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Abstract. Fatigue loads are often measured for a limited period of time, but are used for making fatigue
life predictions for the full lifetime. The measured load is reduced by means of rainflow cycle counting,
and stored as a 3-dimensional histogram, called the rainflow matrix (RFM). Hence, there is a need to
extrapolate the measured RFM to one representing the full lifetime. How to make the extrapolation is
addressed in this paper.

The simplest method is to repeat the measurement until the full lifetime is reached, say N times. This
is equivalent to multiplying the measured RFM by N. The drawback is that only the measured rainflow
cycles appear, even though other cycles are also possible. Especially, measured infrequent load events are
multiplied. The solution is to use the limiting RFM, i.e. the shape of the RFM that is obtained when
having an infinitely long measurement. Hence, the extrapolation becomes N times the limiting RFM.

This paper treats the problem of estimating the limiting RFM from a measured RFM. The main
result is an asymptotic expression for the limiting RFM, that only involves the level crossing intensity.
The main assumption is Poisson convergence of level crossings. It gives a good approximation that is valid
for low minima and for high maxima, i.e. for cycles with large amplitudes. The level crossing intensity is
extrapolated for high and for low levels, by using the generalized Pareto distribution. Since the formula
is only valid for large amplitudes, the remaining part has to be estimated by other means, e.g. by using
a kernel smoother. The combination becomes the final estimate of the limiting RFM. Full details about
the estimation procedure is presented. The method is verified through examples for both Gaussian and
Markov loads, and test track measurements are also analysed.

Keywords: fatigue, random loads, rainflow cycles, interval crossings, generalized Pareto distribution

1. Introduction

When analyzing complex fatigue loads in the automotive industry one often uses simple
damage and accumulation rules, together with the rainflow cycle counting method. The
SN-curve is a model for the fatigue life, originally for constant amplitude loads, where at
a stress level S; the specimen can resist IV; cycles. The damage accumulation hypothesis
due to Palmgren-Miner [17, 16] is that each cycle with amplitude S; uses a fraction 1/N;
of the total lifetime. Thus the total fatigue damage is given by

n;

D = N (1)

where n; is the number of cycles with the amplitude S;. A fatigue failure occurs when the
whole lifetime is consumed, i.e. when the damage D exceeds one.

For extracting cycles in variable amplitude loads, the rainflow cycle method is widely
used. The method was first presented by Endo in 1967, see [15], and counts closed hys-
teresis loops in the load. An equivalent local definition of rainflow cycles was given by
Rychlik [19], see Figure 1. From this definition it is possible to establish the equivalence
between counting rainflow cycles and counting crossings of intervals. This fact is very
useful when making statistical analyses of loads.
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Figure 1. Definition of rainflow cycles by Rychlik [19]. From each local maximum M;, one shall try to
reach above the same level, in the backward(left) and forward(right) directions, with as small a downward

excursion as possible. The minimum, of m; and m;c", which represents the smallest deviation from the
maximum My, is defined as the corresponding rainflow minimum mfcfc. The rainflow cycle is defined as

mi€ My). For the precise definition see Rychlik [19].
k

When registering load histories the signal is often discretized to a fixed number of load
levels, which enables efficient storage of the rainflow cycles in the form of a matrix. Each
element of the rainflow matrix (RFM) then contains the number of cycles for that class
of cycles.

Making field measurements of vehicle fatigue loads are a time-consuming and costly
procedure, and is therefore only performed for a limited period of time, say for a distance
of £ km. These measurements are then used for making predictions on the total lifetime
of the vehicle, say y km. Hence, there is a need for methods to extrapolate the measured
rainflow matrix F'; representing z km to a rainflow matrix F, representing y km. The
simplest way of doing the extrapolation is to rescale the measured rainflow matrix to y
km, and hence multiply it by y/z, giving F, = 2F;. The drawback of this approach
is that only the measured cycles will appear in F, even though also other cycles will
appear in a longer measurement. Especially, the rare load cycles that occurred in the
measurement will be multiplied by y/z, while other rare cycles will not be possible.

Another approach is to look for the limiting shape of the RFM, and use this matrix for
extrapolation to y km. In our application the limiting RFM, G, say, should be understood
as the RFM, normalized by the number of km, one would get when measuring for an
infinitely long distance, i.e. G = lim,_, %Fw There are several possible techniques for
estimating G from the measured RFM F:

1. Estimate a model for the load, and calculate the limiting shape of the RFM for this
model.

2. Estimate the limiting shape of the RFM by applying some smoothing technique on
F,.

3. Model only the RFM for large cycles, since they cause most of the damage. If necessary,
model the remaining part of the RFM by some other technique from 1 or 2.

