ON EXTREMES AND STREAMS OF UPCROSSINGS!

J.M.P. ALBIN, CHALMERS UNIVERSITY OF TECHNOLOGY?

We study relations between P{SuPte[o,h] £t)>u} and hlim _ _ 2"P{{(0)<u<
£(27™)} + P{£(0) >u} for a stationary process £(t). Applications include Markov
jump processes, a-stable processes, and quadratic functionals of Gaussian processes.

1. Introduction. Let {{(f)}:co,n] be a real valued stationary stochastic process
defined on a complete probability space (£2,F,P), where h> 0 is a constant. Sup-
pose that £(t) is separable and continuous in probability (P-continuous).

Let the support of £(0) have endpoints u = inf{ueR : P{£(0)<u} >0} and
(1.1)  u = sup{ucR: P{{(0)<u} <1} where P{¢(0)=u} =0,

so that u<u. Set M (h) = sup;epo p€(t) and J(uw) =lim, _, _ J(27", u) where

J(g,u) = ¢ ' P{E(0)>u>E(q)} = ¢ " P{&(q)>u>£(0)}.

If £(t) is continuous a.s. with £(0) continuously distributed, then J(u) coincides

with the upcrossing intensity u(u) of the level u by £(t). Further we have
P{M(h)>u} < P{£(0)>u} + hpu(u):

This relation and work on formulae for pu(u) date back to Rice (1945). See also e.g.,
Leadbetter, Lindgren and Rootzén (1983, Chapters 7 and 13) and Albin (1992).

However, it seems natural to use J(u) instead of u(u), since we show that
(1.2) P{M(h)>u} < P{£(0)>u}+ hJ(u) = Pp(u) for we(y,w)

assuming P-continuity only. Further, making use of the quantity

1 [s/a]
Js(q,u) = gP{ﬁ(O) >u>£(q), eL=Jz {5(6q)>u}} for se(0,h]
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[so that Jo(g,u) = J(gq,u)], we give characterizations of when any of the converses
(1.3) lim 45 P{M (h) >u}/¥p(u) =1

(1.4) lim o P{M(h)>u}/¥,(uv) >0

to (1.2) apply: Of course, in order for (1.3) or (1.4) to hold it is necessary that
(1.5) there exists a wug€(u,u) such that J(u)<oo for ué€lug,q).

In Theorem 1 we do discrete approximation with a grid that works for all pro-
cesses {(t). This gives general characterizations of (1.3) and (1.4). In a typical app-
lication one need not compute J(u) but only prove (1.5), which often is feasible.

We use a more traditional approach with a grid adapted to £(¢) in Theorem
2. This requires an additional often hard-to-verify technical condition, but gives
virtually weaker and potentially easier to verify necessary and sufficient conditions
for (1.3) and (1.4). In Theorem 3 we show how the technical condition can be
modified and thus sometimes more easily dealt with.

In Examples 1 and 2 we show how Theorems 1 and 2 connect to contemporary
research on the argmax process of Brownian motion minus parabolic drift and on
a-stable processes. In Sections 4-7 we use Theorems 1 and 3 to prove new results for
a-stable processes, for pure-jump Markov processes, and for quadratic functionals

(squared norms) of Gaussian processes.

2. Relations between extremes and streams of upcrossings I. First we

prove (1.2) and give general characterizations of (1.3) and (1.4) in terms of
As,h = mmﬂli_mn_)oo hJs(2_”,u)/Wh(u).

Theorem 1. If {£(t)}icpo,n) %5 a separable and P-continuous stationary process

satisfying (1.1), then (1.2) holds. If in addition (1.5) holds, then we have

(2.1) (1.3) holds <&  Agp=0 foreach s€(0,h),

(2.2) (1.4) holds <&  Agp <1 for some se(0,h).

