H,. Motivated by known results for Schrodinger opera-
tors [6, 4, 15, 1], we assume the existence of an expansion, valid in the
norm topology of B(KC,, K¥),

R,(¢) = Go+i(¢ = NY2G1 = (¢ = NGa—i(¢ = N)¥?G3+0(|¢ - A(|12)2)

as ( = A\, ( € C\ [\, 00). This type of asymptotic expansion is known
to hold generically for a Schrodinger operator —A + V(z) on L?(R%)
for d odd, provided V(z) decays sufficiently rapidly.

Additional assumptions on the potentials V,; and V,, are necessary.
Suppose that V, € By (Hyp, Ko), the compact operators, and that the
operator PyV,,GoVap Py is strictly positive and invertible in B(PyHy).

Under the above-mentioned assumptions the following result holds,
see Theorem 3.10. As [( — | = 0, ( € C\ [\, ), the resolvent of H
has an asymptotic expansion

R(¢) = Ry+i(¢—N)'"’Ry + O(|¢ — A]), (1.3)

valid in the norm topology of B(K, & Hy, K @ Hyp). This result holds
generically (see Remark 3.18(b)). In Section 3 we give a number of sim-
ilar results in various settings. The coefficients depend on the concrete
setting. Explicit expressions are given for the first few coefficients.

The result (1.3) is obtained by using the asymptotic expansion (1.2)
in combination with the Feshbach formula and a technique based on
factoring out the identity plus a finite rank operator. The latter tech-
nique was pioneered by Vainberg [19] and later used by Murata [15] in
a context resembling ours.

We emphasize that although most of the settings have a ’singular’
nature, generically the singular terms (negative powers in (¢ — \)'/2)
cancel. Consequently, no singularities appear in the expansion (1.3).
In particular, the resolvent has a well-defined limit R, at the thresh-
old point in the norm topology of B(IC, ® Hs, K @ Hy). Recently, the
latter feature has been subject to a thorough analysis in the paper [7]
in which it is shown that under small off-diagonal perturbations the
embedded eigenvalue A of H 4,4, never moves into the continuous spec-
trum. Applications to the Friedrichs model and Schrodinger operators
with confined channels are given. We refer to the paper for details.

The objective is different here. Indeed, the companion paper [13] is
devoted to scattering theory for pairs of two-channel Hamiltonians with
Schrodinger operators as component Hamiltonians. As an application
of the expansions for the resolvent deduced in the present paper we
derive asymptotic expansions of the S-matrix as the energy parameter
tends to a threshold.

There is a vast literature on 2 X 2 operator-valued matrices, e.g.
in system theory (see e.g. [2]) and in semigroup theory (see e.g. [3]).
Most notably in this context is the substantial number of questions of
a general nature which have been answered on spectral theory recently,
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see e.g. the survey by Tretter [18]. However, the methods therein are
not related to ours although some of the questions addressed clearly
are, e.g. the appearance of resonances discussed by Mennicken and
Motovilov [14]. In this paper we are not imposing assumptions on the
Hamiltonians, which make it possible to give a reasonable definition of
a resonance, hence we delay the discussion of resonances to a future
work.

2. PRELIMINARIES

Let T be a self-adjoint operator on a Hilbert space H with domain
D(T). The spectrum and resolvent set are denoted by o(T") and p(T),
respectively. We use standard terminology for the various parts of the
spectrum, see for example [16]. The resolvent is R({) = (T — ¢)~ .

The spaces of bounded and compact operators from a Hilbert #;
into a Hilbert space H, are denoted by B(Hi,Hs) and Bu(Hi, Ha),
respectively. If H; = Hs =: H we use the notation B(H) and B, (H),
respectively.

If X is an isolated eigenvalue of T" with associated eigenprojection P,
then the reduced resolvent is given as

C =1lim(I — P)R((), (2.1)

C—A

and we have the norm convergent expansion

R(Q) = 7 + (¢~ Ayem, (2.2
n=0
The expansion is valid for 0 < | — A| < ¢ for some small § > 0. See
for example [9, 17].
The Feshbach formula gives a convenient explicit representation of
the resolvent R(() of H. There are two variants. We give only one of
them. The other version is just an interchange of indices. Define

R.(¢) = (Ha=¢)™, (2.3)
T5(¢) = Hp— ¢~ Veala(C)Vas- (2.4)
Then for Im ¢ # 0 we have

R(()

B ( Ra(Q) + Ra(Q)VasTo(O) VhaRal(Q) —Ral(Q)VasTH(0) ! ) (2.5)
—T3(C) Vs Ra(C) Ty(O)~! '

For a complex number z € C \ [0,00) we denote by z'/? the branch
of the square root with positive imaginary part.

