SPECTRAL PROPERTIES AT A THRESHOLD
FOR TWO-CHANNEL HAMILTONIANS. II.
APPLICATIONS TO SCATTERING THEORY

MICHAEL MELGAARD

ABSTRACT. Spectral properties and scattering theory in the low-
energy limit are investigated for two-channel Hamiltonians with
Schrédinger operators as component Hamiltonians. In various,
mostly fairly ’singular’ settings asymptotic expansions of the re-
solvent are deduced as the spectral parameter tends to the thresh-
old zero. Furthermore scattering theory for pairs of two-channel
Hamiltonians are established. As an application of the expansions
of the resolvent, asymptotic expansions of the scattering matrix
are derived as the energy parameter tends to the threshold zero.

1. INTRODUCTION

In the paper [16] we investigated spectral properties at thresholds of
two-channel Hamiltonians of the form H = H 4, + V555, Where

H, 0 0 V,
Hdiag = < O Hb> ; Voff — (Wa Ob> (11)

act on the Hilbert space H = H, ®Hy. We assume that H, and H, are
self-adjoint operators in H, and H;, respectively. Moreover we assume
that Vo, € B(Hp, Ha), the space of bounded operators, and require
Via = (;;;-

Due to the diagonal structure of H 4,4 its spectrum can be an arbi-
trary combination of those of H, and H,. There are several possible
situations, and we treated only some of them in detail. A case of par-
ticular interest is the following. We assume o(H,) = 0a.(Hy) = [\, 00)
and o, (Hp) = [A1,00) for some A; > A. Furthermore, we assume that
A is an isolated eigenvalue of Hj with eigenprojection FPy. Thus H giag
has an eigenvalue embedded at the threshold A. In [16] we deduced an
asymptotic expansion of the resolvent R(() = (H — ¢)~! of H as the
spectral parameter ( tends to the threshold A. To obtain this result
we required some a priori information on the threshold of H,. More
precisely, let I, be a Hilbert space, which is densely and continuously
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embedded in H,. Motivated by known results for Schrodinger opera-
tors [8, 5, 1], we assumed the existence of an expansion, valid in the
norm topology of B(KC,, K¥),

Ra(¢) = Go+i(¢ = N)'*G1— (¢ = VG2 —i(¢ = N)*P*Gs+O(I¢ ~ A‘(? 2)

as ( > A\, (€ C\ [\ ).

Additional assumptions on the potentials V,, and V,, are necessary.
Suppose that Vg, € By (Hyp, Ka), the compact operators, and that the
operator PyV,,GoVap Py is strictly positive and invertible in B(PyHy).

Under the above-mentioned assumptions the following result holds,
see Theorem 3.4 in [16]. As |( — A] = 0, ¢ € C\ [\, 00), the resolvent
of H has an asymptotic expansion

R(¢) =Ry +i(C—NY2R, +O(|¢ = A)), (1.3)

valid in the norm topology of B(K, & Hy, ki @ Hyp). This result holds
generically. In [16] we gave a number of similar results in various,
mostly fairly ’singular’ settings.

The result (1.3) is obtained by using the asymptotic expansion (1.2)
in combination with the Feshbach formula and a technique based on
factoring out the identity plus a finite rank operator.

Despite the singular nature of the problem, (1.3) reveals that, gener-
ically, the singularities cancel. In particular, the resolvent has a well-
defined limit Ry at the threshold point in the norm topology of
B(KCo @ Hy, IC; @ Ha)-

This companion paper is devoted to scattering theory for pairs of
two-channel Hamiltonians with Schrodinger operators as component
Hamiltonians. Generally the Hamiltonians are of the form

o= (5 0+ (5 ). oo

acting in the Hilbert space H = L?(R%) @ L%(R%). Here p is the mo-
mentum operator and the V;;(x), ¢, 7 = 1,2, are short range potentials.
The paper is organized as follows. The notation is fixed in Section 2.
In Section 3 we study two-channel Hamiltonians of the form (1.4) with
one-dimensional Schrodinger operators as component Hamiltonians, i.e.
p = id/dzx. We give a detailed account in the case where V;; are short
range (local) potentials decaying as O(|z|~#) at infinity for some 3 > 2.
In Section 3.3 we give asymptotic expansions of the resolvent of H as
the spectral parameter tends to the threshold zero (the bottom of the
continuous spectrum of H); this is the low-energy limit. In the proper
framework these results follow immediately from the abstract theory
developed in [16] in conjunction with well-known asymptotic expan-
sions of the resolvents of the component Hamiltonians. We stress that
the assumption V, € Boo(Hsp, H,) in [16] is not necessary. Sufficient
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decay of Vj;(x) at infinity is enough to carry over the results. In Sec-
tion 3.4 we establish scattering theory for the pair (H, Hy) by the ab-
stract short range theory developed by Jensen, Mourre and Perry [10].
In Section 3.5, as an application of the expansions for the resolvent
we derive asymptotic expansions of the scattering matrix in the low-
energy limit, i.e. as the energy parameter tends to the threshold zero.
Theorems 3.19 and 3.20 are the main results on scattering theory in
this paper.