To estimate a load model from a measured RFM is a hard problem. Further, to calculate
the limiting RFM is only possible for some models, e.g. for loads with Markov structure
(see e.g. Johannesson [11, 12] and Example 2). For Gaussian loads there exist accurate
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approximations (see Rychlik |20, 21| and Example 1). Point 1 will not be pursued in this
paper.

Concerning point 2, a feasible smoothing technique is the so called kernel smoothing,
which is described in Section 5. This is a well established statistical method for non-
parametric estimation of an unknown function. A study of smoothing RFMs is found in
Dressler et al. [6].

The estimate given by the kernel smoother is accurate where there are many obser-
vations, but can perform poorly otherwise. Often, a large amount of the fatigue damage
is due to the rare large cycles, hence it is motivated to find methods in category 3.
The main result in this paper is a method for finding the limiting shape of the most
extreme part of rainflow matrix, i.e. for cycles with low minima and large maxima. The
approach is based on asymptotic theory for crossings of extreme (high and low) levels,
and uses the connection between rainflow cycles and crossings of intervals. The method
gives an explicit asymptotic expression for the intensity of interval crossings, which is
the same as the cumulative rainflow matrix. The resulting formula for the extreme RFM
only depends on the intensity of level crossings. When analysing a measured RFM, we
propose to estimate the intensity of level crossings from the observed one, by extrapolation
for high and low levels. The extrapolation is based on methods from the extreme value
theory, which are adapted to our problem. The generalized Pareto distribution is used
when extrapolating the level crossing intensity.

The results will be presented by numerical examples. In Example 1 the extreme RFM
is calculated for a Gaussian load. A Markov load is used to demonstrate and verify the
proposed methods, see Examples 2-6. Measured loads from a test track is analysed in
Example 7. For the calculation Matlab has been used together with the toolbox Wave
Analysis for Fatigue and Oceanography (WAFO), with manual [27]. An overview of WAFO
is found in Brodtkorb et al. [2]. The toolbox is free and can be downloaded from the
Internet!.

2. Limiting Rainflow Matrix for Large Cycles

The goal is to find an expression for the limiting RFM that is valid for cycles with high
maxima and low minima. To obtain the result, the equivalence between counting rainflow
cycles and counting crossings of intervals are used. The main assumption is that the times
of upcrossings of high and of low levels converge to two independent Poisson processes.
The method of approximating extreme level crossings by Poisson processes when calcu-
lating the rainflow distribution has also been suggested in Rychlik [22, 21]. The Poisson
convergence of level crossings is valid for stationary processes with continuous sample
paths, that are subjected to suitable conditions of 'mixing type’, and especially, it is valid
for stationary Gaussian processes with finite second spectral moment, see Leadbetter
et al. [13] for details. The resulting formula for the limiting cumulative rainflow matrix is

rfc p(w)pu(v)
() ™ ) + ) @

u,v) R

I

1 http://wuw.maths.1lth.se/matstat/wafo/
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where the approximation is supposed to be good when w is a low level and v is a high
level. Note that Eq. (2) only depends on the intensity of level upcrossings u(u), which is
a function of u.

Next we will give some definitions of cycle counts and of intensity of crossings. Let
Nr(u) be the number of upcrossings of the level u by the process {X (¢)} in time 0 < ¢t < T,
and define the intensity of upcrossings as

plw) = Jim PTG () = ElN () 3)

assuming the limit to exist. (For ergodic processes the limit exists.) Let Ny (u,v) be the
number of upcrossings of the closed interval [u,v] by {X (¢)} in time 0 < ¢ < T, and define
the corresponding intensity as

NT(U” ’U)

N(ua U) = Th—)n;o T with NT(U" 'U) = E[NT(ua U)] (4)

assuming that the limit exists. Further, define the cumulative rainflow count
NEC(u,v) = #{(mi, My) : mii® < u, My > v}, (5)

where #{-} denotes the number of elements in the set {-}, and define the cumulative
rainflow (count) intensity

rfc
P () = Jim B0 e, v) = ENE ()] 6)

assuming that the limit exists.