Proof. By P-continuity the dyadic numbers is a separant for £(¢). Hence we have

oo [2"h]
(2.3) P{M(h)>u}=P{u U{£(2‘”k)>u}}

n=0 k=0

= lim P{[:g;]{g(z—nk)>u}}

n—o0
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(2" h]

[2"h]
— lim ZP{s<k>>u, N {5(2—"@@}}

n—=00 k=0 0=k+1

(2" ]

~ P{E(0)>u} + lim Y P{s(o>>u, r'ﬁ{s(z—"asfu}}
k=1 /=1

(by stationatity). Here the right-hand side is bounded by ¥y (u), which gives (1.2).
Further an inspection of (2.3) shows that

. P{M()>u} o] . »
e T (P{f<0>>u}+[2 HP(E(0) > u>E2)
[2™R] k
-y pleosuzee, O {5(2—w)>u}}>
k=2 =2
i 1im PA6(0)>u} 427" 2"A T (27" w) — Ja (27", u)
uTEn—)oo Wh(u)
< %n% P{{(0)>u} + ;h‘(zgﬂh]J(T”, u 5
> lim lim P{{(0)>u} +27"[2"h]J (27", u) S,
W% n—o0 P (u)
=1- 6ha
where
T, (9o—™n [h/277] n

k=2

The implications to the right in (2.1) and (2.2) now follow from (1.2) using that
op > limyglim__ (h—s)Js(27", u)/Wy(u) > (1—s/h)Asp  for s<h.

Conversely, since Wq(u)/%h(u) > s/h, the implications to the left follows from

P{M(h)>u} > lim P{M(s)>u}

h
= lim SRV S 5, > 1—A, > 1-A, . O
= Uy(u) = e Uy(u) = , h

S

ulu utu

Clearly (1.4) holds when J(u) = O(P{£(0)>u}) as utu, since we then have

(25)  lim,. P{E(0)>u}/W(u) = lim, . (14 hJ (u)/P{EO) >u}) " > 0.

Proposition 1. Let {{(t)}icpo,n be P-differentiable from the right at t=0 with

1o [1€0) —€(0) —£'(0)
(2.6) lim n P{‘ ,

10

>)\} =0 for each X > 0.
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Let the distribution function Fp ) (z) have a right derivative at x=u. We have

(2.7) lim P60 > u 2> £(0)+t€'(0)} _ T < — P{£(0) > u>£(0)+1£'(0)}

0 t 40 t ’
(2.8) iy P16(0)+2€(0) >u > £(0)} _ J(u) < = P{E(0)+1€'(0) > u > £(0)}

10 t - ~ ¢l ¢ ’
and

h
. < - > !
29) A< lplliy L P{&(O) >z 60)+¢/0), s () >u}

< hmhmth)P{ £(t) —£(0) —t£'(0) _ £(0)—u

S > ,E0)>u p.
vl utu €l0 6!l7h(u ap t - € £( ) U’}

te(ve,s]

If in addition £(t) is continuous a.s. and Fg)(u™)=Fgq(u), then we have

210) J(0) = tip PEO>ZEOTEO) _ y, PEOSEO) > 280

Proof. For a non-increasing family of events {A;}:~0C F we have

PO 0280 4] Lpf ) 1 0

, £(0) > utot, §(t)§u}

+1p{e <-0-0 0" g0>u 4}

P{u<£(0) < utot}
t

< Lp[HOEO ) S0 )

1oy PleO > uz €0+ 0, 4
+6( E(O)( )+ o(t)) for A d,t>0 (small).

Sending t]0 and A,6)0 (in that order), (2.6) shows that (first taking A;=12)

(2.11)  limJ(t,u) < lim P{£(0) > u>£(0)+t£(0)}

£10 10 t 7
— P{£(0 , A —1 /
1z G PEOZ02E0A} i LpLe) 0 £0)+1610), Aane)

for A€ (0,1). In an analogous way we obtain the estimates downwards

£(0)—u
t

J(tu) > —%P{{’(O) < —(14)

4

, £(0)>u+6t, £(t) >u}



£(0)—u
t

+%P{§’(0)S—(1+)\) a5(0)>“}

_ P{u<€(0) <u+dt}
t

 Lp{H0-E0HE0) 0w )

1 14X

— 6 (F oy (uh) + oft)).