In Sections 4 and 5 we discuss briefly how similar results can be
obtained when the component Hamiltonians are higher-dimensional
Schrodinger operators. In the three-dimensional case we also discuss
how to treat the problem in the presence of a constant magnetic field
and an axisymmetrical electric potential. Complete results will be given
elsewhere.

Related work on N-channel scattering in one dimension is found
in [11]. The authors consider the case where the threshold energies
are equal and they are mainly interested in developing a formulation
of Levinson’s Theorem. Consequently, no comparison can be made to
the present work.

2. PRELIMINARIES

Let T be a self-adjoint operator on a Hilbert space H with domain
D(T). The spectrum and resolvent set are denoted by o(7T') and p(T),
respectively. We use standard terminology for the various parts of the
spectrum, see for example [18]. The resolvent is R(¢) = (T'—¢)~!. The
spectral family associated to T is denoted by Er(\), A € R. For an
interval A C R, F(\A € A) stands for the smoothed out characteristic
function of A:

1 ifAe A anddist(N\0A) >4, § <A,
F(AEA)—{ 0 ifAgA.
Given a selfadjoint operator T, Er(A) = F(T € A) will denote the
smoothed-out spectral projection of 7" on the interval A.

For a complex number z € C \ [0, 00) we denote by z'/? the branch
of the square root with positive imaginary part.

Let R? be the d-dimensional Euclidean space, denote points of R¢
by £ = (z1,...,14) and let |z| = (ijlxg)l/? For 1 < p < o
let LP(R%) be the space of (equivalence classes of) complex-valued
functions 1 which are measurable and satisfy [ |¢(z)|Pdz < oo if
p < oo and |[[¢||ge(ray = esssup [¢p| < oo if p = co. The mea-
sure dz is the Lebesgue measure. For any p the LP(RY) space is a
Banach space with norm || - [|smey = (fga |- [Pdz)'/P. In the case
p = 2, L>(R%) is a complex and separable Hilbert space with scalar

product (¢,%)2me) = fRd ¢ and corresponding norm |[3)| L2(Rd) =
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(w,q/))i/f(Rd). Let (z) = (1 + |z|?)}/2. We use the weighted L? spaces
L2#(RY) = {v|(z)* € L*(R%) }, s € R. Similarly L?(R%)™, the m-
fold cartesian product of L2(RY), is equipped with the scalar product
(0,9) = Z?Zl(cbj,l/)j)Lz(Rd) and the norm ||| = (2, %)"2. For m = 2
we need the weighted spaces £L5(R?) = L>$(R%)?, s € R.

The space of infinite differentiable complex-valued functions with
compact support will be denoted by C$°(R%) or D(RY), the space of
test functions. The adjoint space of D(R?), D'(R?), is the space of
distributions on D(R?). The Schwarz space of rapidly decreasing func-
tions and its adjoint space of tempered distributions are denoted by
S(R?) and S'(RY), respectively.

Let p denote the momentum operator —iV and let (p) = (14 p?)'/2.
We use the weighted Sobolev space H™*(R?) given by

H™ (RY) = {¢ € S' R |[¢lm,s = [|{z)* () "] 22 < 00}

We use (-, -) to denote the inner product on L?(R%) and also the natural
duality between H™*(R%) and H-"™*(R4). B(H™*(R%), H™* (R%))
denotes the space of bounded operators from H™* to H™* with the
operator norm. The Fourier transform is given by

(FU)(€) = B(e) = (2m) 2 / e T (a)da

Rd

and is a bounded map from H™*(R%) to H>™(RY).

3. 1D SCHRODINGER OPERATORS AS COMPONENT HAMILTONIANS

In this section the abstract results in [16] are applied to scattering
theory in the low-energy limit for two-channel Hamiltonians with one-
dimensional Schrodinger operators as component Hamiltonians.

3.1. Two-channel Hamiltonians. Let p = —id/dz be the momen-
tum operator. The free two-channel Hamiltonian Hy in (1.4) is a
self-adjoint operator in H = L?(R) @& L*(R) with domain D(H,) =
H?(R) ® H*(R), where H?(R) denotes the Sobolev space W?(R) of
order 2. Its spectrum o(Hy) = 0ess(Hp) = [0,00) is the union of two
semilines starting at zero and one, respectively. This motivates the
definition of the threshold set T = {0, 1}. Throughout this section the
component potentials are subject to the following assumption.

