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Abstract

For bond percolation on the two-dimensional triangular lattice with arbitrary
retention parameter p € [0, 1], we show that the number of infinite rigid components
is a.s. at most one. This proves a conjecture by Holroyd. Further results, concerning
simultaneous uniqueness, and continuity (in p) of the probability that a given edge
is in an infinite rigid component, are also obtained.

1 Introduction

We consider standard bond percolation on the triangular lattice T = (V, E) in two
dimensions, defined as the graph with vertex set

vV ={i(1,0) +j(3,%2) : i,j € Z}

and edge set E consisting of all pairs of vertices z,y € V with ||z — y|| = 1, where
|| - || denotes Euclidean norm. Each edge of T is deleted independently with probability
1—p, and thus kept with probability p. Retained and deleted edges are also called open
and closed, and their status are represented by the symbols 1 and 0. Let P, denote the
resulting product probability measure on {0, 1}¥ with marginal distributions (1 — p, p).

Of central interest in percolation theory is whether or not infinite connected compo-
nents exist, and this typically depends on whether p is above or below a certain critical
value p.. For the triangular lattice T, the critical value is known; this is due to Wierman
[13] who showed that

0 forp <pc
1 for p > p.

(1)

P, (3 infinite connected component) = {

with p. = 2sin({5) ~ 0.3473. The next natural question is to ask for the number of
infinite connected components when p > p.. For the analogous problem for the cubic
lattice Z¢, it is well known that there is a.s. only one connected component. This
result carries over to T, and the easiest way to see this is to note that the famous
Burton-Keane [3] encounter point argument works equally well on T as on Z¢.
Originating in the physics literature, there has been some recent interest in studying
percolation processes with focus on other aspects than connectivity. Instead of infinite
connected components, one may consider infinite rigid components, or infinite entangled
components. Here we shall prove the following rigidity analogue of the uniqueness of
the infinite connected component result: Whenever an infinite rigid component exists
for bond percolation on T, it is a.s. unique (Theorem 3.4). This proves a conjecture by



Holroyd [11], who obtained a somewhat weaker result in the same direction (Theorem
3.1).

The corresponding uniqueness problem for so-called entanglement percolation has
recently been treated in [7] and in [8].

It will become clear in Sections 4-7 that our arguments are specific to planar lattices
in two dimensions, and this is why we do not consider more general lattices in higher
dimensions. The reason for studying percolation on T rather than on the more usual
square lattice Z? is that the latter is uninteresting from the point of view of rigidity,
because it does not contain any rigid subgraphs (except for some trivial examples with
at most one edge).

A preliminary discussion of rigidity and rigidity percolation is given in Section 2. In
Section 3 we discuss the issue of uniqueness of infinite rigid components and state our
main uniqueness results. Proofs of these results are given in Sections 4 and 5. Some
additional results, concerning continuity in p of the Pj-probability that a given edge is in
an infinite rigid component, and so-called “simultaneous uniqueness”, will be obtained
in Sections 6 and 7.

2 Rigidity percolation

Following is a brief recollection of (generic) two-dimensional rigidity of graphs, and of
rigidity percolation on T. We refer to Holroyd [11] for a more detailed and general
account; in particular, rigidity is a dimension-dependent concept, and the definitions
below have natural analogues in higher dimensions.

Let G be a finite graph with vertex set V(G) and edge set E(G). Let p be an
embedding of G in R?, i.e. p is an injective mapping from V(G) to R?. The pair
(G, p) is called a framework. A motion of a framework (G, p) is a differentiable family
(pt : t €]0,1]) of embeddings of G in R? with py = p, satisfying

lpe(2) = pe(W)Il = llo(z) — p(y)l (2)

for all ¢t € [0,1] and all vertices z,y € V(G) that share an edge. The motion is said to
be rigid if (2) holds for all z,y € V(G). The embedding p and the framework (G, p) are
said to be rigid if all their motions are rigid.

It is well known that for any finite G, either almost all (with respect to Lebesgue
measure on R2V(%)) embeddings of G in R? are rigid, or almost all such embeddings
are not rigid. This makes the following definition natural.