3. ASYMPTOTIC EXPANSIONS OF THE RESOLVENT AT A THRESHOLD

In several different settings asymptotic expansions of the resolvent
R(¢) are deduced as the spectral parameter ¢ tends to a threshold A.
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Assumption 3.1. Let A € o(H,).

(i) Assume that there exists a Hilbert space K , densely and continu-
ously embedded in H,, such that for some § > 0 we have an asymptotic
expansion in the norm of B(IC,, K}), viz.

Ro(C) = Go +i(C = N)'*G1 = (C = NGz = i(C = NG5 + O(I¢ = AP)
(3.1)

for | — Al < 40, Im¢ > 0. Assume furthermore that G; = G,

j=0,1,2,3, as operators in B(K,, ).

(ii) Assume that Vg, € Boo (Hs, Ko)-

(iii) Assume that A is a simple isolated eigenvalue of Hj, with normal-
ized eigenfunction . Its reduced resolvent is denoted by Cj.

We use the notation P, = (-, 1)1 for the eigenprojection. The fol-
lowing real numbers are needed to state the results.

Gy = <V;)aG0V;1.bw) w>a (32)
Y% = (VeaGoVarCVeaGoVar®), ). (3.3)
Before treating the case where )\ is an eigenvalue of H, we briefly

consider the situation where A € p(H,). Under this assumption we
have that

o0

Ry(¢) =) (= N"Ch (3.4)

n=0

for |¢ — A| sufficiently small. The series converges in B(#;), and we
have C,, = Ry(A)"™. We have the following lemma.

Lemma 3.2. Let Assumption 3.1(1) and (ii) hold for H, at A € R with
the expansion (3.1) replaced by

R.(¢) = Go+1i(¢ — N)?G1 — (( = N)G2+ O(IC = AP/?). (3.5)

Assume that N € p(Hy). Then, generically, we have in B(Hy) the
following asymptotic expansion

Ty(¢) ™" = a0 +i(C = N)"a1 — (= Naz + O(C = AP?)  (3.6)
as |¢ — Al = 0, Im( > 0, where the coefficients are given by
ao = Lo, a1 = LoVpaG1VapCo Lo, (3.7)
az = LoVpaG2VayCo Lo
—LoVsaGoVasC1 Lo + Lo(VsaG1VasCoLo)®. (3.8)
Here Ly = (Iy — V3aGoVapCo) L.

Proof. The strategy of the proof is to factor the operator 7;(() in or-
der to show that the inverse of T,(() exists and admits an asymptotic
expansion in the norm topology of B(#,) for |¢ — A| small enough.
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In the sequel we always assume at least |( — A| < § (with the § from
Assumption 3.1) and Im ¢ > 0. We use the factorization

Ty(¢) = (Ib = VaaRa () Var Rs(¢)) (Hy — ©). (3.9)
The assumption gives the following asymptotic expansion in B(Hp).
Iy — Vi Ra(C) Var R (€)
= Iy — VbaGoVarCo — (¢ — N)Y*V3uG1VasCo
+(¢ = MVsaG2VasCo — (¢ — A)VaaGoVasCi
+0(|¢ = A]P/?). (3.10)
The operator V,,Go Vi Cp is compact. Therefore, generically the oper-

ator I — ViuGoVapCo 1s invertible. Let Lo denote its bounded inverse
in K. Then we may factorize as follows

Iy = VeaRa(C)Van I (C) =
= [(=i(¢ = 2)*VbaG1VarCo
(¢ = MVeaG2VarCo — (¢ — M) Ve GoVar Cr
+O(I¢ = M%) Lo + 1) (Is = ViaGoVaCo).  (3.11)
In the latter an expansion of the inverse of [---] is obtained by the

Neumann series. The result follows immediately from this Neumann
series, the factorizations (3.11), (3.9) and the expansion of Ry(¢). O

From Lemma 3.2 and the Feshbach formula we immediately obtain
the following theorem.

Theorem 3.3. Let the assumptions in Lemma 3.2 be fulfilled. Then,
generically, we have in the norm of B(K, ® Hy, K} ® Hy) the asymp-
totic expansion

_ [ Go+ GoVapaoVeaGo  —GoVapag
R(Q) = ( —aoVsaGo Qo ) *
(¢ — A2 G1 + GoVayaoVeaG1 + G1VapaoVeaGo + GoVapa1Vea Go
—a1VpaGo — aoVia G
—GoVpar — G1V,
oot e ) +0(¢ = Al) (3.12)

as | — Al — 0, Im¢ > 0.

