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Abstract

We consider the random coloring of the vertices of a graph G, that arises
by first performing i.i.d. bond percolation on G, and then assigning a random
color, chosen according to some prescribed probability distribution on the finite
set {0,...,r — 1}, to each of the connected components, independently for different
components. We call this the divide and color model, and study its percolation
and Gibbs (quasilocality) properties, with emphasis on the case G = Z?. These
properties turn out to depend heavily on the parameters of the model. For r = 2,
an FKG inequality is also obtained.

1 Introduction

The purpose of this paper is to introduce and study a simple and natural model for
dependent colorings of the vertices of a (finite or infinite) graph G with vertex set V'
and edge set E. We allow r > 2 different colors, denoted 0,1,...,r — 1. Besides r, the
model has the additional parameters p and ag,a1,...,a,_1, all taking values in [0, 1],
and satisfying Z;:& a; = 1. The coloring is done according to the following two-step
procedure.

Step 1. Assign each edge e € E value 1 (present) with probability p, and 0 (absent)
with probability 1 — p, and do this independently for different edges. Denote the
resulting {0, 1}¥-valued configuration by Y.

Step 2. For each connected component C of the subgraph of G obtained by removing
all edges e with Y (e) = 0, assign the same color to all vertices of C. This color is
chosen according to the probability distribution (a9, a1,...,a,—1) on {0,1,...,7r—
1}, and independently for different connected components. The resulting colouring
is denoted X, and takes values in {0,...,r —1}V.

For obvious reasons, we call this the divide and color (DaC) model for G with
parameters p, © and ag,...,a, 1. The resulting probability measure on {0,1}V is
called the DaC measure for G with parameters p, r and ag,...,a,_1, and is de-
noted ,ugr,( 0reein1)" Note that the parameter ag is redundant; we therefore sometimes
abbreviate 2 (49,a,) a8 fp,2,a; -

We emphasize that it is the coloring X which is of primary interest in this paper; the
edge configuration Y is merely viewed a auxiliary object in the construction of X. (Of
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course, this is not to say that Y is uninteresting. To the contrary, it is a fundamental
object in percolation theory, known as i.i.d. (or Bernoulli) bond percolation.)

An interesting special case of the DaC model is obtained with r = 2 and (ag,a1) =
(%, %) The resulting model, and the DaC measure “52, 1, then resembles, to some
extent, the Ising model in zero external field: The model2 is symmetric with respect
to permutation of the single site state space {0,1} (which is often taken to be {—1,1}
in the Ising model), and exhibits positive correlations between the values at different
vertices. When p = 0 (corresponding to infinite temperature in the Ising model), the
values at different sites are uncorrelated. When p increases (corresponding to lowering
the temperature in the Ising model), the correlations increase as well, until at p = 1
(corresponding to the zero temperature limit in the Ising model) all sites are forced to
take the same value. Further similarities (and also differences) between ugz 1 and the

Ising model will be discussed in the coming sections.
We now give some motivations for studying the DaC model, arranged in approxi-
mately decreasing order of importance.

(M1) Ising and Potts model on randomly diluted lattices are of interest in the study of
disordered materials, and have received a fair amount of attention in the statistical
mechanics and probability literature; see, e.g., Georgii [15], Aizenman et al. [1],
van Enter et al. [12] and Haggstrom, Schonmann and Steif [24]. For the important
special case of i.i.d. edge dilution, the DaC model with r = ¢ and (ag,...,a,-1) =

(%, cen %) arises as the zero temperature limit.

(M2) The DaC model may be used as an alternative to Ising and Potts models in the
stochastic modelling of various spatial systems with positively correlated values
at different vertices. A major advantage of the DaC model compared to Ising and
Potts models is that it is easy to simulate: whereas Ising and Potts models require
sophisticated Markov chain Monte Carlo (MCMC) algorithms for their simulation,
the DaC model can be simulated directly using the two-step procedure indicated
in its definition. Of course, it is important to know what properties of the system
are assumed through a specific model choice, and this paper is an attempt to
address such issues for the DaC model.

(M3) In Héggstrom [23], the so-called fractional fuzzy Potts model is introduced as a
natural generalization of a hidden Markov random field known as the fuzzy Potts
model. The DaC measure “1?2 (a0,a1) corresponds, in the terminology of [23], to the

(ao + a1)-state fractional fuzzy Potts model at inverse temperature —3 log(1 — p).

(M4) Amongst the most efficient MCMC procedures for simulating the g-state Potts
model at temperature S is to first carry out an MCMC simulation of a certain
dependent percolation model known as the random-cluster model, with parameters
p=1—e2% and ¢ (see, e.g., Aizenman et al. [2] or Georgii, Higgstrém and
Maes [17]), and then to obtain the desired spin configuration as in Step 2 of the
construction of the DaC model, with r = g and (ag,...,a,-1) = (%, ey é) This
procedure is particularly suitable for combining with the coupling-from-the-past
technique for perfect simulation; see Propp and Wilson [36]. One may ask what a
naive user of this method, who (incorrectly) generates an i.i.d. percolation process
instead of the random-cluster model, gets. In fact, what he gets is the DaC model.



(M5) A related, and widely used, algorithm for simulating Ising and Potts models is
the Swendsen—Wang algorithm [37]. On a similar note as in (M4), the DaC model
arises after a single iteration of the Swendsen-Wang algorithm, starting from a
spin configuration with complete alignment between all vertices.

In the following sections, we shall study the DaC model, mainly on infinite graphs
and in particular on the prototypical case where G is the cubic lattice Z¢, from two
different (but related) points of view:

In Section 2, we consider percolation properties of the model. That is, when do
we see an infinite connected component of vertices with the same color? Our sharpest
result in this direction (Theorem 2.2) concerns the two-dimensional case G = Z? and

the DaC measure ,uf; 10 Just as for the Ising model on Z2, the transition between
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non-percolation and percolation takes place at exactly the same point in the parameter
space as where the large-scale symmetry between the spins (colors) is broken.

In Section 3, we begin with the result that the DaC model, unlike Ising and Potts
models, is not a Markov random field, and in fact not an n-Markov random field for
any n. We then go on to investigate whether the weaker property of being a Gibbs
measure holds. This question turns out to have different answers in different regimes of
the parameter space, and leads to considerations about quasilocality and almost sure
quasilocality of single-site conditional distributions.

No proofs are given in Sections 2 and 3; these are deferred to Sections 4 and 5,
respectively. One of the tools developed in Section 4 is of independent interest: Theorem
4.2, which states that the » = 2 DaC model satisfies positive correlations (also known
as the FKG inequality). Perhaps surprisingly, the random-cluster model turns out to
be a useful tool in Section 5.

2 Percolation properties

In this section, we consider the case where G is infinite, and ask under what conditions
the DaC model yields an infinite connected component of vertices that are all of the
same color. Of particular interest is the Z¢ case for d > 2. With the usual abuse
of notation, we write Z? for the graph whose vertex set is Z¢, with edges connecting
vertices at Euclidean distance 1 from each other. We also write E; for the edge set of

this graph.
Throughout this section, we shall work exclusively with the DaC model with just
r = 2 colors. This is natural, because the question of whether the DaC measure
G

Hp 1 (Goseosisrsn 1) produces an infinite connected component with color ¢, can imme-
diately be reduced to that of whether “;?,2,(17 05,05 produces an infinite connected com-
ponent with color 1.

We first consider the case G = Z2, which (besides trees) is the one we understand
best. After that, we shall move on to other cases: higher dimensions, trees, and other
graph structures.

The planar case Z? has some special features. It is a classical result of Coniglio
et al. [9] that for the Ising model without external field on Z2, an infinite connected
component of aligned spins occurs if and only if the temperature parameter is below the
so-called Onsager critical value. This means that there is percolation of aligned spins if
and only if there are multiple Gibbs measure, which in turn is equivalent to a symmetry



breaking (i.e., the existence of a Gibbs measure where the large-scale proportion of 1’s
differs from % with positive probability).

The DaC model with 7 = 2 and (ag,a1) = (3,3) turns out to exhibit a similar
phenomenon: An infinite connected component of vertices with the same color occurs
exactly for those values of p for which the limiting proportion of 1’s in large boxes fails
to be % These things happen precisely when p > %, as stated in the following two

results.

Proposition 2.1 Pick X € {0,1}2” according to the DaC measure “522 1, and let by (X)
14y

be the number of vertices with color 1 in the box A, = {—n,...,n}2. Then the limiting
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where O(p) is the probability that the origin is in an infinite cluster in Bernoulli(3) bond
percolation on Z°.

Theorem 2.2 Pick X € {0, 1}Z2 according to the DaC measure 1“522 1. We have
b 12
: o . : 0 ifp<i
uzz 1(X contains an infinite connected component of aligned spins) = z'fp 7
P2,5 1 ifp>5.