Definition 2.1 A finite graph G is said to be rigid if (Lebesgue-)almost all embeddings
of G in R? are rigid.

Holroyd [11] proposed a very natural extension to infinite graphs:

Definition 2.2 An infinite locally finite graph G is said to be rigid if every finite sub-
graph of G is contained in some rigid finite subgraph of G.

Next, we consider rigidity in bond percolation on the triangular lattice T. For any
configuration w € {0,1}¥ of open and closed edges in T, the set of open edges may be
partitioned into (maximal) rigid components. Note, however, that a vertez may belong
to more than one such component. What is the P,-probability of having some infinite



rigid component? Analogously to (1), there exists a p,. € [0, 1], called the rigidity critical
probability, such that

0 forp<p,

P, (3 some infinite rigid component) = { 1 forp>p
-

Unlike the connectivity critical probability p., the exact value of p, is not known, al-
though numerical findings in [12] suggest that p, ~ 0.6602. One of the main results in
Holroyd’s paper [11] is the following:

Theorem 2.3 (Holroyd) The rigidity critical probability p, for bond percolation on T
satisfies
pe <pr<1. (3)

To show that p, < p, <1 is a triviality, but the corresponding strict inequalities in (3)
are not.

3 Uniqueness of the infinite rigid component

When an infinite rigid component exists, is it necessarily unique? Holroyd [11] came, in
a sense, very close to an affirmative answer:

Theorem 3.1 (Holroyd) Consider bond percolation on T. For all p € (p,, 1] with at
most countably many exceptions, we have

P, (3 a unique infinite rigid component) = 1.

In particular, it follows that uniqueness holds for (Lebesgue-)almost all p € (p,, 1].
Our first result is the following.

Proposition 3.2 Fiz p1 and ps such that p, < p1 <p2 < 1. If
P, (3 a unique infinite rigid component) =1, (4)

then
P, (3 a unique infinite rigid component) = 1.

By combining Theorem 3.1 and Proposition 3.2, we get the next result as an immediate
consequence:

Corollary 3.3 For bond percolation on T with retention parameter p > p,, we have
P, (3 a unique infinite rigid component) = 1. (5)

Proof: Pick p as in the corollary. By Theorem 3.1, we can find a p’ € (p,,p) such
that the Py -probability of having a unique infinite rigid component is 1. By applying
Proposition 3.2 with p; = p’ and py = p, we obtain (5). |

It remains to prove Proposition 3.2, and this will be done in Section 4. Our proof builds
heavily on the work of Gandolfi, Keane and Russo [4] concerning uniqueness of the
infinite connected component for certain dependent percolation processes having the so
called positive correlations property (also known as the FKG property).



Corollary 3.3 has one shortcoming in that it says nothing about the critical case
p = p,. Ergodicity implies that

P,, (3 some infinite rigid component) € {0,1}

but it remains an open problem to decide whether this probability is 0 or 1. If the prob-
ability is 1, then one would like to know how many infinite rigid components there are,
but Corollary 3.3 does not answer this question. However, the following improvement
does:

Theorem 3.4 For bond percolation on T with retention parameter p satisfying
P, (3 some infinite rigid component) =1, (6)
we have that this infinite rigid component is Pp-a.s. unique.

This result will be proved in Section 5, by building further on the proof in Section 4 of
Proposition 3.2. A main ingredient of this extended proof is the consideration of certain
auxiliary percolation processes living on modified versions of T.

The advantage of Theorem 3.4 over Proposition 3.2 and Corollary 3.3 is not only
that it takes care of the critical case p = p,., but also that its proof is more self-contained;
in particular, it is independent of the long and complicated proof in [11] of Theorem
3.1. (On the other hand, our proof of Theorem 3.4 is also a bit complicated.)

4 Proof of uniqueness monotonicity

Fix p € [0,1], and let X be a {0,1}”-valued random object with distribution P,. Also
define a second {0, 1}¥-valued random object Y by setting

(7)

Y (e) = 1 if e is in an infinite rigid component of X
=1 0 otherwise

for each e € E. In other words, Y is obtained from X by deleting all edges that are not
in an infinite rigid component.