We now consider the case where ) is an eigenvalue of Hj. Let us first
consider the case ay # 0. It is convenient to introduce the following
projections in Hy:

Py = ag (- 0)VeaGoVastp, Po=1I, — Pi. (3.13)

First we show that the transfer function 7;({) is invertible in a neigh-
borhood of A and that its inverse admits an asymptotic expansion in
this neighborhood.
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Lemma 3.4. Let Assumption 3.1 hold at A € R. Assume that oy # 0.
Then, generically, we have in B(Hy) the following asymptotic expansion

Ty(¢)™" = bo+i(¢ — A)"*by + O(IC = A]) (3.14)
as |¢ — Al — 0, Im{ > 0, where the coefficients by and by are given by
by = CoPo(ly — VeaGoVasCsPo) ', (3.15)

b1 = oy 'CoPo(Ip — VoaGoVasCo Po) ™
X (VG 1VasCo Po + Vo G1Var Py)
X (I — VoaGoVarCo Po) . (3.16)
Proof. We follow the strategy in the proof of Lemma 3.2. We begin

by making the factorization (3.9). The assumption gives the following
asymptotic expansion in B(Hp).

Iy — Vi Ra(Q) Vas Ry (€)

1
= Ib + 040P1 %aGIVabe

¢—A (¢ - A)l/Q
— (VoaGoVarCp + Vi G2 Vap Py)
—i(( = A)'? (VaaG3VarPs + V3uG1Vis )
+O(|¢ — A]). (3.17)

We have expressed the second term on the right-hand side in terms of
the projection P;. Since

. N
( = ) :P‘]*aoic—AP“
we make the following factorization
Iy — Via Ra (C) Vap R (€)
= [(m%a(h%bpb %aGOVabe
~V3aG2Vap Py — i(C — N)/*VouG3Vip Py
—i(¢ = A)*V3aG1ViyCy + (¢ — N VoaGoVarCy

rolc=a) (Rt —SAn )+

(12 n). o0

Consider [-- -] in (3.18). Using PP, = 0 we find that

[ o+ ¢ —A) = ao(Ly — VeaGoVapCo Po)
+i(¢ = N2 (VsaG1 Vo Py — 0 V3uG1 Vi C Po) + O(|¢ — A[J3.19)
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From Assumption 3.1(ii) it follows that the operator V4, GoV,,Cy Py is a
compact operator in Hy, hence generically I, — VoGV Cy Py is invert-
ible and the inverse is bounded in H;. As a consequence we are able
to factor as follows.

Right-hand side of (3.19)
= [I, + {i(¢ = N)"* (0 VeaG1VisCo Po + VoaG1 Vi Py)
+ O(I¢ = ADY ag ' (Ip — VaaGoVarCs Po) ™'
x g (Iy — Vi GoVasCrPy) ™. (3.20)

For |¢ — A| small enough, the Neumann series implies that the inverse
of the right-hand side of (3.20) has the following expansion:

Inverse of right-hand side of (3.20)
= a5 ' (Iy = VsaGoVarCo o) ™" +
+i(C = N)'?ag* (I = VsaGoVasCoPo) !
X (0 VsaG1VasCo Py + Vi G1Vas Py)
X (Iy — VeaGoVasCoPo) ™" + O(|¢ — Al). (3.21)
In combination with (3.18), we obtain from (3.21) that
(I = VsaRa(O)VarRo(Q)) " = Po(Iy — VsaGoVasCoPo) ™!
+i(¢ = N) "2y Po(Iy — VsaGoVasCo Po) ™ (20V5aG1 Vi Co Po
+V2aG1Vas Bs) (I — VoaGoVarCoPy * + O(|¢ — A|). (3.22)
Finally, we obtain the desired expansion (3.14) by using the factor-

ization (3.9), the expansion for Ry((), (3.22) and the relation P,Py =
0. O

Theorem 3.5. Let Assumption 3.1 hold at A € R. Assume that o #
0. Then, generically, we have in the norm of B(Ko @ Hp, K & Hy) the
asymptotic expansion

_ [ Go+ GoVapboVeaGo  —GoVanbo
Q)= ( ~boVauGo by ) ¥
(¢ — N2 G1 + GoVapbo Ve G1 + G1Vapbo Ve Go + GoVapb1 Vi Go
_bOVEJaGl - blv;)aGO
Vb~ GVl ) 1 ogic - x) (323

as | = A — 0, Im¢ > 0.