These results, and all others in this section, will be proved in Section 4.

In Z3 and higher dimensions, the sharp equivalence for the Ising model on Z? between
symmetry breaking and the existence of infinite connected components, no longer holds
(see, e.g., Campanino and Russo [7]). The situation turns out to be similar for the
symmetric DaC measure /1,5:; 1: In d > 3 dimensions, infinite connected components of
aligned spins can occur in theQabsence of symmetry breaking. Note first that the proof
of Proposition 2.1 makes no particular use of the two-dimensionality, so an analogous
result holds in higher dimensions, with the critical value % replaced by the critical value

ch,Zond for i.i.d. bond percolation on Z%. On the other hand, we have the following.

Theorem 2.3 For any dimension d > 3, there exists an € > 0 such that for all p < ¢,

“f; 1(X contains an infinite connected component of aligned spins) = 1. (3)
b 72

Since chZond > 0 (see, e.g., [19]), we thus have for small enough p that an infinite
connected component exists, in the absence of a symmetry breaking in the sense of
Proposition 2.1. This is in contrast to the Z? case. Note also that by the 0-1 symmetry
of uf’;’ 1 Theorem 2.3 implies the a.s. coexistence, for d > 3 and p sufficiently small, of

two infinite connected components of aligned spins: one of 0’s and the other of 1’s.



Theorem 2.3 tells us that for d > 3, the DaC measure uf; 1 produces an infinite
1999

connected component of aligned spins for p small enough. The same happens for p suffi-
ciently close to 1 (p > pczjite is enough; see the proof of Theorem 2.2 in the supercritical
case). A naive interpolation now suggests that we get an infinite connected component
for all p € [0, 1], and although we lack a proof, we believe this to be the case:

Conjecture 2.4 For any dimension d > 3 and any p € [0,1], we have

uf; 1(X contains an infinite connected component of aligned spins) = 1.
bt i)

Let us move on to the asymmetric case where (ag,a1) # (3,3). An obvious coupling
argument shows that for any G, p, a1 and a) such that a; < a), the DaC measure :“1?,2@1

is stochastically dominated by “1?2 o - The following result is an immediate consequence.
b ] 1

Proposition 2.5 For any graph G and any p € [0,1], there ezists a critical value
aGP € [0,1] such that

Gp
G X . . . , >0 fora; > ag
contains an infinite connected component of 1’s
,u*p,Z,al( .ﬁ p f ) { =0 fO’I‘ a; < af:l’ .

What do we know about the critical value a$? when G = Z4? Well, we obviously have
gd,p = 0 when p > ngond' For the Z? case, we also know (see the proof of Theorem

2.2 in the critical case) that acz2,p =1for p = pzzond = %
p < pgzond, all we can show so far is the following result, that aczd’p is a mnontrivial

threshold in the sense that it lies strictly between 0 and 1.

a

For the subcritical case

Theorem 2.6 For any dimension d > 2 and any p < pgzund, we have that
0<aZ'? <1, (4)

It would be of interest to add to the sparse knowledge of the behavior aczd’p on the
interval p € (0, pcz,zond) provided by Theorem 2.6, such as obtaining continuity or mono-

tonicity properties of aczd’p as a function of p. For d > 3, we know nothing about a?d’p
at the critical point p = pcz’z(md. It seems reasonable to expect that a?d’p < 1 in this
case; this would give yet another contrast between two and higher dimensions. Perhaps
we even have aZ°? = 0 at criticality in sufficiently high dimensions (as is the case on
sufficiently large trees, see Proposition 2.10 below), making the constrast even more
drastic.

We now leave the Z% case and turn to other graph structures. It turns out that
there is one class of graphs for which the critical value a$*? defined in Proposition 2.5
can be calculated for any p, namely trees. A tree is a connected graph without cycles.
In order to state our result for trees, we need to recall what is meant by the branching
number of a tree. Given any infinite locally finite tree I' with vertex set Vr and a
distinguished vertex p € Vr called the root, we call a finite set II C V1 a cutset for '
if every infinite self-avoiding path starting at p has to intersect 11, and no proper subset
of II has this property. Informally, II is a cutset if it is a minimal set which cuts off p
from infinity. For v € V1, let |v| denote the distance between p and v. For a sequence
of cutsets IIy, Iy, ..., write II — oo if min{jv| : v € II} — oo.



Definition 2.7 The branching number of I, denoted br(T"), is defined

— - Tim =] _
br(T) = inf{A >0 : 1h%£fg]x v =0}.
Note that br(I') is independent of the choice of root p € Vr. It has turned out that the
branching number is of crucial relevance for a variety of different stochastic models on
trees. In particular, Lyons [28] showed that the critical value for i.i.d. site (or bond)
percolation on a tree I' satisfies

1
Pl site = br(T) (5)

For instance, the infinite binary tree has br(I') = 2 and pg,site = % More generally,
an infinite regular tree in which every vertex has n + 1 neighbours, has br(I') = n and
Desite = 1. Note also that every infinite tree has br(I') > 1.

We shall prove the following two results.

Proposition 2.8 For the DaC model on an infinite tree I' with parameters p € [0, 1],
r =2 and (ag,a1), we have

ug,Q’al (X contains an infinite connected component of 1’s) > 0

if and only if i.i.d. site percolation on T with retention parameter 1 — (1 —p)ag produces
an infinite connected component of 1’s with positive probability.

Proposition 2.9 For the DaC model on an infinite tree I' with parameters p € (0,1),
r =2 and (ag,a1), the ugﬂ,al—probability of having an infinite connected component of
1’s is 0 or 1.

Of course, the case p = 1 had to be excluded in Proposition 2.9. Note also that the
asserted 0-1 law does not hold for the Z¢ case.

Propositions 2.8 and 2.9, in conjunction with the formula (5) for pl;site, have the
following immediate consequences.

Corollary 2.10 For the DaC model on an infinite tree I' with parameters p € (0,1),
r =2 and (ag,a1), we have

0 ifay < ErE)=p

br(1)~*—p

MIF,Q a, (X contains an infinite connected component of 1’s) = . (
” 1 ifar > -

Hence, the critical value al*? (as defined in Proposition 2.5) satisfies

. 0 if p > —brér)
a’c’lJ = (br(I" )_1— .
- P otherwise.

Specializing to the symmetric case (ag,a1) = (3, 1) gives the following.

2'2
Corollary 2.11 For the DaC model on an infinite tree T' with parameters p € (0,1),
r =2 and (ag,a1), we have

0 z’fp>b%r)—1

X contains an infinite connected component of 1’s) = .
( fi P f1’s) {1 P < i — 1.

r
Pp2,1



We remark that Lyons [29] has a criterion for which trees we get infinite connected
components for i.i.d. site percolation at criticality. It is another simple consequence of
Propositions 2.8 and 2.9, and (5), that it is exactly these trees that produce infinite
connected components in the DaC model at the critical parameter values provided by
Corollaries 2.10 and 2.11.

So much for the tree case. We have rather little to say at present regarding perco-
lation properties of the DaC model on more general graph structures, and shall confine
ourselves to a counterexample (Theorem 2.12 below) to a conjecture that might other-
wise be tempting to make. Namely, in view of Theorem 2.2 and Corollary 2.11, one might
be tempted to think that for every graph G, there is a critical value p. pac = pe,pac(G)
such that

Fopa,1 (X contains an infinite connected component of aligned spins) =

0 ifp < Dec,DaC
1 ifp > Pe,DacC -

The 0-1-law implicit in this statement does hold in this generality (see the proof of
Proposition 2.9), but the monotonicity does not. In other words, there exists a graph
G such that the ugz ;1 -probability of having an infinite connected component of aligned
spins fails to be increQasing in p. G can even be taken to be quasi-transitive, as stated in
Theorem 2.12. An infinite graph G = (V, E) is said to be quasi-transitive if V can be
partitioned into finitely many sets Vi,..., V) in such a way that for each 7 € {1,...,k}
and each z,y, € V;, there exists a graph automorphism of G mapping x to y. The class
of quasi-transitive graphs have been shown to be well-behaved with respect to many
percolation-theoretic and other probabilistic aspects; see, e.g., [4] and [30].

Theorem 2.12 There exists an infinite quasi-transitive graph G, and p1,p2 € (0,1)
with p1 < p2 such that

'“1(1;1 91 (X contains an infinite connected component of aligned spins) = 1
bl 12

and

Hpy 9.1 (X contains an infinite connected component of aligned spins) = 0.
12

3 Markov and quasilocality properties

In this section, we consider the DaC model on Z%, and try to answer questions of the
following kind: Is the DaC model a Markov random field? Is ufj ) @ Gibbs
measure?

