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Abstract

In [2], Berstel proved that the Arshon sequence cannot be obtained by
iteration of a morphism. An alternative proof of this fact is given here.

The o-sequence was constructed by Evdokimov in order to construct
chains of maximal length in the n-dimensional unit cube. We prove that
the o-sequence can not be defined by iteration of a morphism.

1 Introduction and Background

In 1937, Arshon gave a construction of a symbolic sequence w, which in the
alphabet {1,2,3} is constructed as follows: Let w; = 1. For k > 1, wgyq is
obtained by replacing the letters of wy in odd positions thus:

1—123, 2 — 231, 3 — 312
and in even positions thus:

1321, 2 — 132, 3 — 213.

Then
wy = 123, ws = 123132312,

and each wj; is the initial subword of w;,i, so the infinite symbolic sequence
w = nlggo wy, is well defined. It is called the Arshon sequence.
This method of constructing w is called the Arshon Method (AM), and v will

denote the indicated map of the letters 1, 2, 3, according to position as described
above.



We will denote the natural decomposition of w in 3-blocks by lower braces:

w= @@ 31’2/ e
The paper by Arshon [1] was published in connection with the problem of
constructing a nonrepetitive sequence in a 3-letter alphabet, that is, a sequence
that does not contain any subwords of the type XX = X2, where X is any
word of a 3-letter alphabet. The sequence w has that property. The question of
the existence of such a sequence was studied in algebra, discrete analysis and in
dynamical systems.

Any natural number n can be presented unambiguously as n = 2%(4s + o),
where o < 4, and ¢ is the greatest natural number such that 2 divides n. If n
runs through the natural numbers then o runs through the sequence that we will
call the o-sequence. We let w, denote that sequence. Obviously, w, consists of
1s and 3s. The initial letters of w, are 11311331113313.. ..

In [4,7], Evdokimov constructed chains of maximal length in the n-dimensional
unit cube using the o-sequence. Originally, the o-sequence was defined by the
following inductive scheme:

Cry1=CplDy,  Dypy1 = Cp3Dy,
k=1,2,...
and w, = lim C}.
k—o0
Our definition above of the o-sequence is equivalent to this one.

Let X be an alphabet and ¥* be the set of all words of . A map ¢ : ¥* — ¥*
is called a morphism, if we have ¢(uv) = p(u)p(v) for any u,v € X*. It easy to
see that a morphism ¢ can be defined by defining ¢(7) for each i € X.

Suppose a word ¢(a) begins with a for some a € ¥, and that the length of
¢*(a) increases without bounds. The symbolic sequence klgrolo ¢*(a) is called a

fized point of the morphism .

We now study classes of sequences, that are defined by iterative schemes.
There are many techniques to study sequences generated by morphisms. So it is
reasonable to try to determine if a sequence under consideration can be obtained
by iteration of a morphism.



Since the construction of the Arshon sequence w is similar to the iteration
morphism scheme, and because w is constructed by two morphisms f; and fs,
applied depending on whether the letter position is even or odd, we might expect
that there exists a morphism f which generates w.

But this turns out not to be true, due to Theorem 1.

Naturally a question arises as to the possibility of constructing w, using the
iteration of a morphism, since of such a construction could help us in studying
Wy

This also turns out not to be true, due to Theorem 2.

2 The Arshon Sequence

Theorem 1. There does not exist a morphism, whose fized point is the Arshon
sequence.

Note. A corollary of this theorem is the non-existence of a morphism which
defines the Arshon sequence. In fact, if such a morphism exists, it must have
the property that is 1 mapped to 1.X by the action of the morphism, where X is
some word, and from this it follows that the Arshon sequence is a fixed point of
this morphism.

Proof ( of the theorem ):

It is enough to prove the non-existence of a morphism f with the property
w = f(w), since from the definition of a fixed point we have that if w is a fixed
point of the morphism f then w = f(w). Suppose there exists a morphism f
such that

F1) =X, f(2) =Y, f(3) = Z and w = f(w).

From all such morphisms we choose a morphism with minimal length of X.

The morphism f is not an erasing morphism, thatis | X| > 1, |Y| > 1, |Z] > 1,
since otherwise w = f(w) contains a subword of the type PP (where P is some
word) which cannot belong to w. Now |X| + |Y| + |Z] # 3, since otherwise
|f'(1)| =1 for I = 1,2..., and w is not a fixed point of the morphism f.

flw)=w=XYZXZYZXY..

Hence X consists of | X| of the first letters of w, Y is |Y| of the following
letters, and Z is |Z| of the letters following that.