There is an interesting and important connection between rainflow cycles and crossings
of intervals. Assume that the process is at a local maximum at level v. The definition of
rainflow cycles (Figure 1) states that in order to have a rainflow cycle with minimum less
than » and maximum v, the process has to reach below level u, before it upcrosses v.
This has to hold in both the forward and the backward time directions. Hence, to have
rainflow cycles with minimum less than u and maximum bigger than v, is equivalent to
the event of upcrossing the closed interval [u,v], and thus we have the relation

(7)

rfc . . upcrossings of the closed
Nr*(u,v) = Nr(u,v) = # { interval [u,v] for X (¢), t € [0,T] |~

A mathematically precise proof of this statement is found in Rychlik [23, Lemma 7]. Con-
sequently, for an ergodic process {X(t)}:>0 the relation between the cumulative rainflow
intensity and the intensity of upcrossings of [u,v] is

Nrfc
u,v) = lim M: lim
T—00 T T—00

rf(:( NT(U” 'U)

7 = p(u,v) (8)

The result in this section is based on Poisson convergence of level crossings. Define the
time-normalized point processes of upcrossings

U%(B) = #{u-upcrossings by X(t); t/T € B}
VZ(B) = #{v-upcrossings by X(t); t/T € B}
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for any Borel set B. Consider u = u; — —oo and v = v — 0o, when T — 00, such that

T,u(uT) = Ay, Uf —> —00

A (9)

Tp(vy) = Ao, Vj — 00

where X\, > 0 and A\, > 0 are fixed numbers. Further, let U(B) and V(B) be two
independent Poisson processes with intensities A, and A,, respectively.
Now we are ready to state the result.

THEOREM 1. Suppose that the process {X (t)} is stationary and ergodic, and has contin-
wously differentiable sample paths. Further suppose that (Uq‘i, Vj’j) converges in distribution

to the independent Poisson processes (U, V), if Eq. (9) holds when T — co. Then the
cumulative rainflow count intensity satisfies

rf
, U

P (u, v)
p(u)p(v)
p(u) 4 p(v)

- 1 (10)

when u — —o0, v — 400.

Proof: Since {X(t)} is stationary and ergodic, the cumulative rainflow count intensity
can, according to Eq. (8), be written as

N T 1 rfc _ 1 1
w) = g p N () = g g Ve ()
. Nr(u,v)
= lim =N —_—
im 7(u) )

t = 0 is a u-upcrossing of X (¢), t=0is a
= p(u)P and 3r > 0 such that X(r) > v u-upcrossing

and u < X(s) <v,0<s<r of X(t)

'urfC(

where the conditional probability should be understood as a Palm measure. It means that
after an upcrossing of u, the process shall upcross v before it upcrosses u again. This can
also easily be described in terms of the point processes U; and V*. It means that, after
t = 0, the next point in the processes shall appear in V:,if, which can be expressed as

H(u,0) = p(u)P(ry < 74| Up)

where 7, and 7,, respectively, denote the waiting times to the first point after ¢ = 0 in
U% and V%, respectively, and Uy denotes the event "UZX has a point at £ = 0".
T T ) T .
Next, we shall use the Poisson convergence. Since Uq‘i and VTT converges to two in-
dependent Poisson processes, the waiting times 7, and 7, converges in distribution to
two independent exponential variables, 7, and 7, say, with the means 1/X, and 1/,
respectively. Further, note that by assumption Eq. (9), u(up)/p(vs) — Au/Ay when

T — 0. Now we get

u,v) _ p(u)P(1y < 7y | Up)
) p(u)p(v)
p(u) + p(v) p(w) + p(v)
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uw) + )
p(v)
u
_ (“( ) +1) P(1, < 7u | Up)
u(v)
Au . YA
— >\—+1 P(Tv<Tu|U0)
v
Au+ A
= Aut i P(Fy < Tu)
Ay
where we used the lack of memory property of the Poisson process, when dropping the
conditioning on Uy, denoting "U has a point at t = 0". Since 7, and 7, are independent,
the probability P(7, < 7,) is easy to calculate, giving

(Tv < Ty | UO)

pre (u, v) Au + Ay Ay
- : =1
p(u)p(v) Ao Adut Ay
p(w) + p(v)
concluding the proof. O

The practical importance of Theorem 1 is that for cycles with high maxima and low
minima, i.e. cycles with large amplitudes, Eq. (2) gives an approximation of the rainflow
intensity. In the following examples we shall examine how well the approximation works
in practice.

EXAMPLE 1 (Extreme rainflow matrix for a Gaussian load). In many applications a fre-
quency spectrum is given and a Gaussian process is used, e.g. for modelling stationary sea
states, and loads. Unfortunately, no explicit expression for its rainflow intensity exists.
However, many approximations have been suggested, and here we will compare Theorem 1
with one such approximation.