For a finite vertex set W C Z¢, define the (outer) boundary OW of W as

7(0'07'“50'7“71

OW = {z € Z4\ W : Iy € W such that ||z —y||; = 1}
where || - ||; is the L' norm. More generally, for n € {1,2,...}, we define
oW = {x € Z4\ W : Iy € W such that ||z —y||; < n}.

Definition 3.1 A probability measure v on {0,...,7 — l}zd is said to be a Markov
random field if it admits conditional probabilities such that for all finite W C Z¢, all



€€{0,1,...,r— 1}V and all (,¢' € {0,1,...,r — 1YZ\W guch that ((OW) = ('(OW),
we have

v(X(W) = €| X(ZI\W) =) =v(X(W) =€ X2\ W) = (). (6)

More generally, v is said to be an n-Markov random field if it admits conditional
probabilities such that (6) holds for all W and & as above, and all (,¢' € {0,1,...,7 —

1} ZW guch that ((8,W) = C"(8,W).

It is easy to see that the DaC model on Z' with arbitrary parameters, is a Markov
random field (the same holds, more generally, on an arbitrary tree, with ||z — y||;
replaced by graph-theoretic distance in the definition of 0W). In contrast, we have the
following.

Theorem 3.2 The DaC measure u?j (0sernsar_1) withd > 2, p € (0,1), and ay,...,a,_1 €

(0,1), is not an n-Markov random field for any n.

This result, and the others in this section, will be proved in Section 5.

We now turn to the issue of whether ,ugj (a0s--s8r—1) satisfies the weaker property of

being a Gibbs measure. Roughly speaking, a probability measure v on {0,...,r — 1}Zd
is a Gibbs measure if its conditional probabilities on finite sets W € Z¢ can be written
as an exponential of an absolutely convergent sum of terms that each involve local
events. It has been realized since the seminal paper by van Enter, Ferndndez and Sokal
[11] that many examples of physical interest fail to be Gibbsian. This has triggered an
intense activity in determining Gibbsianness or non-Gibbsianness of various measures;
see, e.g., [35], [10], [32], [12] and [13]. Under the technical assumption of so-called
uniform nonnullness (which holds for the DaC model; see Lemma 5.6) Gibbsianness is
known to be equivalent to a property known as quasilocality (see, e.g., Georgii [16] or
van Enter et. al. [11]). In our setting it is more natural to work with quasilocality than
directly with Gibbs potentials, and therefore we shall formulate our results in terms of
the former. Its definition is as follows.

Definition 3.3 A probability measure v on {0,1,...,r— l}zd is said to be quasilocal
if it admits conditional probabilities such that for all finite W C Z%, all ¢ € {0,1...,r—
1YW and all ¢ € {0,1,...,7 — 1}Zd\W, we have
Tim o osup [U(X(W) = €| X(ZAW) = O)—v(X(W) = €| X(ZA\W) = )| = 0.
¢refo,1,..., r—1}zd\W
¢ (OnW)=((OnW)

(7)

By compactness of {0,1,...,7 — 1}Zd in the product topology, this is the same as

requiring that, for all W and £ as above,
Tim  sup (X(W) = €| X(ZAW) = ) —v(X(W) = | X(Z\W) = )| = 0.
’ _ZA\W
¢.¢"€{0,1,...,r—1}
¢ (OnW)=¢(0n W)

In other words, quasilocality means that for any ¢ > 0, there exists an n = n(e) such

that in order to determine the probability that X (W) = ¢ given X (Z¢\ W) to within

an error of ¢, it suffices to look at X (9,,W). Note also that if v is an m-Markov random

field for some m, then the supremum in (7) is 0 for n > m, so that v is quasilocal.
Our main result on quasilocality of DaC measures is the following.



Theorem 3.4 For any d > 2, r > 2, and ag,...,a,—1 € (0,1) such that ¥1") a; = 1,
there exist p1 and po with 0 < p1 < po < 1 such that

. d . . . .
(i) MI?,"",(GO,---,GT—I) is quasilocal if p < p1, while

.. d . ) )
(ii) HZ,T,(GO,---,GT—I) fails to be quasilocal if p € (p2,1).
For concrete bounds, we may take

min g
_ 1€{0,...,r—1}
4d—34+ min a;
1€{0,...,r—1}

b1

and py = %

Thus, quasilocality in the DaC model depends on the parameters in a more interesting
way than the n-Markovianness property. We lack a proof of the monotonicity in p
required to prove the following plausible improvement of Theorem 3.4.

Conjecture 3.5 For anyd > 2, r > 2, and ay, - .., a,—1 € (0,1) such that Y120 a; = 1,
there exists a critical value p. = pc(d,r,ag,-..,a,—1) € (0,1) such that

7d , quasilocal for p €0, pc)
Pp,r,(ag,...sar—1) not quasilocal for p € (pe,1) .

In recent years’ work on non-Gibbsian measures, there has been a fair amount of interest
in determining whether or not a weaker form of quasilocality, known as almost sure
quasilocality, holds; see, e.g., [35], [21] and [12]. The relation between almost sure
quasilocality and other weak forms of Gibbsianness is discussed in [32] and in [13]. For
the DaC model, it is conceivable that uﬁ,,( 00seety_1) satisfies almost sure quasilocality
for all p, but all we have been able to show in this direction is Proposition 3.7 below,
which is a fairly simple result.

Definition 3.6 A probability measure v on {0,1,...,7— l}zd 1s said to satisfy almost
sure quasilocality if it admits conditional probabilities such that for all finite W C Z9,
all ¢ €{0,1...,7 — 1}V and v-almost all ¢ € {0,1,...,7 — l}zd\W, we have

i sup \ ‘I/(X(W) = ¢| X(ZI\W) = O)—v(X (W) = €| X (Z\W) = ¢
cefo,,...,r—1}ZNW
(O W)=¢(On W)

=0.

(9)

Proposition 3.7 Consider the DaC model on Z%, d > 2. If p, r and (ag,...,ar_ 1) are
chosen in such a way that

/‘ﬁi,(ao,...,a,_l)(X contains an infinite connected component of aligned spins) = 0(, )
10

then ufi( ) satisfies almost sure quasilocality.

aQ;---y0r—1

If we accept Conjecture 2.4, then the » = 2 instance of Proposition 3.7 is relevant only
for d = 2. The r > 3 cases, however, are nonvacuous also in higher dimensions.



4 Proofs of percolation results

This section contains proofs of all results in Section 2, beginning with the two-dimensional
results (Proposition 2.1 and Theorem 2.2).

Proof of Proposition 2.1: It is clear from the definition of the DaC model that

HZZQ ; is translation invariant. Therefore, the limit lim,,_, @ﬂ;‘bé)% exists by the ergodic
1439

theorem.

Next, consider the random edge configuration Y € {0,1}#2 obtained as in Step 1 in
the definition of the DaC model. Furthermore let W € {0, 1}Z2 be another auxiliary
process, obtained by letting each vertex v € Z? take value 0 or 1 with probability %
each, and take Y and W to be independent of each other. Now obtain the random spin
configuration X € {0, 1}Z2 as follows: If a vertex v € Z? is in an infinite connected
component of Y, then let X(v) = 1. Otherwise let X (v) = W(w), where w is the
first vertex, according to lexicographic ordering, of the (finite) connected component of
Y containing v. Note that the distribution of X equals that of X conditional on the
event that all infinite clusters of Y are assigned value 1; there is no problem with the
conditioning, because Y contains a.s. at most one infinite cluster (this is just the usual
uniqueness-of-the-infinite-cluster result for percolation on Z¢; see, e.g., Grimmett [19]).

Since X is obtained in a stationary manner from an i.i.d. process, it is ergodic,
with the spatial average lim,_, o % equal to the expected value of the spin at the
origin. But this expected value equals 6 . Hence, (1) follows from
the classical Harris—Kesten [25, 26] theorem, which states that the critical value for
Bernoulli bond percolation on Z? is 3, with (p) > 0 if and only if p > . We similarly
obtain (2), upon noting that the infinite cluster in Y is assigned value 0 or 1 with
probability % each, in Step 2 of the construction of the DaC model. O

1-6 1+6
(p) + 2(P) _ +2(p)

We go on to prove Theorem 2.2. This task is natural to split in three parts: the
subcritical case (p < 1), the critical case (p = 1), and the supercritical case (p > 3).
We do this in order of increasing difficulty, which turns out to be the reverse of the
above order.