Sending ¢]0 and A,d/0, and using (2.6) and the differentiability of F¢(), we get

P{£(0) >u>£(0)+t£'(0)}

(2.13) lim J(t,u) > lim
t10 10 1

(2.14) T J (¢, w) > Tim P{£(0) >u>&(0)+t£'(0)}
tlo 7 T to n :

Using (2.12), first together with (2.13) and for A; = £2, and then for A; =
SUD,¢pat,5)§(7), We get (2.7) and the first inequality in (2.9).
To prove the second inequality in (2.9), we note that the first inequality gives

o { £ —£0) —1€(0) | €0)—u g(O)M}’

A, p < limTmTm

v12 utw €10 € Uy (u) Sup

te(ve,s] t Et/(t—{:‘)

which in turn obviously is bounded by the right-hand side of (2.9).

+yo and limgyo for J(t,u) =t 1P{£(0)>

u>&(t)}. Sending t10 in J(t,u) =t 'P{{(t) >u>£(0)} instead, we get (2.8).
The left equality in (2.10) follows from (2.11), (2.14) and that (under the assump-

In the proof of (2.7) we computed lim

tions specified) limg o Ji(u) exists [and is the upcrossing intensity of the level wu].

The right equality follows sending ¢]0 in J(¢t,u) = t71P{&(t)>u>£(0)}. O

Example 1. (THE ARGMAX PROCESS OF BROWNIAN MOTION MINUS PARA-
BOLIC DRIFT.) Let V(t) = argmax{s€R: W(s)—(s—t)*} where {W(s)}scr is
standard Brownian motion. Hooghiemstra and Lopuhad (1998) studied local ex-
tremes of &(t)=V(t)—t by quite difficult analytic methods. We shall recover that
result here quite easily. As they did, we use some facts from the Rollo Davidson
awarded work by Groeneboom (1989):
The process V(t) is non-decreasing pure jump Markov with transition kernel

Py(dy) _ . PUV()edy|V(0)=2} _ 29(?J)P(§J—$)

dy t10 tdy N g(z
5
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Here g and p are continuous with ¢ locally bounded away from zero. Further

—RKT 2.3

(2.16) () dre as T—00 () 4re” 3% as x— 00
2.16) p(x) ~ and g(x) ~ ,
V2/(rz) as z,0 Aef? as T ——00

where A, k>0 are constants. The process £(t) is stationary Markov and
(2.17)  £(0) has density function  f(z) = fe0)(2) = fv(o)(z) = 39(z)g(—2).

Proof of (1.3) for &(t). Since £(t) > £(0)—t (1.5) holds with [cf. (2.17)]
(2.18) J(u) < lim __ 2"P{£0)>u>&(0)-2""} = f(u).

The time to a jump 7 =inf{t>0:V(t)#V(0)} is exponentially distributed

P (dy)
c(x)

By (2.15)-(2.17) and routine calulations we get [note that g(u+u=2z) ~ e 2%g(u)]

[T 9y)ply—u)dy N ®glutuz)de 1 [Fedz 1
O e

P{redt|V(0)=z}
dt B

c(x) e @)t with =P{V(r)edy|V(0)=xz}.

ug(u)y/mz/2 " u 0 Tz/2 u

as u—oo. By conditional independence of the past and the future we have

(2.19)

lim 2" P{f(O) >u>E(27"), supye(a—n 4 €(1) >u}

n—o0

u+2""
< lim 2n/ PIV(0)>uz>V(@ )2

n—0o0

V(2 ")=z}
V() =2} fro-m (@) do

< lim 2" P{£(0)>u>£(2™)} SuDue(u sz m PLr<s|V(0) =2}

n—o0

X P{Supt€(2*”,s] V(t)>u+2™"

— . _ —c(z)s
J(u) nli)nolo SUP e (u,ut2-n] (1—€ ) for s>0,

which is o(J(u)) as u—o0 by (2.19). Hence A, =0 and (2.1) yields (1.3). O

Remark 1. Since f(u)~ 4 ue *%"3%" a5 y—00 by (2.16) and (2.17), we have

P{(0)>u} = [[7f(z)dz ~ (2u*)7 f(u) = o(f(v))  as u—roc.