Consider a zero-mean Gaussian process X (t) with V[X (¢)] =1 and V[X'(¢)] = 1. The
level crossing intensity is given by Rice’s formula

plw) = o exp(—u?/2). (1)

Hence, by Theorem 1 we get an approximation of the cumulative rainflow intensity

e (0 gy = _AWH©) 1
Happ (Us V) w(w) + u(v)  2m(exp(u?/2) + exp(v2/2)) (12)

and the rainflow intensity is obtained by differentiating with respect to v and v

_ A rfc
BudyHarp

and is valid for u < 0 and v > 0.

An accurate approximation of the rainflow intensity is obtained by approximating the
sequence of local extremes by a Markov chain (see Example 2). The transition probabilities
are obtained from the min-max probability density function, which is computed from
the spectral density by using a Slepian model process and regression approximation, see
Lindgren & Rychlik [14] or Rychlik [20, 21]. A broad band spectrum with irregularity
factor 0.56 was used.

. wv exp((u? +v?%)/2)
m(exp(u?/2) + exp(v?/2))?

e (u,v) =

app (13)

(u,v) =
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The two approximations are compared in Figure 2, where we can see that they are
almost identical in the upper left corner of the graph, i.e. for cycles with large amplitudes.
Hence, the simple explicit expression Eq. (13) works very well. O

Max

Figure 2. Example 1, Gaussian load. Iso-lines of rainflow matrices: Extreme RFM (—) given by Eq. (13),
compared with Markov approximation (— —); (b) shows a magnification of the upper left part of the
RFM.

For discrete loads the cumulative rainflow matrix is the same as the cumulative rainflow
count. The relation between the cumulative RFM, N™ and the RFM, F™_is

rfc __ ric\" : rfc _  rfc rfc rfc rfc
F™ = ( ij )ijzl with i = Mit1j-1 — Maj1 — g1 T Mg (14)
and
n 2—1 n
rfc __ rfc : rfc __ rfc
l,J_ .’: .I: ]
i'=1j'=j+1

and consequently the RFM and the cumulative RFM contains the same information. The
same relations, Eqgs. (14,15), are also valid for the cumulative rainflow count intensity,

p'e and the limiting rainflow matrix, G*.

EXAMPLE 2 (Extreme rainflow matrix for a Markov load). In fatigue applications it is
often practical to consider only the turning points of the load process, and model them by a
Markov chain. One useful property of the Markov model is that its limiting rainflow matrix
can be calculated exactly, see e.g. Rychlik [20], Frendahl & Rychlik [8], or Johannesson [11,
12]. Hence, the level crossing intensity can also be calculated. For the Markov model we
can, therefore, compare the Poisson approximation with the exact result. For a model
with 100 discrete load levels in the range [—1, 1], the comparison is presented in Figure 3.
Observe that the approximation and the exact RFM are identical in the upper left part
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of the RFM, i.e. for cycles with large amplitudes. To model the RFM for those cycles was

the goal of the approximation, and here we can see that the result is satisfactory. O
(a) (b)
1 1
0.8¢
0.5¢
0.67
% 3
= 0 =
0.4r
-0.5
0.2r
- ‘ : ‘ 0]
3-1 -0.5 0 0.5 1 -1

min

Figure 3. Example 2, Markov load. Iso-lines of rainflow matrices: Extreme RFM (—), Exact RFM (— —);
(b) shows a magnification of the upper left part of the RFMs.

3. Extrapolation of Level Crossing Intensity

When extrapolating the rainflow matrix for a measured signal, its level crossing intensity
is not known, and hence it has to be estimated from data. For high (and for low) levels
we propose to extrapolate the observed level crossing spectrum by a parametric shape,
the Generalized Pareto Distribution (GPD), suggested by the extreme value theory.

The number of crossings of a high level, v, say, is approximately equal to the number
of peaks exceeding v. In extreme value analysis one uses a technique called Peak Over
Threshold (POT), where the exceedances over a high threshold are considered. (Davison &
Smith [3] gives a nice presentation of the technique.) Hence, for high levels, we propose
to approximate the level crossing intensity by

pu(v) = p(ve)H (v — vg), for v > vy (16)

and the same for low levels, u < ug. The form of H(z) is given by the GPD with the
survival function

e = { S h 2 o

with the shape parameter —oo < k < oo, and the scale parameter ¢ > 0. When k£ > 0 the
GPD has an upper end point, 0 < z < ¢/k, while for £ < 0 the support is 0 < z < oo. The
theory of extreme values is closely related to the GPD. The Generalized Extreme Value
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distribution (GEV) is G(z) = exp(—H (z — b)). There are several facts that motivate the
use of GPD for exceedances over high levels.