We will use upper braces to show the decomposition of w into f-blocks (that
is, to show the disposition of the words X, Y and Z in w). We have

Y Z X

AN

X
w = 123132
~~

123132 .. 41x) QX[ 41 - - QX 4y DX [+Y[+1 - - CX |+ Y+ 2 GX Y [+HZ 1 - )

where all a; are letters of the alphabet {1,2,3}.

Lemma 1. We have | X|+ Y|+ [Z| =0 (mod 3).

Proof: From the structure of w, the frequencies of 1, 2, 3 in w coincide, hence
the frequencies of these letters in f(w) = w coincide as well. But this is only
possible when | X|+|Y|+|Z| =0 (mod 3), since otherwise there are two letters,
whose frequencies in f(w) = w do not coincide.

Lemma 2. The situation | X| = |Y|=1|Z|=0 (mod 3) is impossible.

Proof: Suppose |[X|=[|Y|=[Z| =0 (mod 3). Then X, Y and Z consist of
a whole number of 3-blocks. Hence we can consider the words X’ = ¢ (X)),
Y' =4 YY), Z' =+ }(Z). The properties of 1 give

w=1v¢ ' (w)=XY'ZXZY'ZXY'..

so there exists a morphism f’ which maps 1 to X', 2 to Y, 3 to Z' and w = f'(w).
Since |X'| = |X|/3, we have |X'| < |X|. This contradicts the choice of the
morphism f.

Lemma 3. With the assumption of the existence of the morphism f, | X| < 5.

Proof: Suppose |X| > 6, that is, X =123132.... If | X| =2 (mod 3) (| X| =
1 (mod 3)), then |X| > 7 and using Lemma 1 we consider the 4th f-block
X =12313... (X =1231323...). This contradicts the AM. Hence | X| = 0
<~ s

(mod 3).

It follows from Lemma 2 that the situation |Y| =0 (mod 3) is impossible.
If|Y|=1 (mod3) (|Y] =2 (mod 3)), then we consider the 10th (3rd) f-
block X = 123\132 ... and it brings us to a contradiction with the AM. Hence if

|X| > 6 then the morphism f can not exist.



Lemma 4. With the assumption of the existence of the morphism f, |X| # 1.

Proof: If | X| =1, then X =1 and the length of the words f*(1) for k =1,2,...
does not increase, whence w is not a fixed point of the morphism f. This is a
contradiction.

Lemma 5. With the assumption of the existence of the morphism f, |X| # 2.

Proof: Suppose | X| = 2, that is X = 12.

We have |X| = 2 (mod 3), hence, using Lemma 1, we have Y| + |Z| = 1
(mod 3).

We consider the 2nd f-block X and the f-block Z next after it. It can be
seen that Z begins with 3. We consider the 4th f-block X and Y preceding it
and find that Y ends with 3. But then, considering Y Z, which is a subword of
w, we see, that 33 is a subword of w, which is impossible. That is for |X| = 2
the morphism f cannot exist.

The 3-blocks 123, 231, 312 are said to be odd 3-blocks. All other 3-blocks are
said to be even.

Lemma 6. With the assumption of the existence of the morphism f, |X| # 3.

Proof: Suppose | X| = 3, that is X = 123.

We have |X| = 0 (mod 3), hence, using Lemma 1 we have |Y| + |Z| = 0
(mod 3). Considering the AM, the 2nd f-block X must be an odd 3-block, hence
Y|+1Z|=1 (mod 2).

Let |Z] > 2. Then the 2nd f-block Z begins with an even 3-block, and the
3rd Z begins with an odd 3-block. This is impossible since 2 letters define the
evenness of the 3-block unambiguously. Thus |Z| = 1.

Let |Y] > 2. In XY Z (or in an arbitrary permutation of these letters) there
is an even number of 3-blocks, so the 9th f-block Y begins with an odd 3-block,
but the 1st Y begins with an even 3-block. Hence |Y| = 1.

This is a contradiction with |Y|+|Z| =0 (mod 3) (and also a contradiction
with |Y|+|Z| =1 (mod 2)). That is for | X| = 3 the morphism f cannot exist.

Lemma 7. With the assumption of the existence of the morphism f, |X| # 4.



Proof: Suppose | X| =4, that is X = 1231.

We have | X| =1 (mod 3), hence, using Lemma 1, we have |Y| + |Z| = 2
(mod 3).

We have |Y| > 2, since otherwise Y = 3 and hence XY X which is a subword
of w, contains 3131, which is impossible. Hence Y = 32.... We consider ZX and
ZY and see that Z ends with 2. Now |Z| > 2, since otherwise Z = 2 and XZX
which is a subword of w, contains 1212, which is impossible. Hence Z = ... 32,
or Z =...12. The former is impossible since 3232 is contained in ZY, and hence
in w. The latter is impossible too, since considering the 9th f-block Z and the
f-block X following it, we obtain ZX = 1\2,_1/&3’_1/, which contradicts the AM.

