There are no iterative morphisms that define the Arshon sequence and the σ -sequence

Sergey Kitaev

November 13, 2000

Abstract

In [2], Berstel proved that the Arshon sequence cannot be obtained by iteration of a morphism. An alternative proof of this fact is given here.

The σ -sequence was constructed by Evdokimov in order to construct chains of maximal length in the n-dimensional unit cube. We prove that the σ -sequence can not be defined by iteration of a morphism.

1 Introduction and Background

In 1937, Arshon gave a construction of a symbolic sequence w, which in the alphabet $\{1, 2, 3\}$ is constructed as follows: Let $w_1 = 1$. For $k \geq 1$, w_{k+1} is obtained by replacing the letters of w_k in odd positions thus:

$$1 \to 123, \ 2 \to 231, \ 3 \to 312$$

and in even positions thus:

$$1 \to 321, 2 \to 132, 3 \to 213.$$

Then

$$w_2 = 123, \quad w_3 = 123132312,$$

and each w_i is the initial subword of w_{i+1} , so the infinite symbolic sequence $w = \lim_{n \to \infty} w_n$ is well defined. It is called the Arshon sequence.

This method of constructing w is called the Arshon Method (AM), and ψ will denote the indicated map of the letters 1, 2, 3, according to position as described above.

We will denote the natural decomposition of w in 3-blocks by lower braces:

$$w = 123132312...$$

The paper by Arshon [1] was published in connection with the problem of constructing a nonrepetitive sequence in a 3-letter alphabet, that is, a sequence that does not contain any subwords of the type $XX = X^2$, where X is any word of a 3-letter alphabet. The sequence w has that property. The question of the existence of such a sequence was studied in algebra, discrete analysis and in dynamical systems.

Any natural number n can be presented unambiguously as $n=2^t(4s+\sigma)$, where $\sigma<4$, and t is the greatest natural number such that 2^t divides n. If n runs through the natural numbers then σ runs through the sequence that we will call the σ -sequence. We let w_{σ} denote that sequence. Obviously, w_{σ} consists of 1s and 3s. The initial letters of w_{σ} are 11311331113313....

In [4,7], Evdokimov constructed chains of maximal length in the n-dimensional unit cube using the σ -sequence. Originally, the σ -sequence was defined by the following inductive scheme:

$$C_1 = 1, D_1 = 3$$

$$C_{k+1} = C_k 1 D_k, D_{k+1} = C_k 3 D_k$$

$$k = 1, 2, \dots$$

and
$$w_{\sigma} = \lim_{k \to \infty} C_k$$
.

Our definition above of the σ -sequence is equivalent to this one.

Let Σ be an alphabet and Σ^* be the set of all words of Σ . A map $\varphi : \Sigma^* \to \Sigma^*$ is called a *morphism*, if we have $\varphi(uv) = \varphi(u)\varphi(v)$ for any $u, v \in \Sigma^*$. It easy to see that a morphism φ can be defined by defining $\varphi(i)$ for each $i \in \Sigma$.

Suppose a word $\varphi(a)$ begins with a for some $a \in \Sigma$, and that the length of $\varphi^k(a)$ increases without bounds. The symbolic sequence $\lim_{k \to \infty} \varphi^k(a)$ is called a fixed point of the morphism φ .

We now study classes of sequences, that are defined by iterative schemes. There are many techniques to study sequences generated by morphisms. So it is reasonable to try to determine if a sequence under consideration can be obtained by iteration of a morphism.

Since the construction of the Arshon sequence w is similar to the iteration morphism scheme, and because w is constructed by two morphisms f_1 and f_2 , applied depending on whether the letter position is even or odd, we might expect that there exists a morphism f which generates w.

But this turns out not to be true, due to Theorem 1.

Naturally a question arises as to the possibility of constructing w_{σ} using the iteration of a morphism, since of such a construction could help us in studying w_{σ} .

This also turns out not to be true, due to Theorem 2.

2 The Arshon Sequence

Theorem 1. There does not exist a morphism, whose fixed point is the Arshon sequence.

Note. A corollary of this theorem is the non-existence of a morphism which defines the Arshon sequence. In fact, if such a morphism exists, it must have the property that is 1 mapped to 1X by the action of the morphism, where X is some word, and from this it follows that the Arshon sequence is a fixed point of this morphism.

