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Abstract

We construct a coupling of two distinct Gibbs measures for Markov random
fields with the same specifications, such that the existence of an infinite path of
disagreements between the two configurations has probability 0. This shows that
the independence assumption in the disagreement percolation method for proving
Gibbsian uniqueness, cannot be dropped without being replaced by other condi-
tions. A similar counterexample is given for couplings of Markov chains.

1 Introduction

There are many interesting and useful connections between percolation theory on one
hand, and Gibbs systems and Markov random fields on the other. One example is the
random-cluster model, which puts bond percolation and Potts models in a common
parameterized family, and gives percolation-theoretic proofs of phase transition in the
latter [8, 1, 10]; another is the equivalence between spin percolation and Gibbs state
multiplicity in Ising and Potts models on the square lattice [7, 6]. We refer to [9] for a
general introduction to such connections.

A particularly striking and intuitive example is van den Berg’s [2] so-called disagree-
ment percolation technique for proving uniqueness of Gibbs measures in Markov random
fields. The main ingredient of this technique is the following result from [2] (for precise
definitions of all concepts involved, see Section 2).

Theorem 1.1 Let G = (V, E) be an infinite locally finite graph, and let S be a finite
set. Let p1 and po be two Gibbs measures for the same specification of a Markov random
field on G taking values in S. Pick two configurations X1, Xo € SV independently with
respective distributions pu1 and uo. If

P(G contains an infinite path of disagreements between X1 and X2) =0, (1)

then py = po.

(By an infinite path, we mean an infinite self-avoiding path in G.) For applications
of this result, see e.g. [2, 5, 3]. The intuition behind Theorem 1.1 is the following. If
the event in (1) has probability 0, then every finite subset of V is, with probability 1,
surrounded by some finite random set W on which X; and X, agree (take the same
values). In general, there are (for a given pair of configuration (X7, X7)) many choices
of such a surrounding set, but if W is chosen with sufficient care, then the conditional
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distributions of X; and X, “inside” W, given their (common) values on W, are the
same. The distributions of X; and X5 on any finite subset of V' are therefore the same,
and it follows that uq = po.

An extension of the above result to certain dependent couplings of u; and po is
given by van den Berg and Maes [4]. The above intuition is so strong that one might be
tempted to believe that the conclusion p; = po might follow from (1), for any coupling
of p1 and po. The following result (which is the main one of this note) says that this is
not the case.

Theorem 1.2 There ezist an infinite locally finite graph G = (V, E), a finite set S,
two Gibbs measures 11 and py on SV for the same Markov random field specification,
and a pair of random configurations X1, Xo € SV with respective distributions 1, and
uo (i-e., a coupling of p1 and uso), such that (1) holds, while on the other hand py # po.

The existence of such a coupling was conjectured by Steif [14] in the early days of
disagreement percolation (perhaps 1992).

In Section 3, we will (after some preliminaries in Section 2) examine a specific
example which establishes Theorem 1.2. The example is an Ising model on a graph
which is obtained by local modifications of the square lattice Z2. Finally, in Section 4,
we will give a similar, and very simple, counterexample in the more classical theory of
couplings of Markov chains [12, 15]. Section 4 can be read independently of Sections 2
and 3, and some readers will perhaps benefit from reading Section 4 first, before going
into (the somewhat more technical) Sections 2 and 3.

2 Preliminaries

In this section, we recall some well-known definitions and results, needed to prove our
main result in Section 3. Some general references for the results quoted here, are [10]
and [9].

2.1 (Quasi-)transitivity and invariant couplings

A graph automorphism of a graph G = (V, E) is a bijective mapping v : V — V
which preserves adjacency, i.e. for any z,y € V we have that vy(z) and 7(y) share an
edge in F if and only if £ and y do. The graph G is said to be transitive if for any
xz,y € V, there exists a graph automorphism of G mapping z on 4. The graph is said
to be quasi-transitive if V' can be partitioned into finitely many sets {Vi,...,Vy}
such that for each i € {1,...,k} and every z,y € V;, there is a graph automorphism
mapping = on y. Intuitively, quasi-transitivity means that the graph has only finitely
many “types” of vertices.

Let S be a finite set. An SV-valued random element X is said to be invariant if
for any graph automorphism v, any positive integer n, any z1,...,x, € V, and any
81y---,8n € S, we have

P(X(z1) =s1,..-, X(zn) = ) = P(X(v(z1)) = s51,..., X(v(zn)) = sn) .