Further J(u) ~ f(u) as u—oco, since J(u) < f(u) [by (2.18)] and
1 u+te
J(w) > lim— [ P{r>s|V(0)=z}f(z) dz > lim _inf e D°f(u) ~ f(u)
el0 € Ju €10 zE€[u,u+te]
by (2.19). Hence (1.3) reduces to P{M (h)>u} ~ h f(u) as u— oc.
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3. Relations between extremes and streams of upcrossings II. Let ¥ (q, u)

= P{£(0)>u}+hJ(q,u). Choose functions {q,:(u,u)—(0,00)}s>0 that satisfy
(31) limaw mu»rﬂ da (U) =0.

[Usually g,(u)=aq(u).] The grid {kq,(u)€[0,h]: keN} is dense enough when
— ["/qa(u)]
32 imin Pl () €l w) < | -

al0 utu Wh (qa (U), u

This is the sparsest grid to which the proof of Theorem 1 carries over. It gives virt-

ually weaker versions of the criteria A, =0 and A, ;<1 expressed in terms of

Ds.n = lim lim M and D,y = lim lim M )
al0 ufu Wh (Qa( ), ) al0 utu Wh (u)

In the presence of (3.2), the “natural” bounds for P{M (h)>u} that correspond
to (1.2)-(1.4) are

(3.3) Timg o limypg P{M (h) >u} /W, (qq (), u) < 1,
(3.4) lim, o lim o P{M(h)>u} /P, (¢a(u),u) > 1,
(3.5) lim,  lim . P{M(h)>u} /Wh(ga(u),u) >0

As an alternative to (3.2), we will also use the requirement

(3.6) lim , o lim o Wh(ga(w), w) /Wh(u) > 1.

By Theorem 2 below, this requirement implies the following two relations
(3.7)  limgyo limypz P{E(0) <u, M(ga(u))>u, £(ga()) <u} / (ga(u) Tn(u)) =0,
(3.8)  limgyo li_mum U (ga(w), w)/Wh(u) = limg)o Hum Un(qq(u),u)/Wp(u) = 1.

From (3.7) and (3.8) in turn one immediately gets (3.2), so that (3.6) implies (3.2).

Further, under (3.8), (3.4) and (3.5) are equivalent to (1.3) and (1.4), respectively.
Note that (3.5) holds when limg, o limytz Wh(ga (1), u) /P{£(0) >u} <oco [cf. (2.5)].
If J(u)>0 for u€lug,u) for some wug€ (u,u), then (3.6) holds if e.g.,

(3.9) h_mau) li_mu“rﬂ J(qa(u),u)/J(u) > 1
This follows from the easily established inequality

U (qa(u), u)/Ph(w) > 1+ min{J(g,(u),u)/J(u)—1, 0}.
7



The condition (3.9) in turn generalizes to the P-continuous setting the requirement

(3.10) lim, o i, J (0 (), ) /() > 1

of Leadbetter and Rootzén (1982): Assuming that £(¢) has a.s. continuous sample
paths with £(0) continuously distributed, and that the upcrossing intensity pu(u)
[which in this case coincides with J(u)] is finite, they proved that (3.10) implies

(3.11)  limayo Timugg PLE0) u, M (ga(w) >, &(aa(w)) <u} / (g0 (u) p(w)) = 0

and
(312)  Timago lim, g J(g0(), ) /() = limgyo g J(ga (), )/ i) = 1.

It has been established above (more or less) that the following implications hold
3.2) < (3.7&(3.8) « (3.6) < (3.9) < (3.11)&(3.12)&continuity < (3.10)&continuity.

It is also quite clear that no converses to any of these implications hold in general.
To see that (3.6) % (3.9), for example, let J(u) = o(P{£(0)>u}) as utu. Now
(3.9) may or may not hold, while on the other hand (3.6) holds trivially since

Ui (ga(w); ) /Wh(u) 2 1= hJ(u)/P{£(0)>u}.