An important step in our arguments consists of showing that if Y contains an infinite
connected component, then this connected component is unique and contains circuits
surrounding any finite part of T. This is done by invoking a variant of a result of
Gandolfi, Keane and Russo [4] (Theorem 4.1 below). Before stating that result, we
need some more terminology:

e Graph automorphisms. A graph automorphism for T is a bijection y:V =V
with the property that for any z,y € V, we have that y(z) and 7(y) share an
edge in F iff £ and y share an edge in E. This induces a corresponding mapping
v : E — E in the obvious way. Graph automorphisms of T are translations
(of integer length and in directions that are multiples of §), rotations (around
a given vertex, by angles that are multiples of §), reflections (in lines through
vertices at directions that are again multiples of §), and compositions of these. A
probability measure Q on {0,1}¥, and the corresponding {0, 1}¥-valued random
element Z, are said to be automorphism invariant if for any n, any e1,...,e, € E,
any i1,...,i, € {0,1} and any graph automorphism v we have

Q(Z(e1) =i1,---, Z(en) =in) = Q(Z(+'(e1)) = i1,..., Z(¥ (en)) = in) -



e Positive correlations. A function f : {0,1}¥ — R is said to be increasing if
f(w) < f(w') whenever w < ', where < is the usual coordinatewise partial order
on {0,1}¥. A random element Z € {0,1}¥ is said to have positive correlations if
for all bounded increasing f, g : {0,1}¥ — R we have

E(f(Z)9(Z)] > E[f(Z)]E[9(Z)]
where E denotes expectation.

e Surrounding circuits. Let H, denote the closed convex hull in R? of the
hexagon that has its six corners in (£n,0) and (i%,i%g). Let V,, = VNH,
(so that V,, is the set of vertices at graph-theoretic distance at most n from the
origin), and let E, be the set of edges in E that have both endpoints in V,,. A
path r = (vg,ep,v1,€1,...,651,0%) in T, with vg,...,vx € V, €g,...,ex,1 € E
and e; connecting v; and v;41 for each i, is identified in a natural way with a curve
in R?, by identifying each edge with a unit length closed line segment connecting
its two endvertices. The path r is said to be self-avoiding if the vertices vy, ..., v
are all distinct, with the possible exception vy = vg. It is said to be a circuit if it
is self-avoiding with vy = vg. Finally, it is said to be a circuit surrounding Hy if
in addition vy, . ..,vx_1 € V'\'V,, and every continuous curve 7 : [0, 00) — R? with
m(0) € Hy, and lim; , ||7(t)|| = oo has to intersect r. (See [4] for an equivalent
definition in terms of winding number.)

Theorem 4.1 Let Z be a {0,1}F -valued random object satisfying

(i) automorphism invariance,

(ii) ergodicity under each of the translations z — = + (1,0), z — z + (3, ?) and
Tz + (-3, @) separately, and

(iii) positive correlations.

Suppose furthermore that Z has an infinite connected component a.s. Then the infinite
connected component is a.s. unique, and moreover each Hy is a.s. surrounded by some
circuit in Z.

Proof: An analogous result for site percolation on Z? appears as the main result
in Gandolfi, Keane and Russo [4], and the present result follows from a completely
straightforward adaptation of their proof. O

Corollary 4.2 Pick p in such a way that (6) holds, let X be a {0,1}¥-valued random
object with distribution Py, and define the {0,1}F-valued random object Y as in (7).
Then, with probability 1, Y has a unique connected component, and contains, for each
n, a circuit surrounding Hy,.

Proof: A rigid component has to be connected (see e.g. [11, Proposition 6.6]), so with
p as in the corollary we have that Y contains some infinite connected component a.s.
Hence, it is sufficient to verify that Y satisfies conditions (i), (ii) and (iii) of Theorem
4.1.

The distribution of X is just i.i.d. measure, so X satisfies (i) and (ii), and it is easy
to see that these properties are inherited by Y.