Similarly, a coupling of two invariant S"-valued random elements X and Y is said to
be invariant if for all v, n, x1,..., %, as above, and all s1,..., S92, € S, we have

P(X(z1) =s1,.--, X(zn) = $p, Y(21) = Spt1,---, Y (z) = s2n)
= P(X((z1)) =s1,..., X(v(zn)) = sn, Y (7(1)) = Snt1,---, Y (V(zn)) = s2n) -



Intuitively, this means for (quasi-)transitive graphs that the joint behavior of X and Y
is the same “everywhere in the graph”.

2.2 Stochastic domination

Now suppose that S is a subset of R. It is then natural to introduce the following
partial order < on SV: for £, € S, we have ¢ < 7 if and only if £(z) < n(z) for all
zeV.

A function f : SY — R is said to be increasing if f(£) < f(n) whenever ¢ < 1.
For two SY-valued random objects X and Y with respective distributions y and v, we
say that X is stochastically dominated by Y, denoted X =<, Y, if for all bounded
increasing functions f : SV — R we have

O du© < [ 1€ dute).

By Strassen’s theorem (see, e.g., [12]), we have that X <; Y if and only if there exists
a coupling of X and Y such that

P(X<Y)=1.

Such a coupling of X and Y is said to be monotone.

2.3 Markov random fields

We take z ~ y to mean that the two vertices z and y share an edge in G. For any
subset W of V', we define the boundary oW of W as

OW ={z e V\W: Jy € W such that z ~ y}.

A probability measure p on SV, and the corresponding SV -valued random element
X, are said to be a Markov random field if ;1 admits conditional probabilities such
that for all finite vertex sets W C V, all € € SV, and all n € SY\W, we have

pX(W) = X(VAW) =n) = up(X(W) = | X(0W) =n(0W)) .

In this case, we also call ;1 a Gibbs measure for the Markov random field.

Two probability measures 4 and v on SV, and the corresponding SV-valued random
elements X and Y, are said to be Markov random fields with the same specifi-
cations if, for all W, £ and n as above, we have

X (W) = €| X(0W) = n(0W)) = v(Y (W) = [ Y (OW) = n(OW)).

2.4 The Ising model

Perhaps the most famous example of a Markov random field is the Ising model. For
B > 0, a probability measure y on {—1,1}" is said to be a Gibbs measure for the
Ising model on G at inverse temperature 3, if y is a Markov random field such
that for all W, ¢ and n as above, we have

p(X (W) = £ X(OW) = n(6W))

1
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where Z is a normalizing constant which is allowed to depend on W and 75, but not on
. For any G and (3, one can construct a particular Gibbs measure u* as follows. First
let Wiy C Wy C --- be an increasing sequence of finite subsets of V', converging to V in
the sense that each z € V is in all but at most finitely many of the W;’s. Then, for each
n, let fi, 4+ be the distribution of the random element X € {—1,1}" obtained by letting
X(V \W,) =1, and picking X (W,,) according to (2) with » = 1. The measures p,
are known to converge, as n — 0o, to a limiting probability measure p, called the plus
measure for the Ising model on G at inverse temperature 5. The minus measure y_
is defined analogously. Both p4 and g turn out to be Gibbs measures (for the Ising
model with the given £).

It is well-known that any Gibbs measure p for the Ising model on G at inverse
temperature 3 is sandwiched between p4 and p_ in the sense that

P— 2d b 2d oy -

Hence, uniqueness of Gibbs measures for the given G and [ is equivalent to having
p— = p4. Another standard result is the following, where, for any finite W C V and
any boundary condition £ € {—1, 1}6W, we let ¢ denote the probability distribution
on {—1,1}" given in (2).

Lemma 2.1 For any W as above, and any &,&' € {—1, 1}0W such that £ <X &', we have

HW,e Sd Bwe -

Next, for the case where G is the square lattice (i.e., G is the graph with vertex set
Z?, and edge set consisting of all pairs of vertices at Euclidean distance 1 from each
other), it is known that py; = p_ if and only if 8 < f3;, where 8, = 3 log(1 + /2) is the
reciprocal of the so-called Onsager critical temperature.

Note also that for the case where G is finite, the above definition automatically gives
a unique Gibbs measure for the Ising model at a given .

3 Proof of the main result

The following result clearly implies Theorem 1.2.

Theorem 3.1 There exists an infinite locally finite quasi-transitive graph G = (V, E)
and a B > 0 such that the Ising model on G at inverse temperature 3 has the following
properties:

(i) p—# pst
(ii) There exists a coupling of pu— and py such that with probability 1, G contains no
infinite path of disagreements between the two configurations.

Moreover, the coupling in (ii) can be taken to be invariant and monotone.