Proof. The result follows immediately from the Feshbach formula (2.5)
and Lemma 3.4. O

We now consider the case ap = 0. Assuming that v, # 0 we introduce
the operators

Ji = 0VeGo Ve,  Jo=1p — Ji,
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and the projections

Ji =% VGV CoVaGoVasth, o =1 — J1.
Then we have the following result.

Lemma 3.6. Let Assumption 3.1 hold at A € R. Assume that As-
sumption 3.1(1) is fulfilled with (8.1) replaced by

Ra(¢) = Go+i(¢ = N)?G1 — (¢ = N)Ga — i(¢ = \)*P*Gat
+(§ — )\)2G4 + Z(C — )\)5/2G5 + O(K _ )\|3) (324)

Assume that oy = 0 and vy # 0. Then, generically, we have in B(Hy)
the following asymptotic expansion

To(¢) ™ = co +i(¢ = A)2er + O(I¢ = A)) (3.25)
as | — Al — 0, Im{ > 0, where the coefficients ¢y and ¢; are given by

co = CypJo(Iy — VsaGoVarCoJo) ™, (3.26)

c1 =75 ' CoJo(Iy — VsaGoVarCoJo) ™"
X (Vbaleabe + Vou G1VasCoJ1 Ty

VG VauCilo) X (I = ViaGoVaurCoo) . (3.27)

Proof. The proof follows the same lines as the proof of Lemma 3.4 but
due to the assumption oy = 0 it is more elaborate. Again we start from
the factorization (3.9). The assumption gives the following asymptotic
expansion in B(H,).

Ib - V;JaRa (C)VabRb(C)
=I+

1 I+ )
(=X (=M
— (VoaGoVarCp + Vi G2V Py)
—i(¢ — N2 (VaaG3Vas Py + VoaG1 Vs Ch)
+(¢ = A) (VaaGoVarCp + ViaG2VarCh
+V2aGaVan ) + (¢ — A * V3 G5 Vi Py
—i( = N)**V4uG1VaCf + (¢ — N)**V3uG3 Vi G
+0O([¢ = A]P). (3.28)

V;JaGl Vabe

Since

1, 1 J _1—1 L J 3.29
(b‘*‘c_)\l) —b—C_—)\1 (3.29)
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we make the factorization
Iy — Vo Ra(Q)Vas R (€)
7
= [Ib + {m%aleabe — VoaGoVasCh

—VoaGoVas Py — (¢ — A)*VuG3Var By

—i(¢ — N)?V5aG1VasCy + (€ — ) V3aGoVar C
+(C = NV G2VasCp + (¢ = M)V G4V Py

+i(¢ — N)*?VuGs Vi Py — 1(¢ — A)*/? Ve G1 Vi CF

(¢ = N ViaGaVaaCs + O(1C = A} (Ib - /\Jl)]

« (1,, + Lﬁ) | (3.30)

¢—A

Using P,J; = 0 and the projection J; we find that [---] on the right-
hand side of (3.30) can be written as follows.

[- -] on right-hand side of (3.30)

L+ g+ ViaG1VasCo s

7 7
C=AT (=P (€=
~VoaGoVarCy — ViaGoVip Py — Vs GoVapCr J1 — Via G2V Co J
—i(¢ = M) VaG3Vas Py — (¢ = N V3 G1 Vi G
+i(¢ — N2 V3GV C2 Ty — i(C — N) V3GV Co o
+O(|¢ = A]). (3.31)

VoaG1Var Py +

Now, using

C—=A Yo+ ¢ —A

the expression in (3.31) can be factorized as follows.

-1
- - -\ -

Right-hand side of (3.31)

= |:]b + (7@ _Z)\)lp VeaG1Var Py + 7@ _2)\)1/2
_%aGO%be - %aGQ‘/;szb - V;JaGOVabCI?JI - %aGZVabeJI
—i(¢ = A)Y*VeaGsVap Py — i(¢ — N)Y*V3uG1Var Gy

+i(C = MY V3G VO Ty — i (¢ — N) Y V3aG3 Vi Ci i
+O(|¢ = A])) x

oA o
X (J()-i- m:]l)} X (Ib+ C—/\Jl> . (332)

V;)aGl VabeJI
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Consider [---] on the right-hand side of (3.32). Using that Ji.Jp = 0
and P,Jy = 0 we find that

(70 + ¢ —A) x [-- -] on right-hand side of (3.32)
= 70(Is = VsaGoVasCo-Jo)
(¢ = N2 (ViaGi VP + ViaGi Ve CoJi

~70V4aG1 VarCorJy ) + O(IC = A). (3.33)