Assumption 3.1. Let Vj;, 1,5 = 1,2, be bounded, real-valued func-
tions such that for some constants ¢ > 0 and 3 > 2

Vij(@)| < e(Q+|z[) 7, 4,5 =1,2, and Vig = Va.
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We refer to 8 as the decay parameter. Under Assumption 3.1 the
potential V' (z) in (1.4) is Hyp-compact. Hence, the two-channel Hamil-
tonian H = Hy+V is a self-adjoint operator in 4 with domain D(H) =
D(H,) and spectrum o (H) = 04(H)Uoess(H), where 0e55(H) = 0ess(Hp).-

3.2. Auxiliary results. It is well-known that zero cannot be an eigen-
value of the one-dimensional Schrédinger operator Hy = p? + Vi () in
L%(R) when the (local) potential Vi;(x) decays like Vi;(x) = O(|z|7#)
at infinity for some 3 > 2. Hence, there are only two possible zero-
energy properties of Hy: Case I) Zero is a regular point of Hy, i.e. zero is
not an eigenvalue nor a zero resonance of H,. Case II) Zero is an excep-
tional point of Hy, i.e. zero is not an eigenvalue but zero is a resonance.
In the latter case, the equation Hy) = 0 has a unique (up to multiplica-
tive constants) solution in L*>*(R) N L*(R), 5/2 < s < 3 —5/2, but
not in L?(R) (see [14]). We have the following results for the resolvent
Ry (¢) of Hy as ¢ — 0.

Theorem 3.2. Suppose zero is a reqular point of Hy. Assume 3 > 9
and let s satisfy 9/2 < s < f—9/2. For some § > 0 we have in the
norm of B(H 1*(R), Hl’_S(R)) the asymptotic expansion

Ri(¢) = B +i¢'?BY — ¢BY) + 0(¢*?) (3.1)

for |¢] < 8, Im¢"? > 0, where (B]( ))* = BJ(-O), j=0,1,2, as operators
in B(H *(R), H-*(R)).

Theorem 3.3. Suppose zero is an exceptional point of H,. Assume
B > 11 and let s satisfy 11/2 < s < 3 —11/2. For some 6 > 0 we have
in the norm of B(H™"*(R), H""*(R)) the asymptotic expansion

Ri(¢) = —i¢™*BY + BY +i¢'*B{Y + 0(¢) (3.2)

for |C| < 8, Tm ¢'/2 > 0, where (BM)* = BY, j = —1,0,1, as operators
j j
in B(H-*(R), H"~*(R)).

Theorems 3.2 and 3.3 are found in [14] under the assumption that
J Vii(z)dz # 0. Expansions with a similar structure can be derived if
[ Vii(z dx = 0 but in this case the coefficients are different (see [15]
for detalls) By stating the theorems as above, we do not differentiate
between the two situations. The proofs of Theorems 3.1 and 3.2 are
based on a combination of the methods in [8] and [2, 4]. If the potential
V11 decays exponentially at infinity, (3.1) and (3.2) are norm-convergent
Taylor, respectively Laurent series [2, 4].

3.3. Asymptotic expansions of the resolvent in the low-energy
limit. In this subsection we carry over the abstract results in [16] to
the concrete Hamiltonian H. We show how to apply one of the abstract
theorems in [16]. The remaining theorems in [16] are carried over in a
similar way. We state the remaining theorems without further expla-
nation.
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Let Assumption 3.1 be satisfied throughout. The component Hamil-
tonians H; = p?> + Vi1(x) and Hy = p? + 1+ Vay(z) play the roles of H,
and Hy in [16, Section 3]. We consider the situation, where Assump-
tion 3.1 in [16] hold for H; at the threshold zero. In the present context
Assumption 3.1[(i) and (iii)] in [16] can be formulated as follows.

Assumption 3.4. Let 0 € o(H;).

(1) Suppose that zero is a regular point of H;.

(ii) Assume that zero is a simple isolated eigenvalue of Hy, with nor-
malized eigenfunction yq. Its reduced resolvent is denoted by Cs.

Assumption 3.4(i) implies that the asymptotic expansion (3.1) holds
when § > 9 and s satisfy 9/2 < s < 3 — 9/2. The expansion (3.1)
corresponds to the expansion under Assumption 3.1(i) in [16].

We use the notation P, = (-, xo)xo for the eigenprojection. Let
5/2 < s < #—5/2. The following real numbers are needed to state the
results.

oy = <V21B(()O)V12X0, X0>a (3-3)
Yo = <V21B(()O)V1202V213(()0)V12Xm Xo)-
Define, formally, the operators
E_y ==V BOVioPy, E_; = —PV5 BV,
and, for j > 0,

a2
E'_{—VﬂBj(-(l)leQPgnLch:f (—1)*Va1 B, 5 ViaCh, j=0,2,4,...
3= izt _
_‘/21B§(322‘/12P2+Z?c:12 (_1)kC§W1B§O+)2,2kWQC§,j = 1, 3, 5, ...
We have the elementary lemma.

Lemma 3.5. Let Assumption 8.1 and Assumption 3.4 be satisfied.
Then the operators E;, j = —2,—1, are rank one operators in L**(R)
for 3>2j+9 and j+9/2 < s < B —j—9/2 and the operators Ej,
j =0,1,2,..., are compact operators in L>*(R) for 3 > 25 + 9 and
j+9/2<s<pf—j-9/2.