The rest of this section is devoted to the construction of an example which proves
Theorem 3.1.

We first describe the graph on which the Ising model will live. For positive integers
n and k, and any graph H, we define the (n,k)-decoration of H to be the graph
obtained by replacing each edge of H by n parallel paths, each of length k. Our choice
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of graph will be the (23, 3)-decoration of the square lattice, and we write Z (23 3) for this
graph. See Figure 1.

In the graph Z?23,3)’ we will use the term bridge for a pair of vertices not in Z?
sitting on one of the paths of length 3 linking two vertices in Z?. Note that each vertex
in Z%23,3) is either in Z2, or in a (uniquely specified) bridge.

M

Figure 1: A part of the square lattice, and the corresponding part of its (n, 3)-decoration
with n = 5. Each edge of the square lattice is replaced by n parallel paths of length 3.
In our main example, we will take n = 23 rather than n = 5.

Next, we fix the inverse temperature at 3 = 1 log(3) (this is precisely the value we
need to make the calculations in equations (3), (4) and (5) work out neatly). As a
preparation for our analysis of the Ising model on Z(23 3)) We first study it on (n,3)-
decorations of some other graphs. What now follows is just an exercise in well-known
series-parallel laws for the Ising model. The most basic example is to take H to be
the graph on two vertices z and y, and a single edge connecting = to y. The (1,3)-
decoration H(; 3) of H, is simply a path of length 3. A direct calculation (summing
over all possible configurations of —1’s and +1’s on H(; 3)) shows that if we take the
Ising model on Hy; 3y at 8 = %log(?)), then the probability that the endpoints z and y

of Hy; 3y take the same spin, equals m, so that
(1,3) 5

P(z and y get the same spin) 3v3

P(x and y get different spins) 5

It follows that for the Ising model on H, 3) at the same inverse temperature, we get

P(z and y get different spins) G

P(z and y get the same spin) <3x/§>n

But this is exactly the same ratio as we would get if we took the Ising model on H
at inverse temperature % log(?"/g). This, together with the +1 symmetry of the Ising
model, means that if we take the Ising model on H, 3) at 8 = ilog(3), and then just
look at the spins at = and y, what we see is the Ising model on H at inverse temperature

5 1o 3‘f) The following more general statement is an easy consequence.
g g g



Lemma 3.2 Let H = (Vy, Eg) be any finite graph, and let Hi, 3y = (Vu,, 5, Eng, 4)

be its (n, 3)-decoration. If we now pick X € {—1, 1}VH(“’3) according to the Ising model
on H,3), then X(Vy) is distributed according to the Ising model on H at inverse
3v3

temperature § log(=%>).

A standard limiting argument then implies the following, where we write VZ%)23 N for the

vertex set of the graph Z%23,3).

Lemma 3.3 Pick the Vz?23 N -valued random element X (resp. Y ) according to the mi-

nus (resp. plus) measure for the Ising model on Z%23 3) at inverse temperature =

+log(3). Then X(Z?%) (resp. Y(Z2)) is distributed according to the minus (resp. plus)
measure for the Ising model on the square lattice at inverse temperature 3* = % log(ﬁ).
The alert reader has probably been wondering: why 237 The answer is that with this
choice, we get

1
—) =0.1921... > 0.1913... = ; log(1 + V2)

which is the Onsager critical value. Lemma 3.3 therefore implies that for the Ising
model on Z%23’3) at 8= ilog(3), we have py # p—.

Thus, in order to prove Theorem 3.1, it only remains for us to find a monotone
and invariant coupling of X and Y (with distributions as in Lemma 3.3), such that
with probability 1 there is no infinite path of vertices in Z%2373) on which X and Y take
opposite values.

Consider first one of the spin configurations, say X, and note that if we condition
on X (Z?), then the spin values on different bridges are conditionally independent. This
is immediate from the Markov random field property of the Ising model.

Hence, a correct coupling of X and Y can be obtained as follows. First pick X (Z?)
and Y (Z?) according to some coupling with the correct first and second marginals.
Then, for each bridge B independently, pick X (B) and Y (B) according to some coupling
whose first and second marginals are given by (2) with boundary conditions provided
by X(Z?) and Y (Z?).