1. Attraction to a GEV is equivalent to POT convergence to GPD. (Pickands [18])

2. The maximum of a Poisson distributed number of independent GPD variables has a
GEV distribution.

3. The GPD is threshold stable, i.e. the exceedances for GPD variables gives a GPD,
but with different parameters.

Both the last two properties characterize the GPD in the sense that no other family of
distributions has either property.

For the GPD, we have two parameters & and o to estimate. In the Matlab toolbox
WAFO, four methods for estimating the parameters in a GPD is implemented, namely
Pickands’ method (Pickands [18]), the method of moments (see e.g. Hosking & Wallis [10]),
and the method of probability weighted moments (Hosking & Wallis [10]), and the maxi-
mum likelihood method (see e.g. Davison & Smith [3], or Grimshaw [9]). Standard errors
for the estimates are also delivered. The different estimators were tried. The experience is
that the maximum likelihood method is the best estimator, and the method is presented
below.

Consider the exceedances 1, z9,...,Z,. By writing o = k/7 the maximum likelihood
estimation is reduced to solving the single equation for 7

n 1 & x;
Z_ 1
T k(1) Z:ZI 1— 7z (18)
with
1 ”1 1 19
k= K(r) = = S log(1 = 72 (19)

Smith [26] showed that the maximum likelihood estimator exists if k& < 1 and is asymp-
totically normal if £ < 1/2. The limiting covariance matrix for (o, k) is

1—k /202
n (Z 1—0k> (20)

provided that k£ < 1/2. Eq. (16) also contains u(vg), which is estimated as the observed
upcrossing intensity of level vyg.

If a distribution is in the domain of attraction to the Gumbel distribution (GEV with
k = 0), then the exceedances of high levels converge to the exponential distribution (GPD
with £ = 0). (This is the case for Gaussian processes.) If one knows or believes that one has
convergence to the Gumbel distribution, then one can use the exponential distribution.
Hence, one only has to estimate the parameter o, with maximum likelihood estimator

1 n
* = E . 21
7 TLZ':I:L‘Z ( )

Another problem is to choose a proper threshold, which is high enough in order to
get a good fit to the GPD, but still contains enough exceedances to get good estimates.
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To choose an optimal threshold is a notoriously hard problem which is addressed in e.g.
Dress & Kaufmann [5|, Dupuis [7], Draisma et al. [4], and Beirlant et al. [1]. Here, we
suggest that one tries different thresholds and judge which gives a decent fit to the GPD,
e.g. by using quantile-quantile plots. For the GPD, the mean exceedance over a level v,
when k > —1, is a linear function of v. Hence, it can be used as a diagnostic plot when
choosing the threshold. For an automatic choice of the threshold one could systematically
try different thresholds and choose the one that gives the best fit according to some
criteria, e.g. minimizing the Mean Square Error (MSE) of a given diagnostic plot. This
was tested for the exponential case, but the method was not very robust, and could be
hard to use in practice. For a more crude automatic choice of the threshold, one could use
some rule of thumb, e.g. choose the threshold as the mean plus two standard deviations,
or choose the threshold so that it represents the upper 20 % of the range of the data, or
choose the threshold so that it represents a certain fraction of the data.

EXAMPLE 3 (Extrapolation of level crossing intensity). The Markov model in Exam-
ple 2 is used for generating a simulated signal, containing 10000 cycles, from which the
level upcrossings are extracted. The upper and lower tails of the level upcrossing spectrum
are extrapolated by using the GPD as described in Section 3. The maximum likelihood
estimates gives the extrapolation in Figure 4a. By setting kK = 0 in the GPD we obtain
the exponential distribution, whose maximum likelihood estimates lead to the graph in
Figure 4b. The exponential tails, which give a straight line in the log-scale, often tend to
overestimate the intensity for extreme crossings, as in this example. Here the GPD (with
k # 0) gives a better extrapolation. O

(a) (b)

10*

Level crossing intensity, p(u)
Level crossing intensity, p(u)

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
level, u level, u

Figure 4. Example 3, the extrapolation of level crossing intensity for a simulated Markov load. The
level crossing intensities are extrapolated by using (a) GPD, maximum likelihood, (b) Exp, maximum
likelihood, and are compared with the exact one (— —).
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4. Extreme Rainflow Matrix

Here we will present an algorithm for calculating an estimate of the extreme RFM from a
measured RFM. Thus we will combine Theorem 1 with the extrapolation of the level up-
crossings (Section 3). Automatic choices of the necessary parameters for the extrapolation
is proposed.