Proof (of the theorem):

It is enough to prove the non-existence of a morphism f with the property w = f(w), since from the definition of a fixed point we have that if w is a fixed point of the morphism f then w = f(w). Suppose there exists a morphism f such that

$$f(1) = X$$
, $f(2) = Y$, $f(3) = Z$ and $w = f(w)$.

From all such morphisms we choose a morphism with minimal length of X.

The morphism f is not an erasing morphism, that is $|X| \ge 1$, $|Y| \ge 1$, $|Z| \ge 1$, since otherwise w = f(w) contains a subword of the type PP (where P is some word) which cannot belong to w. Now $|X| + |Y| + |Z| \ne 3$, since otherwise $|f^l(1)| = 1$ for l = 1, 2..., and w is not a fixed point of the morphism f.

$$f(w) = w = XYZXZYZXY...$$

Hence X consists of |X| of the first letters of w, Y is |Y| of the following letters, and Z is |Z| of the letters following that.

We will use upper braces to show the decomposition of w into f-blocks (that is, to show the disposition of the words X, Y and Z in w). We have

$$w = \underbrace{123132 \dots a_{|X|}}^{X} \underbrace{a_{|X|+1} \dots a_{|X|+|Y|}}_{X} \underbrace{a_{|X|+|Y|+1} \dots a_{|X|+|Y|+|Z|}}_{Z} \underbrace{a_{|X|+|Y|+|Z|+1}}_{X} \dots,$$

where all a_i are letters of the alphabet $\{1, 2, 3\}$.

Lemma 1. We have $|X| + |Y| + |Z| \equiv 0 \pmod{3}$.

Proof: From the structure of w, the frequencies of 1, 2, 3 in w coincide, hence the frequencies of these letters in f(w) = w coincide as well. But this is only possible when $|X| + |Y| + |Z| \equiv 0 \pmod{3}$, since otherwise there are two letters, whose frequencies in f(w) = w do not coincide.

Lemma 2. The situation $|X| \equiv |Y| \equiv |Z| \equiv 0 \pmod{3}$ is impossible.

Proof: Suppose $|X| \equiv |Y| \equiv |Z| \equiv 0 \pmod{3}$. Then X, Y and Z consist of a whole number of 3-blocks. Hence we can consider the words $X' = \psi^{-1}(X)$, $Y' = \psi^{-1}(Y)$, $Z' = \psi^{-1}(Z)$. The properties of ψ give

$$w = \psi^{-1}(w) = X'Y'Z'X'Z'Y'Z'X'Y'...$$

so there exists a morphism f' which maps 1 to X', 2 to Y', 3 to Z' and w = f'(w). Since |X'| = |X|/3, we have |X'| < |X|. This contradicts the choice of the morphism f.

Lemma 3. With the assumption of the existence of the morphism f, |X| < 5.

Proof: Suppose $|X| \ge 6$, that is, X = 123132... If $|X| \equiv 2 \pmod{3}$ ($|X| \equiv 1 \pmod{3}$), then $|X| \ge 7$ and using Lemma 1 we consider the 4th f-block X = 12313... (X = 123132...). This contradicts the **AM**. Hence $|X| \equiv 0 \pmod{3}$.

It follows from Lemma 2 that the situation $|Y| \equiv 0 \pmod{3}$ is impossible. If $|Y| \equiv 1 \pmod{3}$ ($|Y| \equiv 2 \pmod{3}$), then we consider the 10th (3rd) f-block $X = 12\underbrace{313}_{2...}$ and it brings us to a contradiction with the **AM**. Hence if $|X| \geq 6$ then the morphism f can not exist.

Lemma 4. With the assumption of the existence of the morphism $f, |X| \neq 1$.

Proof: If |X| = 1, then X = 1 and the length of the words $f^k(1)$ for k = 1, 2, ... does not increase, whence w is not a fixed point of the morphism f. This is a contradiction.

Lemma 5. With the assumption of the existence of the morphism $f, |X| \neq 2$.

Proof: Suppose |X| = 2, that is X = 12.

We have $|X| \equiv 2 \pmod{3}$, hence, using Lemma 1, we have $|Y| + |Z| \equiv 1 \pmod{3}$.