The latter expression has the same structure as the expression in (3.19)
in the proof of Lemma 3.4. Therefore, we can continue in a similar way
as in the proof of Lemma 3.4. We use the relations J;J, = 0 and
P,J, = 0 several times. The details are omitted. O

Theorem 3.7. Let Assumption 3.1 hold at A € R with (3.1) replaced
by (8.24). Assume ag = 0 and 79 # 0. Then, generically, we have in
the norm of B(IC, ® Hs, K: @ Hy) the asymptotic expansion

_ [ Go+ GoVapcoVeaGo  —GoVanco
RO = ( —¢oVbeaGo Co ) *
Fi(C — A2 G1+ GoVapco Ve G1 + G1Vapco Ve Go + GoVape1 Vi Go
—oVeaG1 — 1V Go

—GoVaper — G1Vapco
C1
as | = Al — 0, Im¢ > 0.

Proof. The result follows immediately from the Feshbach formula (2.5)
and Lemma 3.6. 0

>+0M—AD (3:34)

We now consider the case when A is an isolated eigenvalue of H,
of arbitrary multiplicity. We limit ourselves to discussing the simplest
case.

Assumption 3.8. Let parts (i) and (ii) of Assumption 3.1 hold at \ €
R with (3.1) replaced by (3.24). Assume that A is an isolated eigenvalue
of H, with eigenprojection P, such that the operator P, V.GV Py is
strictly positive and invertible in B(PyH,).

Under Assumption 3.8 we define the operators L1 = (P, Vo GoVap P) !,
Ky = Vo G1Vip By and

Ml - V;)aGOVabe - V;JaGZVabe + V;)aGO‘/abeVEJaGOV:J.beLlpb
+Voa G2 Vas P Vi Go Vap Py L1 P (3.35)
Then we obtain the following result.

Lemma 3.9. Let Assumption 3.8 hold at A € R. Then, generically,
we have in B(H,) the following asymptotic expansion

Ty(¢) ™" =do +i(¢ — \)?dy + O(|¢ — A|) (3.36)
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as |¢ — Al = 0, Im{ > 0, where the coefficients dy and dy are given by

do = (Cy — Py L1 Py)(Iy — M1) ™" — CyVeaGoVap Py L Py (I — My) ™7,
(3.37)

di = P.L1Py(Iy — M1) ™ ViaGoVasCo Voo G1 Vas P L1 Py (I, — My) ™
—P,L1 Py(I, — M1)™"VaGoVasCoVeaGoVap Py Ln Py K1 Py Ly Py (I, — My) ™"
+Cy(VeaGoVar P L1 Py K1 Py Ly Py — Vi G1 Vi P, Ly Py) (I, — My) ™!

+Cy(Iy — VeaGoVar By L1 P) (I, — M) !

X {VsaG1VasCo + Ve GoVasCoVoa GoVar P L1 Py K1 Py Ly Py
~VbaGoVasCoVea G1Vas Py L1 Py — Voo G1VasCo Ve GoVas Po L1 Py }

X (I — ]\/.fl)_1 + P,LiP,K P, L P,(I, — Ml)_l. (3.38)
Proof. We start from (3.28) with the modification that we do not in-

troduce J;. Thus, the second term on the right-hand side of (3.28) has
the coefficient Vj,Go Vo Py. Define

Y (€) = V3aGoVap + (¢ — A\)V?V3aG1Vip

and
1

Hence, S(() consists of the identity plus the singular terms in (3.28).
Introduce also

Z(C) = (¢ = NPy + PyVsuGoVarPy + i(¢ — X) * PV G1Van Py (3.40)

We use the following abstract result. Let P be a projection in B(H)
and let X € B(#H). Assume that the operator P + PX P is invertible
in B(PH). Then the operator I + X P is invertible, and we have, with
an obvious notation, (I + XP)™' = I — XP(P + PXP)™'P. If, in
the present situation, we assume that for some ( the operator Z(() is
invertible in B(P,H;) then S(() is invertible, and the inverse is given
by

SO *t=L-Y(ORZ() P, (3.41)