The steps are as follows.

1. Observed RFM. The input is a measured REM, F' = (f;;)';=;, where f;; is the number
of cycles with the minimum ¢ and the maximum j.

2. Extrapolation of the level upcrossings. The level upcrossings are calculated from the
RFM. The threshold for extrapolation is chosen and the curve is estimated. We present
the extrapolation procedure for high levels. For the low levels the procedure is the
same.

a)

b)

The level upcrossing spectrum IN = (ny)j_, is calculated as

ng= > fij (22)
1<k<j
i.e. the summation is for all cycles with minimum > ¢ and maximum < j.
We suggest two methods for an automatic choice of the threshold, denoted t.
— The threshold represents 20% of the range of the data. Let A; = n; — n;_1.
Choose the threshold so that 20% of the non-zero A; is above the threshold.

— The threshold represents 5% of the sample. Choose the threshold as the level
that is crossed as often as 5% of the maximum value of the level upcrossing
spectrum.

These choices seem to work well in practice. In order to avoid clustering of ex-
ceedances, which comes from cycles with a minimum larger than the threshold,
we set f;; = 0 for all 1 > ¢. If F' was changed, repeat step 2a and 2b.

Now we shall estimate the shape of the level upcrossing intensity above the thresh-
old t. Let An; = ng4; — ngri—1, which is the number of peaks a distance 7 above
the threshold. Construct the vector (z;) of observed exceedances

o=(05...05 15...15 25...25 ...) (23)

~- ~- ~~
Ang Angy Ang

where we made a correction of 0.5, because the estimation procedure is for non-
discrete data. On the basis of & we calculate estimates of the parameters k& and o
in the GPD, which gives the extrapolation

LN 1/k
n =ny (1 - M) , i >t (24)

g

The recommendation is to use the maximum likelihood method for the GPD.
An alternative is to use the exponential distribution (GPD with k = 0) giving

— ¢
nf =ngexp (—Z 5 ) , i>t. (25)
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Based on & the maximum likelihood estimate is o = % > x;. However, in this
case one can obtain a maximum likelihood estimate for the discretized data

1

7= log(1+ N/Sn) (26)

with

1 J

N = ZAni, Sy =Y (i—1)An; => (z; —0.5). (27)

The last estimator, Eq. (26), is recommended for the exponential case.

d) Let n;" and n; be the extrapolation for high and for low levels, respectively,
with thresholds T and ¢~, respectively. The final estimate of the level upcrossing
intensity is

n; if r<t
ny =< nf if r>tt (28)
n; otherwise

3. Now we can use Theorem 1 to calculate the cumulative REM (see also Eq. (2))

nink

t )
P 29
Hij n;k + n; ( )

and calculate the corresponding RFM G by using Eq. (14). The result is only valid
for large cycles, and for regions where the approximation is not valid, the resulting
RFM may contain negative values, which is not possible. Hence, to get an admissible
RFM we set those elements to zero, i.e. g;; = max(0, g;;).

EXAMPLE 4 (Extreme rainflow matrix for a Markov load). This is a continuation of Ex-
amples 2 and 3. From the extrapolated level crossings, see Figure 4, the extreme RFM
is calculated by using Eq. (29). The two RFMs in Figure 5 represent two methods for
extrapolating the level crossings, namely GPD and Exp, respectively. In this case the
GPD gives the best result. o

5. Smoothing of a Rainflow Matrix

The kernel density estimation is a general statistical technique for non-parametric estima-
tion of an unknown density. Since there are no parametric forms for the rainflow matrix,
a Kernel Density Estimator (KDE) is suitable. The KDE is obtained by convoluting the
observations by a so-called Kernel function, which means that a "bump" (the Kernel
function) is placed at each observation, and then all the "bumps" are summed up to get
the estimated density. A parameter of the smoothing is the so-called bandwidth, which
is the width of the kernel and hence controls the degree of smoothing.