It remains to verify the positive correlations property (iii). Positive correlations
holds for X; this is the well-known Harris-FKG inequality (see e.g. [5]). Now write
h : {0,1}¥ — {0,1}¥ for the mapping defined in (7), and note that A is increasing,
meaning that w < ' implies h(w) < h(w'). Hence the compositions f o h and g o h are
increasing whenever f,g: {0,1}¥ — R are, so that

E[f(Y)g(Y)] = E[f(h(X))g(h(X))]

> E[f(h(X))]E[g(h(X))]
= E[f(Y)E[g(Y)]
where the inequality follows from the positive correlations property of X. O

Corollary 4.2 seems to strongly suggest Theorem 3.4, but we are not quite there yet
(see Remark 4.4 below). First we shall prove Proposition 3.2, for which the following
lemma, is useful.

Lemma 4.3 Let A = (Va,E4) and B = (Vp, EB) be (finite or infinite) graphs, and let
AU B be the graph with vertex set V4 U Vg and edge set E4 U Ep.

(a) If A and B are rigid, and |V(A) NV (B)| > 2, then AU B is rigid.
(b) Conversely, if |[V(A) NV (B)| <1, then AU B is not rigid.

Proof: This result is stated and proved in [11, Propositions 6.8 and 6.7, and Meta-
proposition 6.10]. O

Proof of Proposition 3.2: Fix p; and ps as in the proposition. Let A be the event that
for each H,, there exists an infinite rigid component containing a circuit surrounding
H,. By (4) and Corollary 4.2, we have

P, (4) =1. (8)

But A is an increasing event (meaning that for any w,w’ € {0,1}¥ such that w < o'
and w € A, we have w' € A), which in conjunction with (8) implies

Pp,(4) =1. (9)

We wish to show that with P,,-probability 1, any two edges ej,es € E that are in
infinite rigid components, must in fact be in the same infinite rigid component. Since
there are only countably many pairs of edges, it suffices to show this for fixed e;,e2 € E.
So fix e; and eg, and pick n large enough so that e, ez € E,. By (9), we can then Py,-
a.s. find a circuit r surrounding H,, with the property that all edges in r are open and
contained in the same rigid component. Lemma 4.3 (b) implies that if e; is contained
in an infinite rigid component C, then this component must intersect r in at least two
vertices, because otherwise C' could be split in two parts (one “outside” and one “inside”
r) with at most one vertex in common, and would thus not be rigid after all. But then
Lemma 4.3 (a) guarantees that the rigid component containing e; is the same as the
rigid component containing the edges of r. The same reasoning applies to e, so if €1
and es are both in infinite rigid components, then they are in the same rigid component.
O

Remark 4.4 Why doesn’t the existence of surrounding circuits guaranteed by Corol-
lary 4.2, combined with the reasoning in the proof of Proposition 3.2, imply Theorem
3.47 The answer is that the curcuit in Y surrounding H,, might (a priori) contain edges
in more than one infinite rigid component. This possibility will be ruled out in the next
section. O



5 Proof of the full uniqueness result

In this section we will prove Theorem 3.4. We begin with a lemma about the way in
which different rigid components can share a vertex. Fix a vertex z in T. Denote the
six edges coming out of = by ez o,€z,1,--.,€z5, in such a way that, for « = 0,...,5,
edge e;; connects z with z + (cos(%Z),sin(%)). In other words, the edges incident to
z are enumerated in counter-clockwise order, starting with the one connecting = and
z +(1,0).

Lemma 5.1 Let x be a vertex of T, and let i,5,k,l € {0,...,5} be such that i < j <
k < 1. Suppose for a percolation configuration w € {0,1}¥ that

(i) esi,€r,j,exk and ey are all open,

(ii) eg; and ey are in the same rigid component C;y, and
(iii) ey ; and ey are in the same rigid component C; .
Then Ci,k = le.

Proof: Write y; for the endpoint (other than z) of e, ;, and define y;, y;, and y; similarly.
We claim that there must exist a path r;; in C;; which starts at y;, ends at 1, and
does not go through z. To see this, suppose for contradiction that there does not exist
any such path. Then the edge set of C;; can be partitioned into two sets according to
whether  must be used when going (in C; ) from y; to a given edge. These two edge
sets have only a single vertex (z) in common, so Lemma 4.3 (b) shows that C; is not
rigid, which is a contradiction.