Proof of Theorem 2.2, supercritical case: For p > %, the bond process Y con-
tians a.s. an infinite connected component. But then X contains an infinite connected
component of aligned spins (containing the infinite connected component of ). O

Proof of Theorem 2.2, critical case: Harris [25] showed that in the critical case
p= % we have a.s. the following situation: Y contains no infinite cluster, but it contains
infinitely many finite clusters with the property that they contain a circuit “surround-
ing” the origin. Each of these clusters independently take value 0 or 1 with probability
% each, whence, by Borel-Cantelli, we have a.s. that at least one of them takes value 0.
This prevents the origin from being in an infinite cluster of 1’s in X. By the same argu-
ment, the event that the origin is in an infinite cluster of 0’s in X, also has probability
0. By translation invariance, the corresponding statements are true with any vertex of

Z% in place of the origin. O

In order to prove Theorem 2.2 in the subcritical case, we need to recall a result of Gan-
dolfi, Keane and Russo [14] concerning percolation models with positive correlations,
and then to prove that the DaC model has positive correlations.

10



Equip the set {0,1}", where V is finite or countable, with its coordinatewise partial
order =, defined by

Ex¢ it fw) <€) forallveV.

A function f : {0,1}V — R is said to be increasing if f(¢) < f(¢') whenever ¢ < &
A probability measure m on {0,1}" is said to have positive correlations if

/ fdﬂ'/ gdm < / fgdn
{0,1}V {0,1}V {0,1}V

for all bounded increasing functions f,g : {0,1}V — R. The well-known Harris’
inequality [25] states that any product probability measure on {0,1}" satisfies pos-
itive correlations. The significance of positive correlations in percolation theory was
demonstrated already in [25], and later, e.g., in the following result.

Theorem 4.1 (Gandolfi, Keane and Russo [14]) Let 7w be a probability measure
on {0,1}2” which

(i) is translation invariant,

(ii) s invariant under permutations of coordinates and under reflections the coordinate
azes,

(iii) is ergodic under horizontal and vertical translations (separately), and
(iv) has positive correlations.

Then the w-probability of obtaining both an infinite connected component of 0’s, and an
infinite connected component of 1’s, is 0.

The next result was proved jointly with O. Schramm, who has kindly given permission
to publish it in this form.

Theorem 4.2 (Haggstrom and Schramm) Let G = (V, E) be any (finite or infi-
nite) graph, and let p € [0,1] and a1 € [0, 1] be arbitrary. Then the DaC measure qu’al
has positive correlations.

Proof: An alternative way to obtain a {0,1}"-valued random configuration X with
distribution ugZ’a ,» together with its auxiliary random bond configuration Y € {0, 1}F
(so that the pair (X,Y) is distributed as in the definition of the DaC model), is as fol-
lows. Let {W(v) }vev, {Uo(€)}ecr and {Ui(e) }ecr be independent {0, 1}-valued random
variables with

PWw)=1)=a for each v € V
P(Uy(v)=1)=1—p foreache€e E
P({Ui(v)=1)=p for each e € E.

Let (v1,v9,...) be an arbitrary enumeration of V, and construct (X,Y) € {0,1}V x
{0,1}¥ in the following manner.

1. Let ¢ = 1.

2. If X(v;) has not been determined earlier, then let X (v;) = W (v;). Otherwise go
to 4.

11



3. Consider the set of edges e € E satisfying

(i) Ux,)(e) = X(vs), and
(ii) Y'(e) has not been determined earlier.

Let C be the connected component of such edges, “containing” v;. Let Y(e) =1
for all edges in C, and let X (v) = X(v;) for all vertices in C. Also let Y(e) = 0
for all edges e that are adjacent to C and whose values have not been determined
earlier.

4. Increase i by 1. If i exceeds the number of vertices in G, then stop, otherwise go
to 2.

If G is finite, then the above “algorithm” (we use quotation marks, because step 3 may
take an infinite number of operations to carry out) terminates in a finite number of
iterations. Otherwise it does not, but note that any given vertex or edge is assigned
a value in (X,Y) after a finite number of iterations. The connected component C in
step 3 should be thought of as being obtained by a breadth-first search from v;, and the
“algorithm” can then be thought of as a sequential way to “discover” (X,Y). With this
interpretation in mind, it is clear (or becomes, upon some thought) that (X,Y’) obtained
in this way has the desired distribution. In particular, X has distribution Ngz,al-

For i = 1,2,..., let (X;,Y;) € {0,3,1}V x {0,3,1}F be the state of the sys-
tem after the ¢! iteration of the main loop in the “algorithm”; here % means “not
yet determined”. Note that X (v) = lim, . X;(v) and Y(e) = lim,_, Y;j(e) for all
v € V and e € E. By induction in 4, it is easy to see that for each v, X;(v) is
an increasing function of ({W(v)}yev, {Uo(€)}ecr, {Ui(€)}ecr), and the same thing is
therefore true for the limiting value X (v). Hence, if f,g : {0,1}" — R are bounded
increasing functions, then f(X) and g(X) are also bounded increasing functions of
{W (v) }vev, {Uo(€)}ecr, {U1(e) }ecr). Harris’ inequality therefore implies that f(X)
and g(X) are positively correlated. Since f and g were arbitrary, the distribution
qu,a , of X has positive correlations. O

Remark. Positive correlations was proved in [23] for the fractional fuzzy Potts model
(recall motivation (M3) in Section 1) in a different regime of the parameter space. It
seems that neither that proof, nor the above proof of Theorem 4.2, can be adapted to
replace the other.

We are finally ready to finish the proof of Theorem 2.2.

Z2
P23
satisfies conditions (i) and (ii) of Theorem 4.1. Furthermore, from the construction of
X in the proof of Proposition 2.1, we have in the subcritical case p < % that also (iii) is

Proof of Theorem 2.2, subcritical case: From its construction, it is clear that u

satisfied. Finally, (iv) holds due to Theorem 4.2. Hence, Theorem 4.1 applies to “522 1
19
with p < %
Suppose now for contradiction that the /‘522 1-probability of getting an infinite con-
119

nected component of 1’s in X is positive. Then this probability is 1 by ergodicity. By
the symmetry of the model, the probability of getting an infinite connected component
of 0’s must be the same, i.e., 1. This contradicts Theorem 4.1. O

We now move on to higher dimensions (Theorems 2.3 and 2.6). As a preparation for the
proof of Theorem 2.3, we shall first recall some more definitions, and a result of Liggett,
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Schonmann and Stacey [27]. For V finite or countable, and two probability measures 7
and 7’ on {0,1}V, we say that 7 is stochastically dominated by 7' if

/ fdr < / fdn'
{0,1}V {0,1}v

for every bounded increasing function f : {0,1}V — R.

For b =1,2,..., a probability measure 7 on {0, 1}Zd is said to be b-dependent if
for all disjoint vertex sets V, V' C Z? with the property that no two vertices z € V and
y € V' are within L!-distance b from each other, we have that {X (z)}scv is independent
of {X(z)}zcv+ whenever X € {0,1}2* has distribution .

Theorem 4.3 (Liggett, Schonmann and Stacey [27]) For any dimension d and
any b € {1,2,...}, there exists a function py ;: [0,1] — [0,1] with

li ¥ =1
pl_% Pb,d(P)

and the following property. For any p € [0,1] and any b-dependent probability measure
T on {O,l}zd which for all x € Z% assigns probability at least p to the event that x
gets value 1, we have that 7 stochastically dominates i.i.d. site percolation on Z¢ with
parameter pad(p).

Remark. We find it convenient to refer to Theorem 4.3, even though it is a bit of
overkill in the following application, because it can be replaced by the more elementary
reasoning in Lyons and Schramm [31, Remark 6.2].

Proof of Theorem 2.3: Campanino and Russo [7] showed that the critical value pcz,iite
for i.i.d. site percolation on Z3 satisfies pgiite < 3. We can therefore fix a § > 0 such
that p?’;te < £ — 6. Since péjﬁe < p?,iz’te for d > 4, we then also have péjﬁe < 3 —6for
all d > 3.

Consider the auxiliary edge configuration Y € {0,1}F4¢ given in the definition of the
DaC model, and define the random site configuration Z € {0, l}zd by letting

{ 1 if Y(e) =0 for all edges e incident to
Z(x) = .
0 otherwise
for all z € Z%. In other words, Z(z) = 1 for exactly those vertices = that are isolated in
Y. Note that .