For general references to KDE the reader is referred to Silverman [25], Scott [24], or
Ruppert & Wand [28]. A study of smoothing a RFM is found in Dressler et al. [6], where
they also describe the method of kernel smoothing. They give an example of test track
measurements, where they extrapolate a one-lap RFM to a 6 lap RFM, and compare it
with a measured 6 lap RFM.
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(a) GPD (b) Exp
1 1
0.5
3 3
s 0 s
0.5
_l L L L _1 L L L
=1 ~0.5 0 05 1 =1 -0.5 0 0.5 1

min min

Figure 5. Example 4, the extreme RFMs calculated from estimated level crossing intensities. The
level crossing intensities are extrapolated by using (a) GPD, maximum likelihood, (b) Exp, maximum
likelihood. Iso-lines of RFMs (—) are compared with the exact RFM (— —).

EXAMPLE 5 (Smoothing of a rainflow matrix). The same simulated signal, form a Markov
load, as in Example 4 was used here. The observed RFM was the input to the smooth-
ing. The result is presented in Figure 6. The kernel function is a 2-dimensional normal

distribution. O
1
0.5¢
3
= 0
-0.5¢
_1 L L L
-1 -0.5 0 0.5 1
min

Figure 6. Example 5, the estimate of the limiting shape of the RFM obtained by using a kernel smoother.
Iso-lines of the RFM (—) are compared with the exact REM (— —).
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6. Limiting Rainflow Matrix

The goal is to find a good estimate of the limiting RFM. The idea is to use the extreme
RFM where it is valid (i.e. for large amplitudes) and to use the smooth RFM elsewhere.
Hence, we use the extreme RFM for amplitudes above a threshold amplitude. To deter-
mine where the extreme RFM starts to be valid is assessed by comparing the damage (per
amplitude) between the measured RFM and the extreme RFM. The threshold amplitude
is chosen as the first amplitude that gives e.g. at least 95% of the damage of the observed
RFM. Since the extreme RFM is not valid for high minima and low maxima (see Figure 5),
these limitations are also applied.

EXAMPLE 6 (Limiting rainflow matrix for a Markov load). Here we combine the results
from Examples 4 and 5. The final estimates of the limiting RFMs are presented in Figure 7.
a

(a) GPD (b) Exp

0.5¢

Max

-1 —0:5 0 0:5 1 -1 -0.5 0 0.5 1
min min

Figure 7. Example 6, the limiting RFM for a Markov load. It is a combination of two RFMs, the
extreme RFM for large amplitudes, and the smoothed RFM elsewhere. The level crossing intensities
are extrapolated by using (a) GPD, maximum likelihood, (b) Exp, maximum likelihood. Iso-lines of
RFMs (—) are compared with the exact RFM (— —).

EXAMPLE 7 (Extrapolation of a rainflow matrix for a measured load). Here we will anal-
yse two load signals that are measured on test tracks. The time signals are forces (units
Newton) on the left front wheel of a Peugeot automobile. The two signals are one-lap
measurements from two different parts of the test track (here called A and B). The time
signal is rainflow filtered, so that small oscillations are removed, and the measured rainflow
matrix is calculated by using 64 discrete load levels, ranging from -2000 to 12000. The
measured RFM is the input to the calculations, where the first step is to extrapolate
the level crossings to unobserved load levels. The thresholds for extrapolation are chosen
automatically as the levels that are crossed as often as 5% of the maximum value of the
level crossing spectrum.
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The extreme RFM is calculated according to Eq. (2). The idea is to use the extreme
RFM where it is valid (i.e. for large amplitudes) and to use the smooth RFM elsewhere.
Hence, we use the extreme RFM for amplitudes above a threshold amplitude, chosen
according to the damage criterion. The limiting RFMs is shown in Figure 7, where the
observed cycles are marked with dots.

(a) Test track A (b) Test track B

12000 ‘ ‘ ‘ 12000

100007 100001

8000¢ 8000f
z z

g 6000f g 60007
L2 L2

> 40001 »x 40001
3 3
= =

2000f 2000r

0 0

—2000 : ‘ : —2000 : ‘ :
0 5000 10000 0 5000 10000
min, force / N min, force / N

Figure 8. Example 7, the extrapolation of a measured load, vertical forces on the front wheel of a Peugeot.
The estimated limiting RFM is a combining the extreme RFM, for large amplitudes, and the smooth
RFM elsewhere. The level crossing intensities are extrapolated by using the GPD, maximum likelihood
estimation. (a) Test track A, (b) Test track B. Iso-lines of RFMs (—) are compared with the rainflow
cycles in the signals (o).