We consider the 2nd f-block X and the f-block Z next after it. It can be seen that Z begins with 3. We consider the 4th f-block X and Y preceding it and find that Y ends with 3. But then, considering YZ, which is a subword of w, we see, that 33 is a subword of w, which is impossible. That is for |X| = 2 the morphism f cannot exist.

The 3-blocks 123, 231, 312 are said to be *odd* 3-blocks. All other 3-blocks are said to be *even*.

Lemma 6. With the assumption of the existence of the morphism $f, |X| \neq 3$.

Proof: Suppose |X| = 3, that is X = 123.

We have $|X| \equiv 0 \pmod{3}$, hence, using Lemma 1 we have $|Y| + |Z| \equiv 0 \pmod{3}$. Considering the **AM**, the 2nd f-block X must be an odd 3-block, hence $|Y| + |Z| \equiv 1 \pmod{2}$.

Let $|Z| \geq 2$. Then the 2nd f-block Z begins with an even 3-block, and the 3rd Z begins with an odd 3-block. This is impossible since 2 letters define the evenness of the 3-block unambiguously. Thus |Z| = 1.

Let $|Y| \ge 2$. In XYZ (or in an arbitrary permutation of these letters) there is an even number of 3-blocks, so the 9th f-block Y begins with an odd 3-block, but the 1st Y begins with an even 3-block. Hence |Y| = 1.

This is a contradiction with $|Y| + |Z| \equiv 0 \pmod{3}$ (and also a contradiction with $|Y| + |Z| \equiv 1 \pmod{2}$). That is for |X| = 3 the morphism f cannot exist.

Lemma 7. With the assumption of the existence of the morphism $f, |X| \neq 4$.

Proof: Suppose |X| = 4, that is X = 1231.

We have $|X| \equiv 1 \pmod{3}$, hence, using Lemma 1, we have $|Y| + |Z| \equiv 2 \pmod{3}$.

We have $|Y| \geq 2$, since otherwise Y = 3 and hence XYX which is a subword of w, contains 3131, which is impossible. Hence $Y = 32 \dots$ We consider ZX and ZY and see that Z ends with 2. Now $|Z| \geq 2$, since otherwise Z = 2 and XZX which is a subword of w, contains 1212, which is impossible. Hence $Z = \dots 32$, or $Z = \dots 12$. The former is impossible since 3232 is contained in ZY, and hence in w. The latter is impossible too, since considering the 9th f-block Z and the f-block X following it, we obtain $ZX = \dots 121231$, which contradicts the AM. That is for |X| = 4 the morphism f cannot exist.

Lemma 8. With the assumption of the existence of the morphism $f, |X| \neq 5$.

Proof: Suppose |X| = 5, that is X = 12313.

We have $|X| \equiv 2 \pmod{3}$, hence, using Lemma 1, we have $|Y| + |Z| \equiv 1 \pmod{3}$. Then the 4th f-block is $X = 12\underbrace{313}$, which is a contradiction with the **AM**. That is if |X| = 5 then the morphism f cannot exist.

From Lemmas 3 - 8 we have a contradiction with the assumption of the existence of the morphism f. This proves Theorem 1.

Remark. In [1], Arshon gave the construction of a nonrepetitive sequence w_n for an n-letter alphabet, where n is any natural number greater than or equal to 3. It is easy to see that, for even n, there exists a morphism f_n that defines w_n . Namely, for $1 \le i \le n$, one has:

$$f_n(i) = \begin{cases} i(i+1) \dots n12 \dots i-1, & \text{if } i \text{ is odd,} \\ (i-1)(i-2) \dots 1n(n-1) \dots i, & \text{if } i \text{ is even.} \end{cases}$$

Theorem 1 shows that for n = 3 such a morphism does not exist. However, whether there exists a morphism defining w_n for arbitrary odd n is still an open question.

3 The σ -sequence

Theorem 2. There does not exist a morphism whose iteration defines the sequence w_{σ} .

Proof (of the theorem):

Suppose there exists a morphism f, such that f(1) = X, f(3) = Y and $w_{\sigma} = \lim_{k \to \infty} f^{k}(1)$. Obviously, X consists of the first |X| letters of w, where |X| is the length of X.

Lemma 9. The subsequence of w_{σ} consisting of the letters in odd positions is the alternating sequence of 1s and 3s: 1313131....