Proof. The projection P, extends to a bounded operator from L**(R)
to L»>*(R), s > 0 and under Assumption 3.1 with 8 > 2 we have that
Vij is a compact map from H'*(R) to H ¥ (R) for all 2 < #' < B.
The assertions follow from these observations in conjunction with the

mapping properties of BJ(-O); the latter imposes the requirements on 3
and s. O

Assume that ag # 0. Define the projections
P =ag'(, XO>V2lB((JO)V12X0, Py=1-P,

in L»*(R), 5/2 < s < 3 —5/2, where (-,-) is understood in the dual
sense (between L*»* and L?~*). From Lemma 3.5 and [16, Lemma 3.2
and Theorem 3.2] we obtain immediately the following result.
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Theorem 3.6. Let Assumption 3.1 with > 11 hold and let 11/2 <
s < B —11/2. Let Assumption 8.4 hold. Assume that oy # 0. Then,
generically, we have in the norm of B(L*(R), L~*(R)) the asymptotic
eTpansion

(0) (0) 0 _ p)
Ry = (70 I BBt =B Vel ) g xye
—boVa1 By bo

[ B+ B VisboVau BY” + B Viabo Ve By + By Vishi Va: By
~boVrBY” — by Vu By

—B{”Vigby — BOVigh
N SRR (S (3:5)
as |C| = 0, Im ¢ > 0, where the coefficients by and by are given by
by = (1 — PyCaVa1 BSViy) 1 Py Cs, (3.6)

and
b1 = O,/al(l - P()CQ‘/QlB(()O)Vle)il
X(Ck()PoEl — E—l)(]- — Pocg%lBéo)‘/ig)_lpocg. (37)

Likewise we obtain the following theorem corresponding to [16, The-
orem 3.1].

Theorem 3.7. Let Assumption 3.1 with 8 > 9 hold and let 9/2 <
s < B —9/2. Let Assumption 3.4(1) be fulfilled. Assume that 0 €
p(Hy). Then, generically, we have in the norm of B(L*(R), L *(R))
the asymptotic expansion

(0) (0) 0) _ RO
R(C) — BO + BO ‘/IZG(OO‘)/ZIB() BO ‘/12@0 + Z(C _ )\)1/2
—agV21 By Qo

X B + BVisaoVa1 B + B\ Visag Ve By + B Visay Vo B
—a1V12BéO) - 060VQ1B§0)

_B(()O)‘/IQG,I — B](_O)‘/IQG'O ) + O(|C_ )\|) (38)

a1
as |C| = 0, Im ¢ > 0, where

ao = Lo, a1 = LoVa1 B"Vi3R,(0) Ly, (3.9)

Qo = Lo‘/élBéO)VmRﬂU)Lo
— LoV BOVia Ry (0)? Lo + Lo (Va1 BOVis Ry (0)Lo)?  (3.10)
and Ly = (I — Va1 BPViaR(0)) 2.
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Returning to Assumption 3.4, we now consider the case oy = 0.
Assuming that 9 # 0 and 5/2 < s < f—5/2 we introduce the operators
J1 = (',X0>V21B(()O)V12X0, Jo=1-Jy,

and the projections
Ji =", X0>V213(()0)V1202V12B(()0)V12X0, Jo=1-Ju.
Then we obtain the following result from [16, Theorem 3.3].
Theorem 3.8. Let Assumption 3.1 with > 15 hold and let 15/2 <
s < B—15/2. Let Assumption 3.4 hold. Assume that ag =0 and vy #

0. Then, generically, we have in B(L(R),L*(R)) the asymptotic
expansion

(0) (0) 0) _ g
R(C) — BO + B() ‘/120(%‘)/21B0 BO ‘/1200 + ’L(C _ )\)1/2
—coVa1 By Co

o [ BY + B ViscoVou BYY + B Vico Vo By + B Vise: Vin BY”
—coVar BYY — ¢, Vo1 BY”

~B{"Vise: — B Viaco ) + O(|¢ = A|) (3.11)

&1
as |C| = 0, Im ¢ > 0, where the coefficients cy and c; are given by

co = CaJdo(I = Var B Vi5Cady) Y, (3.12)

= 70_102j0(] — Vle(()O)VlQCQjo)_l
X (V21B§0)V12P2 + V21B£0) ‘/1202J1j1

0V BOViaCoy) x (1 =V B ViaGodo) . (313)

Remark 3.9.

(a) If 0 is an eigenvalue of Hj then 0 is simple [19]. Hence, the situation
described in [16, Theorem 3.4] never occurs under the above-mentioned
assumptions.

(b) The setting considered in [16, Theorem 3.5] does not occur for
the Hamiltonian H because 0 cannot be an eigenvalue of H; under
Assumption 3.1 for g > 2.