Similarly, there must exist a path r;; in the component C};, which starts at y;, ends
at 1, and does not go through z. By planarity, the paths r; ; and r;; must intersect at
some vertex z (different from z); see Figure 1. Hence C;j, and C}; share two distinct
vertices  and z, so by Lemma 4.3 (a) we have C;;, = Cj. O

Y

Figure 1: The paths r; ; and r;; must intersect.

The above argument was inspired by a similar use of planarity by Alm [2] in the context
of first-passage percolation.



We now come to the main additional ingredient (compared to Section 4) in the proof
of Theorem 3.4, which is the introduction of some “decorated” variants of the lattice
T. The main shortcoming of representing infinite rigid components by the process Y
is that an infinite connected component in Y may contain more than one infinite rigid
component (although the event that this happens will be shown to have probability 0,
it is easy to construct deterministic configurations where it happens). The following
modified lattice TV = (V', E') is tailored to take care of this problem.

Fix a small € > 0 (for concreteness, we may take ¢ = 0.1). T’ is obtained from T
by the following three step procedure (see the left and the middle part of Figure 2):

1. Replace each z € V by six vertices z(, z},...,z5 € V', where, for i =0,...,5, the
vertex x; is located at x + (e cos(),esin(5)). We call zj ..., x5 the satellites of
z.

2. For each z € V and each 4,j € {0,...,5} with i # j, connect z; and 7} by an
edge in E', so that in other words the six satellites of = are connected as in the
complete graph K. These edges in E' are said to be local.

3. Replace each edge e € E by an edge ¢’ € E' as follows. If e has endpoints z and
y, then we let ¢’ connect the satellites z{ and y}, where i,j € {0,...,5} are chosen
in the unique way to make [|z; — yj|| = 1 — 2e. These edges in E' are said to be
regional. Note that each vertex in V' is incident to exactly one regional edge.

Given the percolation realization X € {0,1}¥, we define the configuration X’ € {0,1}*'
as follows. If ¢’ € E' is a regional edge, then we let X'(e’) = X(e), where e € E is the
edge in T corresponding to €. If on the other hand ¢’ € E’ is a local edge connecting
two satellites z; and z, then we let

1 if X(ez;) = X(es,;) =1, and e;; and e, ; are
X'() = in the same rigid component of X
0 otherwise

(éz,; and ey ; are defined as in Lemma 5.1).

— -

Figure 2: The local modification (around a vertex z € V) of T via T' into T".

Lemma 5.2 Two regional edges €',é € E' (with X'(¢') = X'(¢') = 1) are in the same
connected component of X' if and only if the corresponding edges e,é € E are in the
same Tigid component of X.

Proof: Suppose that e and € are in the same rigid component R of X. Since rigid
components are connected, we can find a sequence of edges e1,...,e, € R with ey = e



and e, = €, such that e; and e; 1 share a vertex in T for 7 = 1,...,n+1. It is immediate
from the costruction of X’ that, for each such 4, the edges e} and e, (defined in the
obvious way) are in the same connected component of X', and the same must then hold
for €' and €' as well.

For the converse, suppose that ¢/ and €& are in the same connected component C

of X'. Then we can find a sequence of edges €],...,el, € C with ¢} = € and €], = €&,
such that e; and e} ; share a vertex in T' for i = 1,...,n — 1. Now thin this sequence
into another sequence e'(l), ey e’(k) of only regional edges with 61(1) = ¢’ and e’(k) =é,
by simply removing each local edge from the sequence. By the construction of X', we
have for = 1,...,k — 1 that e and e(;; 1) are in the same rigid component of X, and
it follows that the same thing holds also for e and e. O

Lemma 5.2 implies in particular that if X’ has a unique infinite connected component,
then X has a unique infinite rigid component. Theorem 4.1 would therefore follow
if we could adapt the Gandolfi-Keane-Russo theorem (see Theorem 4.1) to show a.s.
uniqueness of the infinite connected component in X’. The problem with this idea
is that the Gandolfi-Keane-Russo technique builds heavily on planarity, whereas the
lattice T is not planar. To solve this problem, we shall modify the lattice one step
further, to get a lattice T = (E", V") which is planar and which at the same time has
connectivity properties that (as far as the process X' is concerned) are essentially the
same as for T.