. . 2

;l_I)I(l)P(Z(.’E) =1)= ;1_1)1(1)(1 —p)*t=1. (11)
Furthermore, Z = {Z(z)},cz¢ is 1-dependent, because if V,V' € Z? are as in the
definition of b-dependence with b = 1, then {Z(z)}zev and {Z(z)},cy are defined in
terms of disjoint sets of edges in Y. Hence, Theorem 4.3 applies (in conjunction with
(11)) to show that if we pick p > 0 small enough, then Z stochastically dominates i.i.d.
site percolation with parameter 1 — 26. Fix such a p. Conditionally on Z, we have
that each vertex = with Z(z) = 1 independently satisfies X (z) = 1 with probability 1.
Hence, X stochastically dominates i.i.d. site percolation with parameter % — ¢ (because
it would do so even if we turned off all vertices in X that are not singleton connected
components in Y), and by the choice of §, we have that (3) holds for our choice of p
(and, by the same argument, for all smaller values of p). O
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Proof of Theorem 2.6: Fix d and p < pcz’zond. We shall use a renormalization

argument. For z € Z% and n € {1,2,...}, define A, ; to be the cubic block of vertices
of side-length n, with nz in its “lower-left” corner, i.e.,

Apgz=nz+{0,1,...,n—1}¢.
Given n, we define a renormalized process
d
W, = {Wn(x)}:cezd € {0’ l}z

from the DaC configuration X, and its auxiliary edge process, Y, as follows. Declare
the block A, ; to be good if

(C1) no connected component of Y intersecting A, ; contains a vertex at distance more
than n/3 away from A, ;, and

(C2) X(y) =1forally € Ay, 4,
and declare it to be bad otherwise. Then set, for each z € Z¢,

1 if A, 4 is good
Wn(z) = { 0 otherwise.
Due to condition (C2), it is clear that if W), contains an infinite connected component
of 1’s, then so does X. We will now show that this happens if n is first taken to be
large, and then a; is taken to be close to 1.
First note that, by the definition of good blocks, W,, is a 2-dependent process. Pick
p < 1 close enough to 1 so that

. s~ d
p2,d(p) > pcz,site ’ (12)

where pj ; is defined as in Theorem 4.3.

It is a well-known result in percolation theory (see [19]) that for i.i.d. bond perco-
lation on Z% with p < pgzond, there exists a constant ¢ > 0 (depending on p) such that
the probability that a given vertex y is connected to some vertex at distance at least m
away, is bounded by e”“" for all m. Hence, we have for a given block A, ; that

P (condition (C1) holds for A, ;) = 1— P(condition (C1) does not hold for A, ;)
> 1 — E(number of vertices y € A, ; that have

a path reaching at least n/3 steps away)

1 — nde—cn/3

Y

which tends to 1 as n — co. We can therefore find an n large enough so that

1+7p

P(condition (C1) holds for A, ;) > 5

(13)
If we now pick a; € ((%ﬁ)l/"d, 1) so that

1+
nd p
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then
1+p
2
as well. By combining (13) and (14), we get that each block Ay, ; is good with probability
greater than p. By Theorem 4.3 and the choice (12) of p, we have that W, stochastically
dominates some supercritical i.i.d. site percolation on Z%. Hence W,, contains an infinite
connected compoenet of 1’s, and so does X, for our choice of ay. This proves the right
hand inequality in (4).

To prove the left hand inequality, we use almost the same argument, with (12)
replaced by

P (condition (C2) holds for A, ;) > (14)

P3.a() > 1~ plire.
This ensures that W,, will not contain any infinite connected component of (’s, which
in turn implies that X will not contain any infinite connected component of (’s, for aq
sufficiently close to 1. But we can of course let 0’s and 1’s interchange roles in the DaC
model (by replacing a; by 1 — a1), so this is then the same as saying that X will not
contain any infinite connected component of 1’s for a; close enough to 0. The left hand
inequality in (4) is therefore established as well. O

Moving on to the tree case, our task is to prove Propositions 2.8 and 2.9.

Proof of Proposition 2.8: Consider a breadth-first search to investigate the connected
component of 1’s containing a given vertex v, where each time that a vertex with spin
0 is encountered, the corresponding branch of the tree is given up. When a vertex w is
investigated in this search process, it has spin 1 if either

(i) the edge e leading to w has Y(e) =1, or

(ii) the edge e leading to w has Y(e) = 0, and the (fresh new) connected component
of Y containing w has spin 1.

The events in (i) and (ii) are mutually exclusive, and have respective probabilities p and
a1 (1—p), so that the probability of encountering spin 1 at w is p+a1 (1—p) = 1—(1—p)agp.
This is true also if we condition on the full search processs before encountering w. But
this means that the search process has exactly the same distribution as it would have
in the case of i.i.d. site percolation on I" with retention parameter 1 — (1 — p)ag. Hence
v has positive Hg,z,a ,-probability of being in an infinite connected component of 1’s, if
and only if the same event has positive probability under i.i.d. site percolation with
parameter 1 — (1 — p)ag. The proposition follows. O

Remark. The proof shows that the connected component of 1’s containing a given
vertex is distributed as in i.i.d. site percolation. However, the full DaC process is not
distributed as in i.i.d. site percolation (because, for instance, the spins at neighbouring
vertices have strictly positive correlation).

Proof of Proposition 2.9: Consider first the case where the i.i.d. bond percolation
process Y has probability 0 of producing an infinite connected component. Then X can
be thought of as being obtained from the Y and W processes in the proof of Proposition
2.1. Any change in a finite number of the (independent) Y- and W-variables is unable
to affect the outcome of the event that an infinite connected component of 1’s exist.
That event therefore has probability 0 or 1, by Kolmogorov’s 0-1 law.
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Next, consider the case that Y contains an infinite connected component with pos-
itive probability. It is well-known (see, e.g., Peres and Steif [34]) that it then has
infinitely many infinite connected components, with probability 1. Of course, we then
have probability 1 that at least one of these connected components gets spin 1. O

Our final task in this section will be to prove Theorem 2.12. The proof of will draw
on ideas from Héggstrom [22]. The construction of the required counterexample G
will use, as a building block, a finite graph which we denote Dy, and which is de-
fined as follows. For k € {1,2,...}, let Dy be a finite graph with vertex set Vp, =
{z,y,21,22,v1,v2,...,v;} and edge set Ep, consisting of all pairs containing exactly
one of the vertices z; and z9, and exactly one vertex in {z,y,v1,v9,...,v5}. In other
words, Dy, is a complete bipartite graph with the vertex set partitioned into {z1, 22}
and {z,y,v1,v2,...,0%}.

Let (z & y) denote the event that z and y are in the same connected component
of aligned spins in X € {0,1}P*. Define

D X
Or(p) = 1,5 1 (@ ¢ y).

Lemma 4.4 For any k and any p € [0,1], we have

(1—17)2>2

O(p) = (1—(@1—p»") (1— 5

2k [, 4 3 2 2 3 31— P)4
HA=p)" |7 +4p7(1 = p) +3p°(1 = p)" + 2p(1 —p)" + — | .
Proof: Follows from a direct calculation, preferably by decomposing 0 (p) as

0k(p) = 1,5 1 (& ¢ y) = P(A)P(z ¢ y|4) + P(2A) Pz ¢ y|~A)
where A is the event that the auxiliary configuration Y € {0,1}PPk contains a path
from z; to 2o that does not go via x or y. For later purposes, we record that P(A) =

1— (1 - p)F, that P(z < y|4) = (1 — 1(1 — p)?)2, and that

3(1—p)*

X
P(z «— y|-A) = p* + 4p*(1 — p) + 3p*(1 — p)* + 2p(1 — p)* + 2

(15)
O

Proof of Theorem 2.12: The graph G is constructed in two steps. First we take I's to
be the regular trinary tree, i.e., I's is the infinite tree in which every vertex has exactly
4 neighbours. We have br(I's) = 3 and, therefore, pgf’site = %

Next, obtain G by replacing each edge e in I's by the graph structure Dy, with the
vertices x and y at the endpoints of e. The choice of k in this construction will be
determined below. Clearly, G is quasi-transitive.

Note that lim,_,o(1 — 3(1 — p)?)? = 0.25. We can therefore fix a p, > 0 such that

Pz 5 yld) =1— (%(1 —p2)2)2 <0.26. (16)
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Note also that for p > 0 we have limy_,,, P(A) = 1. Hence, using (16), we can fix a k
such that
0k (pg) < 0.27

(this serves as our choice of k). We furthermore have that lim, ,o P(A) = 0, and, using

(15), that lim, o P(z & y|mA) = %. Hence, limy,_, 0 (p) = %, so we can fix p; in
such a way that 0 (p1) > 0.37.

Finally, note that each pair (z,y) of vertices in G that were neighbours in I's in the
first step of the construction of G, we have that z and y are in the same connected
component of aligned spins in G with “22, 1 -probability 0 (p), and that these events

are independent for all such choices of (z,y). Hence, the ,uf2 1-probability of having an
1= 9

infinite connected component of aligned spins is 1 if 0;(p) > %, and 0 otherwise. The
theorem now follows with the given choices of G, p; and po. O

Remark. By combining the above ideas with those in [22], it is possible to show
that the existence of an infinite cluster of aligned spins in the Ising model with inverse
temperature 3, fails to be increasing in § in the generality of quasi-transitive graphs.