Finally we consider the case when H; has a half-bound state (or
resonance) at 0. In the present context Assumption 3.5 in [16] can be
formulated as follows.

Assumption 3.10. Let 0 € o(H,).
(i) Suppose that zero is an exceptional point of H; (1st kind), i.e. there
exists a solution ¢ to the equation Hi¢ = 0, where ¢ € L»*(R) N
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L®(R),5/2 < s < f—5/2, but ¢ & L*(R).
(ii) Assume that 0 € p(H,).

Let 5/2 < s < # — 5/2 and introduce the real constant
0o = (Vi2R2(0)Va19, ¢).
Assuming that 6y # 0 we may introduce the projections
P =0, 0)ViaRo(0)Varp, Po=1—P;.
in L>*(R). Moreover, it is convenient to introduce the operator E =

Via Ry (0)Var BV Py. 1t is well-defined when 9/2 < s < 8 — 9/2. Then
we obtain the following result from [16, Theorem 3.6].

Theorem 3.11. Let Assumption 3.1 with § > 13 hold and let 13/2 <
s < 3 —13/2. Let Assumption 3.10 be fulfilled. Assume that 6, #
0. Then, generically, we have in B(L(R),L°(R)) the asymptotic
eTpansion

B fo — foVi2R%2(0)
R(¢) = (_RQ((])VﬂfO R»(0) + R2(0)V21foV12R2(0)>

o nl A — [1Vi2Ry(0)
H(C =AY <—R2(0)V12f1 R2(0)V21f1V12R2(0)> +0(I¢ - A)) (3.14)

as |C| = 0, Im ¢ > 0, where the coefficients fo and fi are given by
fo=B{"P(I—E) ' +6,'BYI—-E), (3.15)

fi=0,"B"Py(I — E) 'ViuRy(0)Vay BV (I — E) !
+BMPy (I = E) WiaRy(0) Ve  BUP (I — E) ™ + 07 BSP (1 — )~
—0,'B{"Py(I — E) 2+ BMPy(I — E) . (3.16)

3.4. Scattering theory for the pair (H, Hy). We establish the scat-
tering theory for the pair (H, Hp) of two-channel Hamiltonians by
means of the abstract short range scattering theory developed by Jensen,
Mourre and Perry [10] (See also [7]) which is based on the following
two definitions:

Definition 3.12. Let I, be an open interval. Let A be a self-adjoint

operator in . We say that H, satisfies propagation estimates with

respect to A on I if there exist real numbers s > s’ > 1 such that for

all g € C§°(1y) the following two estimates hold:

(1 + A?)=/2e7 o g(Hy) (1 + A%)™/?|| < (1 + [¢])™ for all t € R,
(3.17)

(1 + A%) =52~ o g(H))PE|| < (1 + [t])~ for all £¢> 0. (3.18)
Here P} = E4((0,00)) and Py =1 — Pj.
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Definition 3.13. Let A be a self-adjoint operator on . The potential
V is said to be a short range perturbation of Hy with respect to A, if

(H +14)"' — (Hy +14)"" is a compact operator on #, (3.19)

and if there exist a real number ;4 > 1 and integers j, k > 0 such that
the operator

(H +4) 7V (Hy +14)7%(1 + A?)#/? (3.20)
extends to a bounded operator on .
The main theorem is:

Theorem 3.14 (Jensen-Mourre-Perry). Let Hy, V and H be as above.
Assume that there exists a self-adjoint operator A such that Hy satisfies
the propagation estimates with respect to A and such that the potential
V' is a short range perturbation of Hy with respect to A. Then the wave
operators Wy (H, Hy; Iy) exist and are strongly asymptotically complete.
Furthermore, os(H) N Iy is discrete in 1.

To complete the abstract theory one can give other conditions which
are simpler to verify than the propagation estimates in Definition 3.12.
One such method is the Mourre theory. We state the result (see [10, 7])
in the following form:

Theorem 3.15 (Jensen-Mourre-Perry). Let Hy and A be self-adjoint
operators on a Hilbert space H. Let Ay € R. Suppose:

(a) D(A) ND(H,y) is a core of Hy.

(b) €74 D(Hy) C D(Hy) and for each v € D(H,) we have that

SUD|, <1 | Hoe" | < oo.

() The commutator [Hy,iA], defined as a form on D(A) N D(H,y),
is bounded below and closable. The self-adjoint operator associated
with its closure is denoted iBy. Assume D(Hy) C D(Bi). Assume
inductively for j = 2,3,... that the form i[iB;_1, A] is bounded be-
low and closable. The associated operator is denoted iB;. Assume
D(H,) C D(B;).

(d) There exist « > 0, 6 > 0, and a compact operator K such that with
J = (Ao — 0, Ag + 0) the Mourre estimate

holds.

Then we have:

(i) os(Ho) N J is discrete in J.

(ii) The propagation estimates in (3.17) and (3.18) hold with Iy =
J\os(Hp) for all s > s > 0.