We go on to make this more specific. It is well-known that for the Ising model
on the square lattice, there exists a coupling of the minus and plus measures which is
monotone and invariant; for concreteness, we may take the coupling based on Glauber
dynamics and coupling-from-the-past provided in [11, Section 5]. So pick X(Z?) and
Y (Z?) according to such a coupling for the Ising model on the square lattice at inverse
temperature §* = 22—3 log(%). Then, for each bridge B = {z1, 22} independently, pick
X(B) and Y (B) according to the following rules. With v; denoting the vertex in Z2
adjacent to z1, and vy denoting the vertex in Z? adjacent to 2y, we have the following



nine cases to take care of:

() (X(v),X(v2)) = (=1, =1)  (Y(v1),Y(v2)) = (=1, 1)
(i) (X(v1), X(v2)) = (=1,-1)  (Y(01),Y (v2)) = (=1,+1)
(i) (X(v1), X(v2)) = (=1, =1)  (Y(v1),Y(v2)) = (+1,-1)
(iv)  (X(v1), X(v2)) = (=1,=1)  (Y(01),Y (v2)) = (+1,+1)
(v)  (X(v1),X(v2)) = (=L, +1)  (Y(v1),Y(v2)) = (=1, +1)
(vi)  (X(01), X(v2)) = (=1,+1)  (Y(01),Y (v2)) = (+1,+1)
(vii)  (X(v1), X(v2)) = (+1, 1) (V(v1),Y(v2)) = (+1,—1)
(vil) (X (1), X(v2)) = (+1,=1)  (Y(01), Y (v2)) = (+1,+1)
(ix)  (X(v1), X(v2)) = (+1,+1)  (Y(v1),Y(v2)) = (+1,+1).

(All other combinations of (X (v1), X (v2)) and (Y (v1),Y (v2)) are impossible since X (Z?)
and Y (Z?) were chosen according to a monotone coupling.) In the cases (i), (v), (vii)
and (ix) where the boundary conditions in X and Y are identical, we simply take X (B)
and Y (B) to be identical. For each of the cases (ii) and (vi), we prescribe some monotone
coupling (whose existence is guaranteed by Lemma 2.1), and use the same coupling for
all bridges (independently) with the given pair of boundary conditions. The cases (iii)
and (viii) are simply the “mirror images” of (ii) and (vi), and are treated in the same
way.

This leaves the case (iv), for which we need to make the coupling more explicit: A
direct calculation gives (thanks to our choice of 8 = 1 log(3))

P((X(21), X (22)) = (4,4) | (X (v1), X (v2)) = (-1,-1))
_ % for (i,7) = (—1,—1) (3)
g for (i,7) = (—=1,+1), (+1,-1), or (+1,+1),
and, similarly,
P((Y(21),Y (22)) = (4,7) [ (Y (v1),Y (v2)) = (+1,+1))
) 3 for (i,5) = (+1,+1) )
— 1§ for (i,4) = (—=1,-1), (—=1,+1), or (+1,—1).

These conditional distributions can be coupled by setting

with probability &

((=1,-1),(-1,+1)) :
((-1,-1),(+1,-1)) w%th probab%l%ty g
(), X 2))s (Y ) Y 2)) = 9 (3 1) (o 11 ggﬁgg‘ggg;};g% %)
((+1,-1),(+1,+41)) with probability =
[ ((+1,41), (+1,+1)) with probability ;.

A key feature of this coupling, besides monotonicity, is that in each of the six cases in
(5), we have that X and Y are equal in at least one of the vertices z; and zs.

This is the coupling for which we claim that the properties listed in Theorem 3.1
hold. We have already noted that the distributions g_ and p4 of X and Y are dif-
ferent. Furthermore, monotonicity and invariance of the coupling are immediate from
the construction. It remains to show that, with probability 1, Z%23’3) does not contain
an infinite path of disagreements between X and Y. Such an path would have to have
every third vertex lying in Z2, and for each v € Z? on this path we would have to have



X(v) = —1 and Y (v) = +1, because the coupling is monotone. Suppose for contradic-
tion that v € Z? is on such a path. Then there has to be another vertex v’ € Z? three
steps away from v on this path, such that X (v') = —1 and Y (v') = +1. But the coupling
in (5) prevents any bridge between v and v’ from having disagreements between X and
Y at both of its vertices. Hence, an infinite path of disagreements between X and Y in

VA cannot exist. The proof of Theorem 3.1 is therefore complete.
(23,3)

Remark. Our counterexample can be modified in various ways. For instance, the
choice of the square lattice as the graph to decorate can be replaced by any graph G
with a finite critical value (. for nonuniqueness of Gibbs measures in the Ising model;
we then just have to use (n, 3)-decorations rather than (23, 3)-decorations, where n is

taken to be large enough so that %log(¥) > Be.