The limiting RFMs (in Figure 7) now represent the “long run” RFMs for one lap on the
test tracks A and B, respectively. The last step is to extrapolate to the desired distance (or
time). This is done by multiplying the limiting RFM by a suitable scaling factor. Assume
that a full lifetime is equivalent to 5000 laps on the test track A, or 500 laps for test
track B. The extrapolated RFMs then becomes Ggfe = 5000 - G4, and Ggfe =500 - Gp,
respectively. The extrapolation based on the measured RFMs becomes Fl}fe = 5000- Fjy,
and Fgfe = 500 - Fg, respectively.

The level crossings are easily extracted from the RFM. In Figure 9 the extrapolation of
the level crossings based on the measured RFM, and on the limiting RFM are compared.
Clearly, when one wants to extrapolate to high levels one should use the limiting RFM.
Now, we can predict how often a certain high level will be crossed. We can also specify
the frequency of crossings and get an estimate of the corresponding load level, see Table I.

The frequency distribution of the rainflow amplitudes is also easily extracted from
the RFM. Figure 10 shows the extrapolation of the cumulative frequency of the rainflow
amplitudes, based on the observed RFM, and on the limiting RFM. When extrapolating to
high amplitudes the limiting RFM should be used. By specifying the cumulative frequency
we get a prediction of the corresponding amplitude, see Table II. O
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(a) Test track A (b) Test track B
12000 12000
10000 10000 1
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zZ Z
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Figure 9. Example 7, extrapolated level crossings for a measured load. (a) Test track A, (b) Test track
B. The extrapolated level crossings (—) are compared with the observed ones (— —).

Table I. Example 7, extrapolated level crossings.

Frequency of the Estimated load level / N
number of crossings ~ Glife  plife  glife  plife
1 11200 9330 10650 10000
10° 9520 9330 9770 9700
104 8660 8670 8950 9010
(a) Test track A (b) Test track B
7000 7000
6000 6000 1
5000 5000 1
P z
24000 ©4000 ]
ke] =)
2 =
3000 53000 :
< <
2000/ 2000} ]
1000/ 1000 ]
0 : : 0 : :
10° 10° 10° 10°

Cumulative freauencv Cumulative freauencv

Figure 10. Example 7, extrapolated rainflow amplitudes for a measured load. (a) Test track A, (b) Test
track B. The extrapolated cumulative frequencies of rainflow amplitudes crossings (—) are compared with
the observed ones (— —).



Extrapolation of Rainflow Matrices 17

Table II. Example 7, extrapolated rainflow
amplitudes.

Cumulative  Estimated amplitude / N
frequency glife  plife  glife  plife

1 5600 4670 5950 5560
102 4750 4670 5110 4940
104 4250 4110 4370 4370

7. Conclusions

When extrapolating a measured RFM to longer time periods a simple rescaling of the
measured RFM does not permit other cycles than the observed ones, and not all possible
cycles. Therefore, we propose to estimate the limiting shape of the RFM, and use this
matrix for extrapolation to longer periods.

We have derived an asymptotic expression for the cumulative rainflow intensity, which
is valid only for large cycles. The assumption is that the exceedance of high and low levels
converges to two independent Poisson processes. (This is true for stationary random
processes under suitable conditions.) The expression for the extreme rainflow matrix only
depends on the level crossing intensity, which is easier to estimate, than the complete
limiting RFM. The extreme RFM is a very good approximation of the limiting RFM for
large amplitudes, see Examples 1 and 2. To estimate the level crossing intensity for high
(and for low) levels we suggest to use results from extreme value analysis, POT (Peak
Over Threshold) analysis.

We have proposed a method for estimating the limiting shape of the rainflow matrix.

— For large cycles: Extreme rainflow matriz. We propose to use the extreme RFM
where it is valid. The level crossing intensity is estimated from the measured RFM.
A detailed algorithm for the calculations is presented in Section 4.

— For small and moderate cycles: Smoothed rainflow matriz. Here we propose to use a
kernel smoother to estimate the RFM for cycles with small and moderate amplitudes.

The proposed estimation procedure of the limiting RFM is illustrated in Examples 4-6,
where a Markov model for the load is used, which enables us to compare the results
with the true limiting RFM. In Example 7 measured vehicle loads from test tracks are
extrapolated by using both the measured RFM and the estimated limiting RFM. From a
RFM it is easy to extract level crossings and rainflow amplitudes, and the extrapolations
of these are also examined.
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