To this end, we represent each edge in T/ by a straight line in R? connecting its two
endvertices, and let T” have vertex set

VI =Vv'uv

where V* is the set of points in R? where two or more edges in E' cross each other.
Clearly, only local edges cross each other.

Some local edges will then pass through three vertices in V* (see Figure 2). E" is
obtained from E' by replacing each such edge e’ (connecting, say, z; and z7;, and passing
through z2{,25,2§ € V*, in that order), by four edges: one from z} to z{, one from z{
to 23, one from zj to 24, and one from z§ to zj. We call ¢’ € E' the parent of these
four edges in E"”. The lattice T" obtained in this way is planar (see Figure 2 again),
and it turns out that the Gandolfi-Keane—-Russo theorem can be adapted in the same
straightforward manner as for Theorem 4.1, to obtain the following result.

Proposition 5.3 Let Z" ba a {0, 1}E”—valued random object satisfying assumptions
(1), (ii) and (iii) of Theorem 4.1. Suppose furthermore that Z" has an infinite connected
component a.s. Then this infinite connected component is a.s. unique, and each Hy is
a.s. surrounded by some circuit in Z".

Proof: See the proof of Theorem 4.1. O

Now define X” € {0,1}*" as follows. If ¢’ € E" is also on E', then we let X" (e") =
X'(e"); otherwise we let X" (") = X'(e'), where €’ is the parent of €”. (This means e.g.
that the same line segments are open and closed in the right part of Figure 2 as in the
middle part.)

Lemma 5.4 For any two regional edges €' and é € E' (with X'(e!) = X'(€') = 1) we
have that €' and € are in the same connected component of X' if and only if they are
in the same connected component of X".



Proof: Lemma 5.1 implies that if two local edges in E’ cross each other and are both
open (in X’), then they are also in the same connected component of X’. Hence the
additional connectivity of T” caused by the vertices in V* does not make any difference
to the connected components in X’ and X”. O

Proof of Theorem 3.4: Fix p such that (6) holds, let X be a {0,1}¥-valued random
object with distribution P/, and define X’ € {0,1}*" and X" € {0,1}*" as above.
Then X has a.s. at least one infinite rigid component. Hence, X’ has a.s. at least one
infnite connected component by Lemma 5.2, so that X" has a.s. at least one infinite
connected component by Lemma 5.4. By the arguments in the proof of Corollary 3.3,
we furthermore have that X" satisfies the assumptions (i), (ii) and (iii) of Theorem 4.1.
Thus, Proposition 5.3 tells us that X" has a.s. a unique infinite connected component.
Using Lemma 5.4, we deduce that the same thing holds for X’. Finally, this implies, by
Lemma 5.2, that X has a unique rigid component a.s. O

Remark 5.5 Recall that Proposition 5.3 guarantees not only that X” has a unique
infinite connected component, but also, for each n, that this infinite connected compo-
nent contains a circuit surrounding H,. By arguing as in the above proof, we therefore
get the following result: For any p such that (6) holds, we have Pp-a.s. that the unique
rigid component contains, for each n, a circuit surrounding Hy. (The usefulness of this
fact will be demonstrated in Sections 6 and 7.) Alternatively, we could have deduced
the same result by combining Theorem 3.4 and Corollary 4.2. O

Remark 5.6 An inspection of our arguments for Theorem 3.4 reveals that the only
properties of the product probability measure P, that are used (besides (6)), are that
the assumptions (i), (ii) and (iii) of Theorem 4.1 hold for the corresponding {0,1}-
valued random object X. This means that we have in fact proved the following gener-
alization of Theorem 3.4 and Remark 5.5: Let X be any {0,1}¥ -valued random object
satisfying assumptions (i), (ii), and (iii) of Theorem 4.1, that has a.s. some infinite
rigid component. Then X has a.s. a unique infinite rigid component, and for each n
this infinite rigid component contains a.s. a circuit surrounding H,. FExamples to which
this result applies to show that the number of infinite rigid components is a.s. at most
one, are:

e The so-called free and wired random-cluster measures for the random-cluster
model on T with cluster parameter ¢ > 1 (see e.g. [6]).

e The analogous free and wired Gibbs measures for the random triangle model (see
[9])-

e Site percolation: Declare each vertex x € V idependently to be open or closed
with probabilities p and 1 — p, and for each e € E let X(e) = 1 if and only if both
endpoints of e are declared open.