Proof: The odd positions of w_{σ} correspond to the odd numbers $n = 2^{0}(4s + \sigma) = 4s + \sigma$, so clearly σ alternates between 1 and 3.

Lemma 10. If there exists a morphism f whose iteration gives w_{σ} then $|X| \equiv 0 \pmod{4}$.

Proof: It is easy to see that $f(1) = 1X^{(1)}$, where $|X^{(1)}| \ge 1$, since otherwise $|f^k(1)| = 1$, for $k = 1, 2, 3 \dots$, so w_{σ} cannot be obtained by iterating f.

Suppose $|X^{(1)}| = 1$, that is f(1) = 11. But then w_{σ} consists of 1s only, which is impossible, hence $f(1) = 11X^{(2)}$, where $|X^{(2)}| \ge 1$.

Suppose $|X^{(2)}| = 1$, that is f(1) = 113. Since w_{σ} has the subword 111, then w_{σ} has a subword f(111) = 113113113. If f(111) begins with a letter in an odd position, then the marked letters $\mathbf{1}13113113$, read from left to right will make up consecutive letters of w_{σ} in odd positions. This contradicts Lemma 9. If f(111) begins with a letter in an even position, then marking letters in odd positions will lead to the same contradiction with Lemma 9, hence $f(1) = 113X^{(3)}$, where $|X^{(3)}| > 1$.

Suppose $|X^{(3)}| = 1$, that is f(1) = 1131. Then $f^2(1) = 11311131Y1131$ and the marked letter does not coincide with the letter of w_{σ} standing in the same place, hence $f(1) = 1131X^{(4)}$, where $|X^{(4)}| \geq 1$.

If |X| is odd, then the marked letters in $f^2(1) = 1131X^{(4)}1131X^{(4)}...$ are two consecutive letters in odd places. This contradicts Lemma 9. Hence |X| is even.

We have $f^2(1) = XX \dots = X1131X^{(4)} \dots$, whence the next-to-last letter of X is in an odd position and is equal to 3, since otherwise two consequent 1 in w_{σ} stand at odd places, which contradicts Lemma 9. The natural number which corresponds to the next-to-last letter of X is written as $2^0(4s+3)$, the next number is equal to |X| and to $2^0(4s+3)+1=4(s+1)\equiv 0\pmod{4}$.

The following Lemma is straightforward to prove.

Lemma 11. If $n_1 = 2^{t_1}(4s_1 + 1)$, $n_2 = 2^{t_2}(4s_2 + 1)$, $n_3 = 2^{t_3}(4s_3 + 3)$ and $n_4 = 2^{t_4}(4s_4 + 3)$ then n_1n_2 , n_3n_4 can be written as $2^t(4s + 1)$, and n_1n_3 as $2^t(4s + 3)$.

It follows from Lemma 10 that |X| = 4t.

Suppose X ends with 1 (the case when X ends with 3 is similar), that is at the (4t)th position in X we have 1. According to the multiplication by 2 does not change σ , so at the (2t)th position in X we have 1.

Consider $f^2(1) = X\mathbf{X}...$ The letters of the marked X occupy the positions of $f^2(1)$ from (4t+1)th to (8t)th. Since $X = \mathbf{X}$, then at the (6t)th place we have 1. But 6t = 3(2t), whence, by Lemma 11, at the (2t)th and the (6t)th places there must stand different letters. This is a contradiction and Theorem 2 is proved.

References

- 1 Arshon S. E. The Proof of the Existence of n letter Non-Repeated Asymmetric Sequences, Math. collected papers, New series, Publ. H. AS USSR, Vol. 2, Issue 3, Moscow (1937), 769-779.
- 2 Berstel J. Mots sans carré et morphismes itérés, Discrete Math. **29** (1979), 235-244.
- 3 Cobham A. Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192.
- 4 Evdokimov A. On the Maximal Chain Length of an Unit *n*-dimensional Cube, Maths Notes **6**, No. **3** (1969), 309-319.
- 5 Lothaire M. Combinatorics on Words, Encyclopedia of Mathematics, Vol. 17, Addison-Wesley (1986).
- 6 Salomaa A. Jewels of Formal Language, Theory Computer Science Press, (1981).
- 7 Discrete Mathematics and Mathematical Questions of Cybernetics, Vol. 1, Moscow (1974), 112-116.