It is (3.2) or (3.7), rather than (3.11), that is needed in extremes. In view of the
above discussion, in order to ensure sufficient accuracy of the discrete approximation
(denseness of the grid), it is both natural and beneficial to use condition (3.2) or

(3.6) [that implies (3.7)], rather than (3.9) or indeed (3.10) [that implies (3.11)].

Remark 2. Hooghiemstra and Lopuhaéd (1998) noted that (3.10) implies (3.11)

for the jump process in Example 1. This was an important influence for me.

Theorem 2. Let {{(t)}icio,n) be a separable and P-continuous stationary process

satisfying (1.1), and choose functions {qq.(-)}s>0 that satisfy (3.1).
(i) If (3.2) holds, then (3.3) holds. Moreover we have

(3.13) (3.4) holds <& D5, =0 foreach se€(0,h),
(3.14) (3.5) holds &  Dsp <1 for some se(0,h).

(ii) If (3.6) holds, then (3.2), (3.7) and (3.8) hold. Moreover we have

(3.15) (3.4) holds <« (1.3) holds < Dsp=0 foreach se(0,h),
(3.16) (3.5) holds <& (1.4) holds << Dsp <1 forsome s€(0,h).

8



Proof of (i). Using (3.1) together with (3.2), we get [cf. (2.3) and (2.4)]

(317)  lim, o lim o P{M(h) > u} / W (qa(u), u)

:mmm( L0 000> )+ el > hﬁ“]{g(kqaxu}})

al0 utu

[h/4a] [h/4a]
~limlim 3" P{ (kaa)>u, 1) {£<fqa)<u}}

al0 utu P, (qa (u)’ u)

k=
— limli 1 P{(0 s Lo A (et <
-Tm%w—m( (60> -+ S ple0>m e W—“}})
. 1
= lmlim - (P{i(O) >u} + [h/qa) P{E0) > u>£(ga)}
[h/4a] k
s P{f<o>>uzs<qa>, 0 {s(fqa>>u}})
k=2 =2
oy PLE(O) > i+ alh/0] T (6a(0), 9) — Ta(ga(v), 0
210 ulz Wh(qa(u), u)
:l_aha
where

9, = limlim ——*% 2

[h/qa(u)]
In(ga(w),w) _ = limlim 9a (1)
al0 utu th(qa( )

u)  alo utd Wy (ge(u), u) kZ::Z Jga (u)k(da (), u)-

Here we have, for each choice of s€(0,h),

Op > limg o imytg (h—$) Jo(qa (), u) /n(ga (), u) = (1=5/h) Dy,

and

O < EggilmsJ 5 (qa(u), u )/Wh(qa(u)vu)+%%(h—é‘ﬂ(qa(u%U)/Wh(qa(u),u)

< (s/h)Dsn+ (L—s/h).
Inserting this in (3.17) we obtain
<1—(1-s/h)Dsp
> (s/h) (1=Ds.1)

which readily give (3.13) and (3.14). Further, using (3.1) and (3.2) exactly as in

lim, o lim . PM(h) > u} / ¥ (ga (), w)

(3.17), we get the upper estimate (3.3) in the following way:

i PAM (W) >u} o PE(0) > u} + Ga[h/ 0] T (9, 1) = Tn (00, 0)

al0 utu Wh(qa, ) al0 utw vy, (qa, U)
9




EEN P{f( )>U’} + Qa[h/Qa] J(Qaa u)

< limlim
al0 utw v, (qa, u)

= 1.

Proof of (ii). Using (1.2) and (3.6), we get (3.7) and (3.8) from the estimate

P{£(0)<u, M(ga)>u, §(¢a) Su}  P{£(0)<u, M(¢a)>u} — ga(1)J(¢a, v)
qa(u) Wn(u) qa(u) Uh(u)

< (P (u) = h(ga, u)) / (B P (u)).