5 Proofs of Markov and quasilocality resuts

A major part in our analysis of Markov and quasilocality properties of the DaC model
will be played by the random-cluster model; see Definitions 5.1 and 5.3 below. The key
relation between the DaC model and the random-cluster model is provided in Lemmas
5.2 and 5.4. Readers familiar with the random-cluster analysis of Ising and Potts models
(see, e.g., [2] and [17]) that has played such a prominent role since the late 1980’s, will
notice certain similarities between those methods and ours. The following two differences
are, however, worth noting:

1. Whereas random-cluster analysis of Ising and Potts models uses the random-
cluster model with cluster parameter ¢ > 1 (the FKG regime of the parameter
space), our analysis uses the ¢ < 1 (non-FKG regime) random-cluster model. To
our knowledge, this is the first time that the ¢ < 1 random-cluster model (other
than the uniform spanning tree limit as ¢ — 0; see [20] and [3]) arises naturally
in an application.

2. The vast majority of random-cluster studies of Ising and Potts models are confined
to the zero external field case, corresponding to the symmetric DaC model with
(@gy. .. 0r—1) = (%, een, %) This is because the random-cluster representation
becomes much messier, and therefore more difficult to work with, in the absence of
symmetry between the ¢ different spins (although see [8] and [6] for some important
recent steps towards overcoming these difficulties). In contrast, our analysis of the

DaC model works just as easily in the nonsymmetric case as in the symmetric.

Definition 5.1 Fiz p € [0,1], ¢ > 0 and a finite graph G = (V, E). The random-
cluster measure qbgq is defined as the probability measure on {0,1}¥ which to each
n € {0,1}F assigns probability

1 —n(e
bpq(n) = Z—qu(n) [0 —p)—
pq eeE
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where k(n) is the number of connected components in the random subgraph of G corre-
sponding to n, and qu 18 a normalizing constant.

Note that ¢ = 1 gives ordinary i.i.d. bond percolation, whereas other choices of ¢ result
in dependencies between edges. The basic connection between the DaC model and the
random-cluster model is the following.

Lemma 5.2 Fizp € [0,1], r € {1,2,...}, a¢,...,a,—1 € (0,1) satisfying >'_d a; = 1,
and a finite graph G = (V, E). Suppose that we pick (X,Y) € {0,...,r — 1}V x {0,1}¥
as in the two-step procedure in Section 1. The conditional distribution of Y given X is
then given as follows:

(I) All edges (u,v) with X (u) # X (v) take value 0.

(IT) The edge configuration on a spin component D of X (i.e., on the set of edges (u,v)
with u,v € D, and D is a mazimal connected component of vertices in G that take
the same spin value in X ) is conditionally independent of the edge configuration
on all other spin components.

(IIT) If the wvertices on a spin component D take value i € {0,...,r — 1}, then the
conditional distribution of the edge configuration on D is given by the random-
cluster measure ¢Z)),ai'

Proof: (I) is immediate from the construction, so we go on to prove (II) and (III). The
(unconditional) joint distribution of (X,Y’) assigns probability

PEn) = [[»"90-p)® ] aee (17)
e€E ce{Cr,..c}

to each (¢,n) € {0,...,r — 1}V x {0,1}¥ such that (I) holds; here the second product
ranges over the set {C1,...,C;} of connected components of the edge configuration 7,
and £(C) is the common spin value in £ of the vertices in C. Now let Dy, ...D,, denote
the spin components in &, and let E(Dy),...,E(D,,) be the corresponding edge sets
(defined as in (II)). Note that the factors in (17) can be reorganized as

P(&,n) = H [a’g((g)) H pﬂ(e)(l _p)l—n(e)]
DE{D1,..0m} e€E(D)

where k(D) is the number of connected components C € {Ci,...,C;} of n that are
contained in D. Conditioning on the event {X = ¢} gives

1 € —nie
PY=n|X=¢= PE = II [a’g((g) I 2@ —p)—n )]
— % De{D1,..Dm} ecE(D)
and parts (IT) and (III) of the lemma follow. O

We now proceed to extend Definition 5.1 and Lemma 5.2 to the case of infinite graphs.
The following is a single-edge version of the usual DLR definition of random-cluster
measures for infinite graphs, introduced by Grimmett [18]. To see that it is equivalent
to the usual definition, consult, e.g., [17, Lemma 6.18].
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Definition 5.3 Fiz p € [0,1], ¢ > 0, and a (possibly infinite) graph G = (V,E). A
probability measure ¢ on {0,1}¥ is said to be a random-cluster measure for G
with parameters p and q if it admits conditional probabilities such that for any
e = (u,v) € E and any n € {0,1}"\¢} we have

ifu(im)

otherwise, (18)

WY (e) = 1|Y(E\{e}) =) = { e

where u < v is the event that 7 contains an open path from u to v.

It is easy to see (and a standard fact) that this is consistent with Definition 5.1 in the
case where G is finite.

Lemma 5.4 Fiz p, v, and ag,...,a,—1 as in Lemma 5.2, and let G be a (possibly
infinite) graph. Suppose that we pick (X,Y) € {0,...,r — 1}V x {0,1}F as in the two-
step procedure in Section 1. (A version of) the conditional distribution of Y given X is
then given as in Lemma 5.2, with (I11) replaced by

(IIT’) If the vertices on a spin component D take value i € {0,...,r — 1}, then the
conditional distribution of the edge configuration on D is given by some random-
cluster measure for D with parameters p and q = a;.

For the proof of this result (and others), it is useful to have a construction of the DaC
model on an infinite graph as a limit of the DaC model on a sequence of finite graphs.
Let G = (V, E) be infinite, and let (v1,v2,...) be an arbitrary enumeration of V. For
n =1,2,..., define the vertex set

Vn:{’Ul,...,’Un},

the edge set
E,={e=(z,y) € E: u,v €V},

and the graph

Gn = (Vp, Ep) .
Fix p € [0,1], r € {2,3,...,} and (ag,---,a,—1) such that 31" a; = 1. Let {Z(v)}yev
bei.id. {0,...,r—1}-valued random variables with distribution (ay, . .. ,a,_1). Indepen-

dently of these, let {Y(e)}ecr be i.i.d. {0,1}-valued random variables with distribution
(1 — p,p). For each n € {1,2,...}, we define the {0,...,r — 1}¥» x {0,1}¥»-valued
random object (X,,,Y,,) by setting Y,,(e) = Y (e) for each e € E,,, and

Xn(v) =Z(v;) where i =min{k: v LN vk } (19)
for each v € V,,. Finally, define, for each v € V,
X(v) =Z(v;) where i =min{k: v & Vg }-

Clearly, for each n, the pair (X,,Y,) is distributed according to the DaC model on G,
(with parameters p, r and (ay, ..., ar—1)) together with its auxiliary edge configuration.
The same is true for the pair (X,Y) with respect to the DaC model on G.
Note that
Y(e) = lim Y,(e) (20)

n—o0
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for each e € E (trivially), and that

X(v) = lim X,(v) (21)

n—0o0

for each v € V (this is because the expression min{k : v JRLN vg} in (19) is decreasing in
n, and can therefore change value only finitely many times as n — o0). Hence, we have
obtained the DaC model, together with its auxiliary edge configuration, on an infinite
graph G, as a pointwise limit of the corresponding objects on finite subgraphs.

Proof of Lemma 5.4: As in Lemma 5.2, (I) is immediate from the construction, so we
go on to prove (II) and (IIT’). For this, it suffices to show that the underlying probability
measure P admits conditional probabilities such that, for every e = (u,v) € E, every
i €{0,...,r— 1}, every £ € {0,...,7 — 1}V such that X(u) = X(v) = i, and every
n € {0,1}¥, we have

if u s v

otherwise. (22)

P(Y(e)zl\Xzf,Y(E\{e})zn) :{p P

p+(1-pa;

For the case where G is finite, (22) is immediate from Lemma 5.2. To go from the finite
case to the infinite, we just appeal to the pointwise limiting construction in (20) and
(21), upon noting that

e if there is an open path from u to v in Y(E \ {e}), then the same is true for
Y,.(E \ {e}) for sufficiently large n,

and, conversely, that

e if there is no open path from u to v in Y(E \ {e}), then the same is true for
Y, (E \ {e}) for sufficiently large n (in fact, for all n).

a

The next lemma, looks a bit specialized, but is useful for the proofs of Theorems 3.2 and
3.4.