That is for | X| = 4 the morphism f cannot exist.

Lemma 8. With the assumption of the existence of the morphism f, |X|# 5.

Proof: Suppose |X| =5, that is X = 12313.

We have |X| = 2 (mod 3), hence, using Lemma 1, we have Y| + |Z| = 1
(mod 3). Then the 4th f-block is X = 12 313, which is a contradiction with the
AM. That is if | X| = 5 then the morphism f cannot exist.

From Lemmas 3 - 8 we have a contradiction with the assumption of the exis-
tence of the morphism f. This proves Theorem 1.

Remark. In [1], Arshon gave the construction of a nonrepetitive sequence
wy, for an n-letter alphabet, where n is any natural number greater than or equal
to 3. It is easy to see that, for even n, there exists a morphism f, that defines
w,. Namely, for 1 < i < n, one has:

£.30) = i(i+1)...n12...i—1, if 7 is odd,
Yl —=1)(E—-2)...1n(n—1)...4, ifi is even.

Theorem 1 shows that for n = 3 such a morphism does not exist. However,
whether there exists a morphism defining w,, for arbitrary odd n is still an open
question.

3 The o-sequence

Theorem 2. There does not exist a morphism whose iteration defines the se-
quence W, .



Proof ( of the theorem ):
Suppose there exists a morphism f, such that f(1) = X, f(3) = Y and
Wy = klim f%(1). Obviously, X consists of the first | X| letters of w, where | X| is

—00
the length of X.

Lemma 9. The subsequence of w, consisting of the letters in odd positions is the
alternating sequence of 1s and 3s: 1313131 .. ..

Proof: The odd positions of w, correspond to the odd numbers n = 2%(4s+0) =
4s + o, so clearly o alternates between 1 and 3.

Lemma 10. If there exists a morphism f whose iteration gives w, then | X| =0
(mod 4).

Proof: It is easy to see that f(1) = 1X®) where |X™| > 1, since otherwise
IfE5(1)| =1, for k=1,2,3..., so w, cannot be obtained by iterating f.

Suppose | X(I| = 1, that is f(1) = 11. But then w, consists of 1s only, which
is impossible, hence f(1) = 11X where | X®| > 1.

Suppose | X@®| =1, that is f(1) = 113. Since w, has the subword 111, then
w, has a subword f(111) = 113113113. If f(111) begins with a letter in an odd
position, then the marked letters 113113113, read from left to right will make up
consecutive letters of w, in odd positions. This contradicts Lemma 9. If f(111)
begins with a letter in an even position, then marking letters in odd positions
will lead to the same contradiction with Lemma 9, hence f(1) = 113X®), where
(XG> 1.

Suppose |X®)| =1, that is f(1) = 1131. Then f2(1) = 11311131Y'1131 and
the marked letter does not coincide with the letter of w, standing in the same
place, hence f(1) = 1131X ™, where | X®| > 1.

If | X | is odd, then the marked letters in f2(1) = 1131X*1131X® ... are two
consecutive letters in odd places. This contradicts Lemma 9. Hence | X| is even.

We have f2(1) = XX ... = X1131X® ... whence the next-to-last letter of
X is in an odd position and is equal to 3, since otherwise two consequent 1 in
w, stand at odd places, which contradicts Lemma 9. The natural number which
corresponds to the next-to-last letter of X is written as 2°(4s + 3), the next
number is equal to | X| and to 2°(4s+3)+1=4(s+1) =0 (mod 4).

The following Lemma is straightforward to prove.



Lemma 11. If ny = 2"(4s; + 1), ny = 2"2(4dsy + 1), ng = 2% (4s3 + 3) and
ny = 2%(4sy + 3) then niny, ngny can be written as 2'(4ds + 1), and ning as
2'(4s + 3).

It follows from Lemma 10 that | X| = 4t.

Suppose X ends with 1 (the case when X ends with 3 is similar), that is at
the (4¢)th position in X we have 1. According to the multiplication by 2 does
not change o, so at the (2¢)th position in X we have 1.

Consider f?(1) = XX.... The letters of the marked X occupy the positions
of f2(1) from (4t + 1)th to (8¢)th. Since X = X, then at the (6¢)th place we
have 1. But 6t = 3(2t¢), whence, by Lemma 11, at the (2¢)th and the (6t)th
places there must stand different letters. This is a contradiction and Theorem 2
is proved.
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