Consider Z(() first and bear in mind that L; = (P,V3GoVepPy) ™" and
K, = P)V,G1VypPy. Under Assumption 3.8 and for | — A| small
enough, the Neumann series yields that
Z(Q)™ = BLy —i(¢ = \)? B Ly B Ky Py Ly
(¢ = NP,LiPL; — (C — NP, L\P,K, P,L P,K, P, L,
+i(C = N¥2L P L P,K  PyLy +i(C — \)¥(P,L1 K1)* P, Ly
+i(¢ — N PRL B K P,L B,Ly + O(|¢ = AP). (3.42)
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Next, we use (3.41) to obtain the following expansion for S(¢)™!
S(¢) "t =1, = V4uGoVa P LL Py
+i(¢ = N)?VsoGoVar Py L1 P K1 P, Ly P
—i(( = N V3GV BL1 Py + (¢ — M) VeaGoVas P L1 P, L1 P,y
+(¢ = A Vs GoVar P L1 PK\ P,Ly P,K P, L, P,
—(C = NVsaG1Vas P L1 PK Py Ly Py
—i(¢ = N)*VouGoVas Py Ln P L1 BK Py Ly Py
—i(¢ = N)**V4uGoVay P L1 K Py Ly P K Py K Py Ly Py
—i(¢ = N)**VouGoVar Py Ln P Ky Py Ly Py Ly Py
+i(¢ — N)*?V3aG1 Vs Py Ly P K1 Py Ly P K Py Ly Py
+i(¢ = N V3puG1Vap Py Ly PyLy Py + O(|C — ). (3.43)
Next, we consider U(() defined by
U(C) = Iy — (VsaGoVarCs + VsaGaVar Py + - + O(/C = AP?) S(¢) .

Using the definition of M; in (3.35) we find the following expression
for U(¢) up to an error term:

U(¢) = Ip = My = i(C = N)"*VauGaVar Py
—i(¢ = NV G1VipCy — i (¢ — A2 x
X (VoaGoVavCo + VeaG2Var ) Vea GoVas Py L1 Py K1 Py
+i(¢ = 1)V (VaaGoVarCo + VaG2 Vi Po) VaaG1 Vas Py L1 Py
+i(C = N2 (VoaG3Var Py + VoaG1VarCo) VaaGoVas Py L Py
+(¢ = A) (VsaGoVarCp + ViaG2VarCy + ViaGaVar Py)
—(¢ = A (V3aGoVarCt + VsaG2Vas Py) Vea GoVay Po Ly Py Ly Py
—(C = A)(VeaGoVabChs + VeaG2Vas Py) Vaa Go Vas Po L1 Py
xP,K\P, L1 P,K\P,L1 P,
(¢ = A) (VaaGoVasCo + Ve G2Vas Py) Voa G1 Vas Py L1 Py
XPyK1P,L1 Py — (¢ — N) (VoaGoVarCp + VoaG2VabC + Vi GaVar P)
XVsaGoVas Py L1 Py + (¢ = A) (Ve G3Vap Py + Voa G1Vas Co)
X [VoaGoVas Py L1 Py K1 Py Ly Py — Vo G1 Vap Py Ly Py
+0O(/¢ = A[P?). (3.44)

The operator M; is compact. Hence, generically, the operator I, — M;
is invertible. Therefore, we factorize U(() in the following way:

U(¢) = (Ip — M) {Ib + Iy — My) ™'
(i(C = NVsuGaVap Py +- -+ O(IC = AP%) . (3.45)

From (3.44), (3.45) and the Neumann series we obtain an expansion
for the inverse of U(¢) up to O(|¢ — A[*?). Finally, the expansion
(3.36) is obtained via the factorization T;(¢) ™t = Ry(¢)S(¢)*U(¢)
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in conjunction with the expansions (2.2), (3.43) and the expansion of
the inverse of U((). O

In view of Lemma 3.9 and the Feshbach formula we obtain the fol-
lowing theorem.

Theorem 3.10. Let Assumption 3.8 hold at A € R. Then, gener-
ically, we have in the norm of B(K, ® Hy, K @ Hyp) the asymptotic
expansion

G+ GoVapdoVieGo  —GoVapdy
Rm—( —dViuGo do >+

(¢ — A2 G1 + GoVardoVeaG1 + G1VapdoVeaGo + GoVard1 VeaGo
_d0%aG1 - dlv;)a,GO

~GoVapdy — G1Vapd
et b°)+0(|§—)\|) (3.46)

as | = Al — 0, Im¢ > 0.

We now turn to the case where A € p(H,) and ) is a threshold eigen-
value of H,. We assume that the asymptotic expansion of R,({) around
A has a particular structure which we know occurs for Schrodinger-type
operators, see [6, 4, 15].

Assumption 3.11. Let A be an eigenvalue of H, with associated eigen-
projection P,.

(i) Assume that there exists a Hilbert space K,, densely and continu-
ously embedded in H,, such that for some § > 0 we have an asymptotic
expansion

1 1
R,(¢) = _C— )\Pa - = )\)1/20—1 + Go+

+i(¢C — NY2G = (C— NG+ O([¢ = AP%).  (3.47)
for | — Al <6, Im¢ > 0, in norm in B(/C,, ;). Assume that G; = G}
for j = =1,0,1,2, in B(K,, K%). Assume P, € B(K,) and furthermore
G_lpa = G_l.
(i1) Assume that Vg, € Boo (Hs, Ka).
(iii) Assume that A € p(Hp).