Lemma 5.5 Consider the DaC model with parameters p € (0,1), r € {2,3,...} and
(ag,...,ar—1) with ag,a1 € (0,1) on a (possibly infinite) graph G = (V,E) with a
distinguished vertex u € V' which is the endpoint of exactly four edges e = (u,v1), ea =
(u,v9), e3 = (u,v3) and eq = {u,vs). Suppose that (X,Y) € {0,...,r -1}V x {0,1}¥ is
picked as in the two-step procedure in Section 1. Let & € {0,...,7r — l}V\{“} be a spin
configuration with the properties that

o {(v1) =&(v2) =0,
o &(v3) =&(va) =1, and

e (G contains no path from vy to vo which does not go through w and not through
any vertex w with &(w) # 0.

Furthermore, let n € {O,l}E\{el’e%e?”“} be an edge configuration which is consistent
with &. Let A be the event that n contains an open path from vs to vy. We then have,
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on the event A, that

P(X(u) = 0| X(V\ {u}) = &, Y (B \ {er, e, e5,e4}) = 1)
P(X(u) = 1| X(V\ {u}) =& Y(E\ {er,e2,e5, 1)) = 1)

(
(
(1 —p)2adar + 2p(1 — p)agar + p*a
1-—

(1 —p)2apai + 2p(1 — p)agar + p?agar (23)
On —A, we instead have
X(u) = 0| X(V\ {u}) =&Y (E\{e1,e2,e3,e4}) =)
( u) = 1‘X(V\{u} Y(E\ {e1,e0,e5,e4}) = 1)
_ (1—p)? a0a1 + 2p( p)agar + p’ay . (24)
(1 — p)2aga? + 2p(1 — p)agar + p2ag
Note in particular that the right hand side in (23) is strictly greater than the right hand

side in (24).

Proof: It suffices to prove the lemma when G is a finite graph, because the infinite
case then follows from a similar appeal to the pointwise limit in (20) and (21) as in the
proof of Lemma 5.4. Note that

P(X(u) = 0| X(V\ {u}) =&Y (B\{er,. - ea}) =)
= Y P(X@=0Y(er,....e) =b| X(V\ {u}) =&Y (E\ {er,...,ea}) = 1)

b€{0000,0100,
1000,1100}

and that

P(X(u) =1|X(V\{u}) =& Y(E\{fer,...,ea}) = 1)
= Y P(X@)=0,Y(er,...,ea) =b| X(V\{u}) = &, Y (BE\ {er,.., ea}) =) .

b€{0000,0001,
0010,0011}

Using these decompositions, we get, on the event A, that

P(X(u) = 0| X(V\ {u}) = £ Y(E\ {er,e0,e3,ea}) =)
P(X(u) = ‘X(V\{u} §,Y(E\{€1,62,63,64}):77)
(a-
1-

p)*adar + p(1 — p)3adar + p(1 — p)®adas + p?(1 — p)?apas
p)taga? + p(1 —p)3adar + p(1 — p)3adar + p*(1 — p)?aga:

which simplifies into (23). We similarly obtain (24) on —A. O

The proofs of Theorems 3.2 and 3.4 also need the following simple lemma, which es-
tablishes a strong form of the so-called finite energy condition (Newman and Schulman
[33]) for the DaC model on Z¢. Another term which is sometimes (e.g., in [11]) used
for the property proved in the lemma, is “uniformly nonnull”.

Lemma 5.6 Consider the DaC model on Z® with parameters p € (0,1), r € {2,3,...}
and (ag,...,ar—1) with a; > 0 for each i. There exists an ¢ > 0 (depending on p,
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r and (ag,...,a,-1)) such that the following holds. The DaC measure “iljz,(ao,---,ar_l)
admits conditional probabilities such that for any = € Z¢, any i € {0,...,r—1} and any
£ef{0,...,7— 1}Zd\{w} we have
d .
; )(X(2) =i X(Z\ {z} =€) > €.

'Lllpylb(a(]z---;a?“fl

Proof: Suppose that (X,Y) is obtained as in the two-step procedure in Section 1. By
Lemma 5.4 and (18), we have for any edge e € Ey, any ¢ € {0,...,r — 1}zd and any
n € {0,1}Fa\e} that

B _ _ p
P(Y(e) =1|X =(Y(Ea\{e}) =) < — (1 —p) mineqo,. ,_1y 0’

where we note that the right hand side is stricly less than 1. Hence, letting eq,...,eqq
denote the 2d edges incident to x, we get, by averaging over all possible values of X ()
and Y(Ed \ {61, e ,62(1}), that

2d
_ — Y(eo,) = d\ fr1) — o p .
P(Y(e1) = ... = Y(ea) = 0| X(Z\{z}) = &) = (1 P (1 p)mimero. 1) ai)

By the construction of (X,Y’), we also have
P(X(2) =i| X (2 \ {2} =&Y (e1) =--- = Y(e2a) = 0) = ;.

Hence, the lemma holds with

2d
_ . p
£ = min a; | 1— - .
i€{0,...,r—1} ( p+(1-p) min;efo,...,r—1} az’)

O

Proof of Theorem 3.2: We restrict to the case of Z?, as the generalization to higher
dimensions is straightforward (and requires an equally straightforward generalization of

Lemma 5.5).
Let (X,Y) be as in the two-step procedure in Section 1. Write 0 for the origin (0, 0)
in Z2. We shall consider a configuration ¢ € {0,1,...,r — 1}Z2\{0} which will serve as a

“point of discontinuity” (here and in the proof of Theorem 3.4 (ii)) for the conditional
distribution of X (0) given X (Z?\ {0}). We define ¢ by letting

0 ifz;=0and |z =1
&(xy,29) = orif x1 = —1 and |zo| > 2
1 otherwise,

see Figure 1.
Fix an arbitrary n, and let A,, denote the box {—n,...,n}?> C Z2. Consider the two
configurations ¢9, ¢! € {0,...,r — 1}A22\M0} defined by

_J &) forze A, \{0}
Cg(‘”)_{o fgr:vEAgn\An

and

0) :{ E(z) for z € A, \ {0}
1 for z € Agp, \ Ay, .
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11111110111111111
11111110111111111
11111110111111111
11111110111111111
11111110111111111

Figure 1: The configuration £ restricted to the box Ag. The “?” in the middle, is the
origin 0. A key property of ¢ is that, for any given n, it is not enough to know the
restriction of £ to A, in order to figure out whether £ contains a path of 1’s connecting
the vertex (—1,0) to the vertex (1,0).

Let A be the event that the auxiliary edge configuration Y contains a path from (—1,0)
to (1,0) not going through 0. Let 74 and -4 denote the right hand sides of (23) and
(24), respectively, and recall that m4 > 7 4.

Note that by Lemma 5.6, the events {X (Ag, \ {0}) = ¢%} and {X (A2, \ {0}) = ¢!}
both have positive probability. Hence, to show that X is not an n-Markov random field,
it is enough to show that

P(X(0) =i| X (Asn \ {0}) = () # P(X(0) = i| X (Aon \ {0}) = ()
for some i € {0,...,r — 1}. We may assume that
P(X(0) = 1| X (A2, \ {0}) = ) = P(X(0) = 1| X(A2, \ {0}) = G)  (25)

because otherwise we are done. Write y for the left (or right) hand side in (25). By
Lemma, 5.5, we have

P(X(0) = 0| X (A2n \ {0}) =) =174 (26)
because the event X (Ag, \ {0}) = ¢? precludes the event A. Lemma 5.5 also gives
P(X(0) = 0| X(Asn \ {0}) = ()

= y(maP(A| X (A2n \ {0}) = G) + 74P (A X (A20 \ {0}) = ()
= y(maa+ (ma — 1 a)P(A]| X (A2n \ {0}) = ()

which is strictly greater than the right hand side of (26), because P(A| X (Ag, \ {0}) =
¢!) > 0 due to Lemma 5.4. Hence,

P(X(0) = 0| X (A2. \ {0}) = (7)) < P(X(0) = 0] X(Ag, \ {0}) = ¢5)
as desired. O

Our next task is to prove Theorem 3.4. Part (ii) of that theorem will be proved using a
refined version of the above proof of Theorem 3.2. The following lemma will be needed.
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Lemma 5.7 Consider i.i.d. bond percolation on Z? with parameter p' > pcz,z(md(: %)
Write Y for the corresponding random bond configuration, and Py for its distribution
on {0,1}22. For n € {1,2,...}, define the following events:

B = {Y({(=2,0),(-1,0)) =1}
BQn) = {Y has an open path, contained in the half-plane (—oco, —2] x R,
from (—2,0) to some vertezx in Agp \ Ap}
B3n) = {Y has an open path, contained in the half-plane [1,00) X R,
from (1,0) to some vertex in Aoy \ Ay}
B4n) = {Y has an open circuit that is contained in Aoy \ Ay,
and that “surrounds” A}

B™ = B nB"nB™"nBM
Then inf, Py (B™) > 0.