4 A Markov chain coupling example

One of the main questions in Markov theory is whether or not the asymtotic behavior
of a chain depends on its initial value. Fix a transition matrix M for a discrete time
Markov chain on a finite or countable state space A. Let X = {X(t)}=0,,2.. and
Y = {Y(t)}+=0,1,2... be two Markov chain with this transition matrix, starting in two
different states X (0) = = and Y(0) = y. Write p,; (resp. pyy) for the distribution
of X (t) (resp. Y(¢)). A common way of making the above question precise is to ask
whether or not

tliglo drv (payt, piyt) =0 (6)

where drv is the total variation distance, defined by
drv (e (t), ty(t) = sup |zt (E) — py(E)] -
ECA

A standard method for bounding drv(gg,t, piy,¢) is to use the a coupling argument
of the following kind (see, e.g., [12] or [15]). Suppose that we have a coupling of the
chains X and Y with the property that if X(7) = Y(7) for some 7, then the chains
stay together, i.e., X(t) = Y(¢) for all ¢ > 7. Define the random time 7' = inf{¢ :
X(t) =Y (t)}. The total variation distance between p; and py; can then be bounded
as follows:

drv(piz,t, tyt) = sup |pzi(E) — pys(E)]
ECA
— sup [P(X(t) € E) — P(Y({) € B)|
ECA

< P(X(1) #Y(1)
P(T >1).

In particular, (6) holds if it can be established that P(T' < oo) = 1, i.e., that the two
chains eventually meet almost surely.

In most standard constructions of couplings, there is no problem in assuring that
X(t) =Y(t) for all t > T. It may therefore be tempting to think that P(7" > ¢) is an
upper bound on drv (g4, piy,¢) for any coupling of the chains X and Y (i.e., that we do
not need the assumption that X (¢) = Y (¢) for all ¢ > T'). But this is false!



Proposition 4.1 There exists a finite state Markov chain such that for two of its states
T and y we have

lim drv(pa,t, py,t) >0

t—00

while on the other hand there ezxists a coupling of the chains X = {X(t)}4=0,12... and
Y = {Y(t)}+=0,1,2..., starting at X(0) = z and Y (0) = y, with the property that their
first meeting time T = inf{t : X (t) =Y (t)} is finite with probability 1.

What we will now do is to construct an example which establishes Proposition 4.1.
Related examples, together with conditions under which the conclusion drrv (s, ¢, fy,¢) <
P(T > t) is warranted, are discussed by Rosenthal [13].

Consider a Markov chain with state space {1,2,...,6} and transition probabilities
given by Figure 2, where a € [0,1]. Observe that 5 and 6 are absorbing states, so that the
chain fails to be irreducible. Let the chains X = {X(¢)}4=0,1,2.. and Y = {Y () }1=0,1,2...
start in states X (0) = 1 and Y'(0) = 2. We thus write y;; and po, for the distributions
of X(¢) and Y(¢). Note that X(2) = X(3) = X(4) = --- with probability 1, and
similarly for Y. A direct calculation shows that

tl_iglodTV(Ml,t,MZ,t) = drv(p,2, 42,2)
— P(X(2) =5)—P(Y(2) = 5)
)

= (I1-2a(a—1)) —2a(a—1) =1—4a(a—1)

which is nonzero unless a = %

O OO

a a
1
O 0RO
Figure 2: Transition graph for the Markov chain in our example. In the concrete

\/_

calculation, we will take a =

In contrast, there exists, for any a € [1 — %, 4] a coupling of X and Y with the

property that with probability 1, the chains take the same value either at time 1 or at
time 2, so that P(T < co) = 1. We will restrict our calculation to the borderline case

f

a = 1 — %=, for which the coupling becomes particularly clean, and leave the general
case as an exercise to the reader.
Witha =1— @, we get

(3,5) with probability 1 %[ 1

(3,6) with probability
(X(1),X(2) = 3— 2\/_

(4,5) with probablhty

(4,6) v




and, similarly,

(3,5) with probability ¥2-1
(Y(1),Y(2) = (3,6) with probability 3= Q\f

(4,5) with probability f 1

(4,6) with probability 1 5.

We can therefore couple X and Y by setting

((3,5),(3,5)) with probability ¥3-1
((3,5),(3,6)) with probability 3= zf
3,5),(4,5 with probabilit, \/_ 1
((X(1), X(2), (v (1), Y (2)) = { {(:5):(4:5)) with probability L
((3,6),(4,6)) with probability
((4,5), (4,6)) with probability 3= 2‘/_
( ((4,6),(4,6)) with probability f 1,
Note that in each of the six cases in (7), we have either X (1) = Y(1), or X(2) =Y (2).

We therefore have P(T < o0) =

1, as desired. (Note also the similarlity with the

coupling (5) in the disagreement percolation example.)
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