We refer to the papers for the proofs [10, 7]. To establish the scatter-
ing theory for the pair of Hamiltonians (H, Hy) we need the following
preparations. Let I; = (0,1) and I, = (1,00). We consider the scat-
tering theory for the pair (H, Hy) localized to the intervals I; and I5.
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We define the self-adjoint operator A, = (1/2)(xp + px) called the
(one-dimensional) generator of dilations. The operator A, is defined as
the infinitesimal generator of the unitary group U; defined by U,¢(z) =
e~t2¢(e~tx) for any ¢ € L?(R). Then we may define the self-adjoint
operator A = A,II, where II is the 2 x 2 identity operator in . The
operator A plays the role of the conjugate operator in the Mourre
theory for Hy. Furthermore, the scale of spaces is H,, := H™(R) ®
H™R), m = —2,-1,0,1,2, where H™(R) denotes the Sobolev space
W™2(R) of order m.

We are ready to verify the conditions in Theorem 3.15.

Lemma 3.16. The self-adjoint operators Hy and A satisfy conditions
(a)-(c) in Theorem 8.15. Moreover, for any Ay € R\T, condition (d)
in Theorem 3.15 is satisfied.

Proof. We verify the hypotheses in Theorem 3.15.

(a) Hy and A are defined on § = S(R) & S(R) and S is a common
core of Hy and A.

(b) The explicit formula

—27,,2 zAm'y
i A N1 (e ) 0
e" (HO + Z) - ( 0 (6727p2 +1+ i)leiAm'y)

shows that ¢4 leaves D(H,) invariant.

(¢) We apply Proposition I1.1 in [17]. For this purpose, we verify several
conditions. By (a)-(b), the set S C D(A) N D(H,) is a core of both A
and Hy and €748 C S. In addition, the form [Hy,iA] on S satisfies
[Hy,iA] = 2p?I =: 2H, in the sense of forms. Here I denotes the
2 x 2 identity matrix. Clearly, the form H, defined on S is bounded
below and closable in H; the closed form generates a unique self-adjoint
operator iB; s with domain D(B;s) = H*(R) ® H?*(R); the operator
iB) s is the self-adjoint realization, also denoted by Hj, of the diagonal
matrix H, with elements p? and p? and domain H?(R) @ H2(R). In
particular, D(B; s) = D(H,). Therefore, Proposition II.1 in [17] asserts
that the form [Hg,iA] defined on D(A) N D(H,) is bounded below
and closable, and the associated self-adjoint operator, denoted by B,
satisfies By = By s = H('). The multiple commutators are treated in a
similar way.

(d) Assume )y € (0, 1) Define dl()\()) = min{)\o, 1-— )\0} Let §; =
di1(Xo)/2 and let J = (Ao — 01, Ao + 61). It follows easily that (3.21) is
satisfied with @ = 2(A\g — ¢;) and K = 0. Assume that Ay € (1,00).
Define da(Ag) = Ao — 1. Let § = d5(Ag)/2 and let J = (A — da, Ao —I—(52)
Now, Ep21(J) = FA+1€ J)=F(\€J—1)= Ep(J —1). Then,
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for any ¢ € H, we have that

(6, Ento () BrEpy (1) p)n =
= 2(¢1, By ()P Epe () 1) 12wy
+2(¢s, Epp 1 (J)p? Ep +1(J)¢2>L2(R)
= 2(¢1, By ()P* Ep2(J) 1) 12w
+2(¢p2, Ep2(J — 1)p 2Ep2( - 1)¢2>L2(R)

=2 /J A1, Ep2(J)Ep2 (/\)EPZ(J)¢1>L2(R)

+2 / Mo, Epe (] = 1) Epa(N) Epe (J — 1) o) 12wy
J—1

> 2(Ao — o) (@1, Ep2(J) 1) 2(m) +
+2()\0 —1- 52)<¢2, Ep2+1(‘])¢2>L2(R)
> o, Eny(J)9)u,

where o = 2(A\g — 1 — d). This establishes (3.21) in the case when
)\0 € (1, OO) U

Since o(Hy) = 04.(Hp) implies that os(Hy) = (), Lemma 3.16 in
combination with Theorem 3.15 imply that the propagation estimates
(3.17) and (3.18) are valid on both intervals I; and I, for all s > s' > 0.
In order to establish Theorem 3.14, it remains to verify that V is a short
range perturbation of Hy with respect to A.

Proposition 3.17. Let Assumption 3.1 hold with 8 > 1. ThenV is a
short range perturbation of Hy with respect to A.

Proof. In order to apply Theorem 3.14, we need to verify (3.19) and
(3.20) for Hy, H and A. It follows immediately from the second resol-
vent equation and the Hy-compactness of V' that the condition (3.19)
is satisfied.