Proof: Follows by combining a number of standard facts from percolation theory: First,
define the additional events

By = {Y has an infinite open path starting at (—2,0)
contained in the half-plane (—oo, —2] x R}

B;s = {Y has an infinite open path starting at (1,0)
contained in the half-plane [1,00) x R}

and note that
P(By) =P(B;3) >0
by the fact that supercritical percolation in Z¢ also creates an infinite cluster in half-
space (see [19]). But By implies Bgn), and Bs implies B?()n). Hence,
P(B{Y)>0 and P(B")>0.

Next, note that inf,, Py (Bﬁ”)) > 0 by the Russo—Seymour-Welsh Theorem (see [19]
again). Finally, Harris’ inequality gives
/(B®™) > P(B)P(B{")P(B{")P(B")

B

so that
inf Py (B™) > p/P(B{")P(B{") inf P(B{") > 0.

a

Proof of Theorem 3.4 (ii): Again, we give the proof for the Z? case only, omitting
the straightforward generalization to higher dimensions.

Let the configurations &, (¥ and (., and the event A, be as in the proof of Theorem
3.2. The required non-quasilocality is established if we can show that

e [P(X(0) =i | X(As \ {0}) = ¢5) = P(X(0) = i | X (Ao \ {0}) = ¢})|
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is bounded away from 0 as n — oco. By Lemma, 5.6, this follows if we can show that

P(X(0) = 0] X (A2 \ {0}) =¢)  P(X(0) = 0| X (A2 \ {0}) =) (27)
P(X(0) = 1| X(A2n \ {0}) = G3)  P(X(0) = 1] X (A2, \ {0}) = ()
is bounded away from 0 as n — oco. What we did in the proof of Theorem 3.2 was to
show that the expression in (27) is strictly positive (for any n), using the observation
that P(A| X (Ao, \ {0}) = ¢}) > 0 for any n. By similar reasoning, it is easy to see that
if P(A| X (A2, \ {0}) is bounded away from 0 as n — oo, then so is the expression in
(27). Our task is therefore reduced to showing that

inf P(A| X (A2 \ {0}) = ¢5) > 0. (28)

To this end, we shall use Lemma 5.7. The event B(™ in the lemma was chosen carefully
so as to only depend on edges whose two endvertices both take value 1 in ¢!. Let us
denote this edge set by E.1. Note also that B (") implies the existence of a path of open
edges from (—2,0) to (1,0) not going through 0, i.e., it implies A. By Lemma 5.4 and
(18), we have that the conditional distribution of Y'(E1) stochastically dominates i.i.d.
percolation on E¢1 with retention parameter p. Combining these observations, we get

P(A] X (A2 \ {0}) = ¢) = P(B™).

Thus, we may use Lemma 5.7 to deduce that (28) holds whenever p > p?,lz)ond =1 O

For the proof of the remaining part (i) of Theorem 3.4, the following lemma, in which
D plays the role of a “cutset”, is useful.

Lemma 5.8 Let G = (V, E) be a (possibly infinite) graph, and let D be a finite subset
of E. Define

Vp ={v € V : any infinite path in G starting at v contains at least one edge in D},

Ep={e=(z,y) € E: u,v € Vp},

and
GD = (VD,ED) .

Fiz, as usual, the DaC model parameters p, v, and (ag, - .. ,ar—1), and construct (X,Y) €
{0,...,7 =1}V x {0,1}¥ as in the two-step procedure in Section 1. Let C denote the
event that Y(e) = 0 for all e € D. Conditional on the event C and on any additional
information about X(V \ Vp) and Y(E \ Ep), we have that X(Vp) has distribution

Gp
'u’p,r,(ao,...,ar_l) .

Proof: Immediate from the two-step construction in Section 1. O

As a warmup for the proof of Theorem 3.4 (ii), let us first consider an easier application
of Lemma, 5.8, namely, Proposition 3.7.

Proof of Proposition 3.7: Fix a finite set W C Z? and a configuration ¢ € {0,...,r—
1}zd\W with the property that

¢ contains no infinite connected component of aligned spins. (29)
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Let W' C Z%\ W be the union of all the spin-components in ¢ intersecting W . Due to
(29), we have that W' is finite. Furthermore, given (, the auxiliary edge configuration
Y is forced to take value Y(e) = 0 for all edges e = (z,y) with z € W' and y €
Z4\ (W UW'). Fix n large enough so that W’ C 8,,_1W, and let ¢’ € {0,...,r— 1}Zd\W
be any configuration satisfying ¢'(8,W) = ((0,W). Let G* denote the graph with
vertex set V(G*) = W U W' and edge set

E(G)={e=(z,y) €E: 2,y c WUW'}.

Lemma 5.8 implies that the conditional distribution of X (W U W') given that X (Z% \
W) = (, is simply the DaC measure ,ug: (0508r—1) conditioned on taking values ¢ (W'
!

)
on W'. The exact same argument gives that the conditional distribution of X (W UW')
given that X(Z?\ W) = (', is the DaC measure ug; (050091 conditioned on taking
values ¢'(W') on W'. But since ¢'(W’') = ¢((W') and the set of configurations in (29)
has full “;?,i,(ao,..., a,_;)mEASUTE (due to the assumption (10)), the desired almost sure
quasilocality follows. O

We are finally ready to complete the proof of Theorem 3.4.
Proof of Theorem 3.4: Take p < p;, where p; is as in (8), so that

2p 1
: <
p+ (1 —p)minja;  2d—

d
1 < pcz,bond (30)

where the second inequality is a standard result in percolation theory (see, e.g., [19]).
We shall show that “Z,j,(ao,ar_l)
trick which is similar to the one that was introduced by van den Berg [5] and that is
known as disagreement percolation.

We need to show that for any finite W C Z¢, any & € {0,...,7—1}" and any € > 0,
there exists an n < co such that

zd p
sup ‘Mp,r,(ao,...,a,,l)(x (W) =¢| X(Z°\W) =)
el efo,n,...,r—1} ZAW
(B W)=¢(8n W)

is quasilocal using Lemma 5.8 backed up by a coupling

HE (aonan ) (X (W) = €] X(Z\W) = ¢)| <. (31)

Because of (30), we can find an n < co with the property that if we perform i.i.d. bond
percolation on Z% with retention parameter Im, then the probability that
there exist z € W and y € Z?\ 8, W such that z and y are connected by an open path,
is at most ¢. Fix such an n, and two arbitrary configurations ¢, ¢’ € {0,1,...,r—1}2Z"\W
satisfying ¢'(0,W) = ((0, W).

We shall now construct two pairs (X,Y), (X",Y") € {0,1,...,r — 1}2* x {0,1}Bd
distributed according to conditional distributions for the DaC model and its auxiliary
bond percolation, given X(Z¢\ W) = ¢ and X(Z¢\ W) = (', respectively, satisfying
Lemmas 5.4 and 5.8. We take (X,Y) and (X', Y”) to be independent of each other. It
follows from Lemma 5.4 and (18) that {Y (e)}ccr is stochastically dominated by i.i.d.
bond percolation with parameter m. Of course, the same thing also holds
with Y in place of Y. Now define Y” € {0, 1}¥¢ by setting

w0 iY(e)=Y'(e) =0
Y¥e) _{ 1 otherwise.
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By the assumed independence between Y and Y’, we have that {Y"(e)}ec g, is stochasti-
cally dominated by i.i.d. bond percolation with parameter m. By the choice
of n, we therefore have

P(3z € Z9\8,W and y € W such that z and y are connected by an open path in Y") < ¢.
(32)
Define the random edge set D as

D = {e € E: exactly one of the endvertices of e is connected to
some z € Z?\ 8,W by an open path in Y}

and note that Y(e) =Y (e/) =0 for all e € D. Define Vp, Ep and Gp as in Lemma 5.8.
We have
Vp C 0, W (33)

by the definition of D. By (32), we also have
P(W CVp)>1—c. (34)

A crucial observation is now that D is defined in such a way that D is not affected if
we alter the status of any edges in Ep. The value of the set-valued random object D
thereore gives us no other information than the one allowed in Lemma 5.8. Therefore,
Lemma 5.8 applies to show that the conditional distribution of X (Vp) given D equals
,ugf (a0, ar_y) Conditioned on taking values ¢ (Vb \ W) on Vp \ W. The same holds, by
the same argument, with X'(Vp) in place of X (Vp), because ¢'(Vp \ W) = ((Vp \ W)
due to (33). Thus, (34) implies

12 aar oy (X (W) = €| X(BINW) = ) — 2 o (X (W) = €| X (Z\ W) = ¢)

Since ¢ and ¢’ were arbitrary, we have (31), so the proof is complete. O
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