We bear in mind that for A € p(Hp), the expansion (3.4) is valid.

Assumption 3.12. Let Assumption 3.11 hold. Assume that the op-
erator P,V,,Co Vi, P, is strictly positive and invertible in B(/C,).

Introduce the following operators:
L2 = (PaVabCO%aPa)_la KZ = Pa‘/;szO‘/;JaG—la

M2 = VabCO‘/;)aGO - ‘/Zl.bol‘/;)apa - (V;J.bCO‘/baGO
_VZLbCIVEJaPa)VabCOVEJaPaLPa-

Then we obtain the following result.
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Lemma 3.13. Let Assumption 3.12 hold at A € R. Then, generically,
we have in B(IC,, K7) the following asymptotic expansion

T(O)7" = e +i(¢ = A)/%er + O(IC = A|) (3.48)

as |¢ — Al = 0, Im( > 0, where the coefficients ey and e, are given by

eo = Go(ly — Mo) ™" — GoVipCoVia PaLo Py (1, — Mo) ™", (3.49)

e1 = GoVasCoVeaPaL2 Po Ky Pa Ly Py (I, — M) !

—GoVarCoVsaG -1 LaPy(I, — My) ™" + G1 (1, — M)~

—G1VarCoVia PaLaPy(I, — My)

—(PyLyP,Ly + P,LyP, Ko P, Ly P, Ko P, Ly P,)

—Pu KPPy Lo Py Ky Py Lo Py Lo Py)

X (Is — Ma) ™ {VapCoV3aG1 — VapC1ViaG—1

—VabCoVoaG1VabCo Vo Pa Lo Po + VapC1Vea G-1VayCo Vea Pu L2 Py

+VarCoVeaGoVab CoVea Pa Lo Pa Ko Py Lo By

—VarCoVeaGoVarCo Ve G-1 L2 Py

—VabC1Voa PoVasCo Voo Po Lo Po Ko P Lo Py

+VarC1Voa PaVasCoVoa G -1 Lo P} (I, — M) ™!

~G | P,LyP,(I, — M) . (3.50)
Proof. We follow the strategy of the proof of Lemma 3.9. To facilitate
comparison with this proof we use analogous notation for some of the
operator-valued functions. However, this time we interchange the roles

of @ and b in the Feshbach formula, since now R,(() is regular at ¢ = .
The first step is again to factor T,(().

To(¢) = (Ia = Vas By () ViuRa(€)) (Ha — €)-
Inserting the two expansions we find the following asymptotic expan-
sion in B(IC,).

Ia - VabRb(C)%aRa (C)

- C_%vabcovbapa +
+1, — VarCoVia Go + VapC1 Vo P
—i(¢ = N2V CoVia G + i(¢ = A)/?VpC1 Vsa Gy

+(¢ = AN VapCoVeaGa + (€ — A) VapC2 Vo Py

—(¢ = M) VapCiVsaGo + O(IC = AP/?). (3.51)

We observe that the singular part is contained in

1
S(C) = Ia + é__—)\Y(C)Paa

V;szOVEJaG—l

where we have introduced
Y (€) = VayCoVia + i(¢ — N2V CoViaG—1.
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The operator S(() is invertible, if
Z(¢) = (¢ = A)Pu+i(¢ = N)2PVayCoVouG -1 Pa + PaVarCoVaa P
is invertible in the space B(K,), and we have again
SQ) ' =1L~ Y(QRZ() P,

see (3.41). The remainder of the proof is analogous to the proof of
Lemma 3.9, and is omitted. O

The latter result and the Feshbach formula yield the following theo-
rem.

Theorem 3.14. Let Assumption 3.11 hold at A € R. Then, gener-
ically, we have in the norm of B(K, ® Hy, K @ Hyp) the asymptotic
eTpansion

B eo —eoVarCo
R(¢) = (—CoVbaeo Cy + COVE,anVabCo>
) _ 1/2 e1 _elvabc() _
i =A) (_Covbaﬁ COVbaelvabCO> Tole=A) B
as | — Al =0, Im{ > 0.

Finally we consider the case when H, has a so-called half-bound state
(or resonance) at ), i.e. there exists a Hilbert space K , densely and
continuously embedded in H,, and a solution ¢ to H,¢ = A¢, where
¢ € K but ¢ € H,. Motivated by the known results for Schrodinger
operators in dimensions one and three, see e. g. [1, 6, 10], we assume a
particular form of the singularity of the resolvent.