6 A continuity result

A well-known result for standard bond percolation on Z¢ is that the probability that
a given vertex z is in an infinite connected component, is a continuous function of p

10



above the connectivity critical probability p.. The usual proof of this result (see e.g.
[5]) works equally well for T.

In this section we consider the analogous problem for rigidity percolation. For
p € [0,1], we define ¢(p) to be the Pp-probability that a given edge e in T is in an
infinite rigid component (note that this definition is independent of the choice of e € E).
The function ¢(p) : [0,1] — [0, 1] is obviously increasing. We shall prove the following
result.

Theorem 6.1 The function ¢(p) is continuous on (pr,1].

Remark 6.2 Obviously, ¢(p) = 0 for p < p,, so the only remaining possible point of
discontinuity for ¢(p) is at the rigidity critical value p = p,. To decide whether we have
continuity at p = p, seems to be a challenging open problem. For a small partial result
on this problem, see Proposition 6.4 below. O

The first ingredient in our proof of Theorem 6.1 is the following lemma about rigid
components of finite subgraphs of T.

Lemma 6.3 Fix a positive integer n, an edge e* € E,, and two edge configurations
w,w’ € {0,1}F satisfying

(i) w=d,

(ii) w contains a rigid component C which in turn contains a circuit v surrounding
Hy,

(iii) w(e) =w'(e) for all edges e inside the circuit r,
(i) w(e) =1,

(v) e* is not in the rigid component of w containing r.
Then e* is not in the rigid component of w' containing r.

In other words, what the lemma says is that if e* is not in the same rigid component
as the edges of r, then this situation cannot be changed by turning on edges outside r
only. In the proof, we shall allow the following slip of notation: an edge set A C FE is
identified with the graph with edge set A and vertex set V4 consisting of those vertices
x € V that are incident to at least one edge in A. The notation A U B is used as in
Lemma 4.3.

Proof of Lemma 6.3: Assume first that, in addition to conditions (i)—(v), we also
have

(vi) w and w' have only finitely many open edges.

To prove the lemma under the additional assumption (vi), it suffices to show that for
any set A € E \ C of edges inside r such that e* € A and w(e) =1 for all e € A, and
any finite set B € E \ C of edges outside 7, we have

AUCUB is not rigid. (10)
Fix two such edge sets A and B. By assumption (v), we have that

AUC is not rigid.

11



By the definition of rigidity, we therefore have for (Lebesgue-)a.e. embedding p of AUC
in R? that there exists a non-rigid motion

pe: [0,1] — (R?)VaVe

of (AU C,p). By considering this motion relative to two fixed vertices z,y € V¢, we
see that there exists another non-rigid motion gy of (A U C, p) such that p;(z) = p(2)
for all z € V. Now let p* be any embedding of AU C U B in R? whose projection on
(R?)VaUVe equals p. Consider the function

pA: . [0, 1] N (RQ)VAUVCUVB

defined by

t p*(xz) forx e Vg \ (VaUVg).

Since C contains the circuit p, we have by planarity that there are no edges in AUCUB
linking a vertex z € Vg \ (Va U Vi) to a vertex y € V4 \ V. Tt is therefore clear that
pf is a motion of AUC U B. On the other hand, since p; is a non-rigid motion, we have
that gy is also non-rigid, so (10) is established.

It remains to show that the assumption (vi) may be removed, but this is just a
straightforward application of Definition 2.2. O

5t () = { pu(z) for z € V4 U Ve

As the next ingredient in the proof of Theorem 6.1, we consider the so-called standard
coupling of the percolation processes given by P, for all p simultaneously: Let Q be
the product probability measure on [0, 1]¥ whose marginals are uniform distribution on
[0,1]. Let U be the corresponding [0,1]¥-valued random object, so that the variables
U(e) are i.i.d. and uniformly distributed on [0, 1]. For each p € [0, 1], we may define the
{0,1}F-valued random object X, by letting

1 ifU(e) <p
Xple) = { 0 otherwise.

for each e € E. Clearly, X, has distribution P,, for each p.