For any § > 1 we show that (3.20) is satisfied with 4 > 1, j =1 and
k = 2. First, we show that for any 0 < u < 2,

T(n) = (1+ %) #2(Ho + i) *(1 + A%)H/?

extends to a bounded operator on H. (Here (14 2?)7#/2 is short hand
notation for the 2 x 2 diagonal operator with (1 + 22)7#/2 along the
diagonal). For y = 0+ ir, 7 € R, T(0 + i) clearly is a bounded
operator since (Hy+14)~? is bounded in H and, moreover, the operators
(14 22)7"/2 and (1 + a?)""/? are both unitary on H. For p = 2 + 47,
7 € R, we first extend (1 + 22)~C+Hm/2(p2 4 4)72(1 4+ A2)ZHi1)/2 {6 5
bounded operator on L*(R). Then T(2 + i7) extends to a bounded
operator on H. For any 0 < p < 2 we only have to apply Hadamard’s
three line theorem to the operator T(z) = (1 + 22)~#/2(Hy + i) 2(1 +
A?)#12 To complete the proof, taking j = 1, we observe that (1 +
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w22V (H 4+ i)~ € B(H). It follows that [(1 4+ x2)*/2V (H +i)7']* =
(H + ) V(1 + 22?)#/2 is bounded and therefore, for 4 > 1, j = 1 and
k =
H.

2, (H +14)"'V(1 4+ 22)#/2T(u) extends to a bounded operator on
ThlS proves (3.20). O

Consequently, we have established Theorem 3.14 for the pair (H, Hy)
and their conjugate operator A.

3.5. The scattering matrix in the low-energy limit. It follows
from Theorem 3.14 that the local scattering operator S;, defined by

S; =Wi(H, Hy; I;)W_(H, Hy; 1), j=1,2,

is a unitary operator on Ep, (Hy)P(Ho)H. Let S, denote the unitary
representation of S; in L2(I;; C2?). There is a general theorem asserting
that S; admits a diagonal representation (Sy10)(\) = Si(\)w()\) (see,
e.g., [12, Theorem 6.2]). In the present context the scattering matrix
S(A) (henceforth we suppress the lower index and the tilde character)
can be represented on the interval I; as follows for any A € I1\o,,(H):

S(\) =
1 —mid 2\ FV (1 — RO\ +40)V) Fryp(A/2)*, (3.22)

Here F is the Fourier transform and ~y,(u) is the trace operator given
by

o) f = (f}@’ﬁi;)), fe YR, s> 12, p=¢

(A proof of (3.22) can be found in [13, Section 10.4]). The scatter-
ing matrix S(\) on I; is a unitary operator in B(C?). (The spectral
multiplicity changes from two to four at the threshold 1). Via (3.22)
and the asymptotic expansions of the resolvent we derive asymptotic
expansions for the scattering matrix S(A) for the (H, Hy) as A | 0.
For this purpose we need expansions for the operators v,(\'/2)F and
F*yo(A/?)*. Formally, we have

(A2 F = i iAY2)T (3.23)
where :
T; : (2m)~ 207! ((;‘ﬁ)]) (3.24)

This follows from a formal expansion of

1/2 ) ~1/2 eXP(_i)\l/Zx)
WO < (o) (TR,

We see that I'; € B(L*»*(R),C?), s > j + 1/2. Expansion (3.23) is
valid as A | 0 in the sense that if v5(A'/2)F is approximated by a finite
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series up to j = k, k being the largest integer satisfying s > k + 1/2,
then the remainder is o(A\*/2) in the norm of B(L**(R), C?).

Theorem 3.18. Let Assumption 3.1 hold with 8 > 9. Let Assump-
tion 3.4(i) hold. Assume that 0 € p(Hs). Then, generically, we have
in the norm of B(C?) the asymptotic expansion

SO = (_01 _01> +o(1) (3.25)
as A} 0.

Proof. Let s satisfy 9/2 < s < 3—9/2 and let R;, j =0, 1, denote the
coefficients in (3.8). From (3.22), (3.23) and Theorem 3.7 we have the
expansion S(\) = —iA"Y25_; + Sy + o(1) in B(C?), where

571 - 7TF0(V - VR()V)FS,
Sy = 1y+70(V = VRV — 70gVRVIE — alo(V — VR V)L™

Using 1 = S(X)S(A\)* and the simple fact that 72 = 0 implies that T =
0 for any self-adjoint operator T', we obtain that I'y(V —V RV )I'§ = 0.
Thus S_; = 0. As for Sy we begin by rewriting the term 7I'\V R VT
via the expression for T’y in (3.24) and the expression for R; given in
Theorem 3.7. For any (z1, 22) € C?, the operator acts as

«[R1Y) 11 Z1
ATV R VT () iy (1 1) () |
where

1
c= §<V113§0)V111 + MIBSO)V12GO%1B§O)‘/111

Vit BOVisagVe BOVit 1 + Viy BOVisa, Vi BO Vi1

Vi BOVisay Var1 = Vi BOVisagVai1 — Via: Vor BOViy 1
—V12aoV21B§0)VH1 + Viga1 V1 + ‘/113(()0)‘/12a0‘/213§0)‘/121
VB VisagVor B Vol + Vi B Vioan Vo B Va1