Assumption 3.15. Let A\ be a half-bound state of H,.
(i) Assume that there exists a Hilbert space K,, densely and continu-
ously embedded in H,, such that for some § > 0 we have an asymptotic
expansion

1

R.(C) = (ESNE

for | — Al < 6, Im¢ > 0, in norm in B(/C,, K). Assume that Gy = G§
for Gy € B(K,, K}). Assume @, = (-, ¢)p for some ¢ € ;.

(ii) Assume that Vg, € Boo (Hsp, Ka)-

(iii) Assume that A € p(Hy).

Qo+ Go+i(C—N*G+0(IC =) (3.53)

Under this assumption (3.4) holds. We introduce the real constant
0o = (VarCoViap, ¢). Assuming that 6, # 0, we may introduce the
projections

P = 961(" ¢>Vab00%a¢a Po=1,—"P;.

Moreover, it is convenient to introduce the operator E = V_;,Cy Vi GoPo.-
Then we obtain the following result.
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Lemma 3.16. Let Assumption 3.15 hold at A € R. Assume that 0y #
0. Then, generically, we have in B(IC,, K) the following asymptotic
eTpansion

T, ()7 = fo+i(¢ — NV f1 + O(IC — \]) (3.54)
as |¢ — Al = 0, Im( > 0, where the coefficients fo and f1 are given by
fo=GoPo(I, — E) ™t —0;'Q.(I. — E), (3.55)

+
+60,'Go(I, — E)!
(3.56)

+GoPo(Iy — E) W CoVia G1Po (I, — E) ™

fi =0, GoPo(I, — E) WV CoViaGo(I, — E)
—0,'GoPo(I, — E) 24+ G Po(I, — E)~".

Proof. Having introduced the projections Py, P1, the proof follows the
pattern of the proof of Lemma 3.4. The details are omitted. O

As usual we immediately obtain an expansion of the resolvent R(()
via the Feshbach formula.

Theorem 3.17. Let Assumption 3.15 hold at A € R. Then, gener-
ically, we have in the norm of B(K, ® Hy, K ® Hyp) the asymptotic
exTpansion

B I —foVarCo
R(() = (—Co%afo Co + Co%afoVabCO>
e 12 fi ~fiVaCo -
=) (—covbaﬁ covbaflvabco> HotemA) D

as |¢ — A — 0, Im¢ > 0.

Remark 3.18.

(a) There are several other cases which could be considered. It is pos-
sible to have both an eigenvalue and a resonance at a threshold for H,,
and furthermore, an eigenvalue of H, could also occur at . It seems
that the present technique is difficult to adapt to these problems. One
will have to go through several stages of decomposition.

(b) Throughout this section we have used the word generic whenever we
assume that an operator is invertible, e.g. the operator I, — V3, Gy Vap Co
in the proof of Lemma 3.2 or the operator I, — V;,,GoVaupCp Py in the
proof of Lemma 3.4. It would be interesting, if the non-generic cases
could be treated as well. Some preliminary work on this issue can be
found in [10], where two-channel Hamiltonians with one-dimensional
Schrodinger operators as component Hamiltonians are studied. Some
non-generic cases are treated by introducing an auxiliary one-dimensional
Schriodinger operator with a non-local potential. However, no unified
treatment (as the present one) has been developed.
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4. APPLICATIONS

The main motivation for deriving asymptotic expansions of the re-
solvent as the spectral parameter tends to a threshold is to study scat-
tering theory near thresholds for pairs of concrete two-channel Hamil-
tonians (H, Hy) on the form

H, 0 Vii. Vi
H=H V = .
0¥ (o H2)+<V21 v22>

The companion paper [13] is devoted to scattering theory for pairs of
such two-channel Hamiltonians with Schrodinger operators as compo-
nent Hamiltonians. We give a detailed account in the case of one-
dimensional Schrédinger operators with short range (local) potentials
decaying as O(|z| ?) at infinity for some 3 > 2. First we establish scat-
tering theory by the abstract short range theory developed by Jensen,
Mourre and Perry [8]. Secondly, as an application of the results in
this paper we derive asymptotic expansions of the S-matrix in the
low-energy limit, i.e. as the energy parameter tends to the threshold
zero. Moreover, we discuss how similar results can be obtained when
the component Hamiltonians are d-dimensional Schrédinger operators,
3 < d odd. In the three-dimensional case we also discuss how to treat
the problem in the presence of a constant magnetic field.
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