Proof of Theorem 6.1: Fix p > p,. Holroyd [11, Proposition 8.2] observed that
left-continuity of ¢(p) at p follows from the P,-a.s. uniqueness of the infinite rigid
component. Hence, and in view of our uniqueness results in Section 3, we have left-
continuity, so it only remains to show right-continuity, i.e. that

li h) — =0. 11
lim ¢(p + h) — ¢(p) =0 (11)
Fix an arbitrary edge e € E, and note that
li h) — =
im ¢(p + h) — $(p)
= liifol P, 1 (e is in an infinite rigid component)
—P(e is in an infinite rigid component)

= 1}5101 Q(e is in an infinite rigid component of X, )

—Q(e is in an infinite rigid component of X))

= 1}5101 Q(e is in an infinite rigid component of X, but not of X))

= Q(Dy), (12)

12



with the event D), defined as
D, = {e is in an infinite rigid component of X, for all A > 0, but not of X,,.}

Fix n such that e € E,,. By Remark 5.5, we have with Q-probability 1 that the unique
rigid component in X, contains a circuit r surrounding H,,. Lemma 6.3 tells us that if
e is not in the infinite rigid component (i.e. not in the rigid component containing r) in
Xp, and yet belongs to the infinite rigid component in X, 5, then

at least one edge inside the circuit r is

1
closed in Xj, but open in X, . (13)

On the event D), we have that the event (13) happens for all A > 0, and since there are
only finitely many edges inside r, it follows that some edge € inside r has to be closed
on level p but open on level p + h for all A > 0. This means that U(é) = p, which
has Q-probability 0. Now sum over all possible circuits r and all é inside r (this is a
countable sum), to deduce that Q(D,) = 0, which (using (12)) implies (11). O

We next state our partial result concerning continuity of ¢(p) at the rigidity critical
value p,.

Proposition 6.4 The function ¢(p) is either left- or right-continuous at p = p;.

Proof: Suppose that ¢(p) is not left-continuous at p = p,. Since limy1g p(p, +h) = 0, we
then have ¢(p,) > 0. By Remark 5.5, we thus have P, -a.s. that there is a unique rigid
component which contains, for each n, some circuit surrounding H,. Right-continuity
of ¢(p) at p = p, then follows by arguing as in the proof of Theorem 6.1. O

7 Simultaneous uniqueness

Consider the standard coupling Q of the percolation processes X, for all p € [0,1]
simultaneously, introduced in Section 6. By Corollary 3.3 in combination with Fubini’s
Theorem, we have

Q(X) contains a unique infinite rigid component for Lebesgue-a.e. p € (p,,1]) = 1.

It is natural to ask whether “Lebesgue-a.e. p” can be replaced by “every p” in the
above statement; the analogous problem with infinite connected components in place of
infinite rigid components has been treated e.g. in [1] and [10]. We have the following
answer.

Theorem 7.1 The standard coupling Q satisfies
Q(X, contains a unique infinite rigid component for all p € (p,,1]) = 1.
Proof: It is enough to show that for any € > 0 we have
Q(X), contains a unique infinite rigid component for all p € (p, +¢,1]) = 1.
For this, it is enough to show that for any e1,es € E we have
Q(3p € (pr +€,1] such that e; and ey are in different infinite rigid components of X))

= 0. (14)
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Fix ej,e2 € E and ¢ > 0, and write A, ., for the event in (14). Pick n large enough
so that e;,es € E,. By Remark 5.5, we have Q-a.s. that the unique infinite rigid
component in X, ;. contains a circuit r surrounding FE,. By arguing as in the proof of
Theorem 3.2, we see that for all p > p, + € we have the following: if e; is in an infinite
rigid component, then e; is also in the same rigid component as the circuit . The same

reasoning applies to the edge es, and (14) follows. O
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