_VHB(()O) Viga Vasl — VuBg))Vmangzl - 1/‘12&1‘/'213(()0)‘/121
—ViaaoVa1 BOVis1 + Vigai Vasl, 1). (3.26)

The operator I'1 (V' — VRyV)['§ can be written as a matrix with real
elements. Therefore, for some real number a we find that

" o [ 2 0 —a z
(T4 (V = VRV — aTo(V — VRV)TS) (Z;) _ <a - ) (z;) |
since the terms on the left-hand side are each other adjoints. Hence,
1 0 11 0 —a
50 1) 1)+ (0 7)

By the unitarity of Sy, we infer that a = 0 and either ¢ = 0 or ¢ = 1.
We show that ¢ = 1. First, we observe that ¢ depends continuously
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on Vi1, Vi, Vo1 and Vo, hence it suffices to consider the case where
Vig = Vo1 = 0. Moreover, only the first term on the right-hand side of
(3.26) remains. Thus, in order to compute ¢ we need the expression for

B§°) which is given in [14, Theorem 4]. Using this expression we find
that (VHB@VH, 1) = 2. Hence ¢ =1 as desired. O

In a similar way we establish the following theorems which are the
main theorems on scattering theory herein.

Theorem 3.19. Let Assumption 3.1 hold with 3 > 11. Let Assump-
tion 3.4 be satisfied. Assume that oy # 0. Then, generically, we have
in the norm of B(C?) the asymptotic expansion (3.25) as A | 0.

Theorem 3.20. Let Assumption 3.1 hold with B > 15. Let Assump-
tion 3.4 be satisfied. Assume that oy = 0 and vy # 0. Then, generi-
cally, we have in the norm of B(C?) the asymptotic expansion (3.25)

as A4 0.

Remark 3.21. In principle, the method allows us to derive an asymp-
totic expansion of the scattering matrix under Assumption 3.10. How-
ever, we would need to derive an expansion of the resolvent of the
one-dimensional Schrodinger operator H; up to an error term of order
O(|¢]) via the method used in [14]. In practice this turns out to be
extremely tedious and complicated to do and, as a consequence, we
have not succeeded in doing so.

4. HIGHER-DIMENSIONAL SCHRODINGER OPERATORS AS
COMPONENT HAMILTONIANS

Consider the two-channel Hamiltonian

_ _(-A 0 Vir(z) Via(z)

H_H0+V(x)_< 0 —A+1>+<V21(x) V22(x)> (4.1)
acting in # = L?*(R%) @ L*(R?), d > 1, where —A is the d-dimensional
Laplacian and the Vj;(z), z € RY, 4,5 = 1,2, are real-valued, electric
potentials decaying as O(|z|®) at infinity for some 3 > 2. For d > 3
odd Jensen-Kato [8] and Jensen [5] (see also [1]) have deduced asymp-
totic expansions of the resolvent of d-dimensional Schrédinger operators
—A+V(z). For Im¢ > 0, Im > 0 and || — 0, the expansions take
the form

R()=—=C'B_y—iC"V?B_ + By +iC'/?By + - - -, (4.2)

valid in the norm topology of B(H~%*(R%), Hb~*(R%)), provided V (z)
decays sufficiently rapidly and s is large enough. The assumptions in
the abstract theory in [16] is modelled on such expansions. Conse-
quently, the methods in [16] and this companion paper in conjunction
with the expansions (4.2) allows one to derive asymptotic expansions
of the resolvent of H in (4.1) as well as the scattering matrix asso-
ciated with the pair (H, Hy) as the spectral and energy parameters
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tend to zero. Furthermore, it is easy to extend the results to cover the
even-dimensional case. From Jensen [5] one has for such Schrédinger
operators in dimensions d > 6 an expansion of the form

R(¢) = —(""Py = In(BY, + By + ¢(In¢)*B} + (In¢B; + (B} + 0(¢)

as ( — 0. We always have B°, P, = B, and generically P, = 0,
i.e. zero is not an eigenvalue. In dimensions d > 5 there is no zero
resonance (half-bound state). Similar expansions hold in dimensions
d = 2,4, but here additionally the zero resonance may occur [6, 3]. The
abstract arguments in [16] can clearly be adapted to cover this type of
expansion.

5. 3D SCHRODINGER OPERATOR WITH A CONSTANT MAGNETIC
FIELD

The results obtained in Section 3 can be carried over to a Schrédinger
operator in L?(R3) with a constant magnetic field and an axisymmet-
rical electric potential. Under these assumptions the operator can be
represented in a multi-channel framework. For the lowest Landau level
we can fit the problem into the two-channel framework considered here.
It requires considerable preparation to apply our results. Preliminary
results on this interesting application are contained in [13]. Complete
results will be published elsewhere.
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