The first equivalencies in (3.15) and (3.16) follows directly from (3.8). The two re-
maining ones reduce to (3.13) and (3.14), respectively, when (3.8) holds. [

Corollary 1. If {£(t)}icpo,n) is a separable and P-continuous stationary process

satisfying (1.1) and (3.6), then (1.3) holds if the following two conditions hold

1/ % (TP {£(0) > u, &(kga(u)) >u}

N T - 3 20 () Tp (1) =0,
P{£(0)<u, £(qa(u)) >u, E(Lga(u)) >u, E(L41)qa(u)) <u}
lul% ROTAD =0 for 1</eN.

Proof. Using the elementary fact that

[~/ ga] [h/qa]

(U tetba>ut) ntevan <) n (U tetrad>) = tetiad<u)
[h/ 9a]
= (U tethan>u}),
the corollary follows from Theorem 2 (ii) together with the estimates

(3.18)  Jr(qa(u),u /Wh w)

(h/qa]
qawh { ) >u>€(qq), U {ﬁ(kqa)>u}}
qawh { Ga) U, U {E kqa) >u}, g(Nqa)<u}
p [h/qa .
i qa%(u) { (0)>u, U 1&( qa)>u}}
—IN=1 P{&((k—1)qa) <u, £(kga) >u, £(€gs) >u, £((0+1)g,) <u}
k22 EZ:k: Qawh(’u:)
[h/qa]P{§(0)>u, ¢(kqe) >u}
" ng Qawh(’u,) ) O

10



Now assume that the distribution of £(0) belongs to a domain of attraction
of extremes. This means that there exist a constant Z € [—00,0) together with

continuous functions w:(u,u)— (0,00) and F':(%,00)— (—o0,1) such that
(3.19)  limyz P{£(0) > utzw(u)} /P{{(0)>u} = 1-F(z) for z€(%,00).
Set gq(u) =aq(u) for some function gq:(u,u)— (0,00) that satisfies

(3.20) lim,47 g(u) < 0o and limg o limy4z ¢(u) /q(u—zw(u)) < oo.

Assume that, to each choice of §>0, there exists a constant #=£(§)>0 such that

[/ (@@DIP{£(0) > u, &(kq(u)t) >u}

@) gmin X P>y}

(3.22)

. P{£(0) <u, &(qu)t) >u+dw(w)t, £(Lg()t) >u+dow(u)t, E((4+1)g)t) <u} _ 0
utu P{£(0) >u} ’

for 1<£€N and t€(0,%]. Further assume that, to each choice of & >0, there
exist constants C,7>0, @€ (u,u) and p>1 such that

(3.23) P{£(0) <u-tvw(u), &(g(w)t) >u+(v+6t)w(u), £(2q(u)t) <utvw(u)}

< Ct?P{£(0)>u} for wela,u), t>0 and ve|0,7].
Theorem 3. Let {{(t)}icio,n) be a separable and P-continuous stationary process
satisfying (1.1) and (3.19)-(3.23). FEquations (3.3) and (3.4) hold with

7 7,
(3.24) 0 < limlim wag(u),w) o Talegw)w)

aJ,O uTu P{g(O) >u}/Q( ) al0 utw P{g( )>U’}/Q(U’)

Remark 3. Even when (3.6) holds, one needs ©; 5, =0 to get (3.4), which typic-
ally means proving (3.21) and (3.22) (cf. Corollary 1). Theorem 3 is useful because,
instead of (3.6), what has to be shown in addition to (3.21) and (3.22) is (3.23),
which often follows from the same calculations that gave (3.22) (e.g., Theorem 4

and Section 7 below). [Usually ¢ is non-increasing, so that (3.20) holds trivially.]

Proof of Theorem 3. By Albin (2000, Theorem 1), (3.19), (3.20) and (3.23) give

[~/(aq)]

(3.25) LIJIBLI%LI W P{M(h) > u, ﬂ {&(4q) <u}}

[where from now on ¢=q(u)]. Using Boole’s inequality and stationarity, this gives

(3.26)  limgP{M(h)>u} /P{£(0)>u}

utu

11



< lim ¢ (P{M(h) >u, [h/r(ﬁzq) {&(4g) < u}} + P{ h/ﬁq)]{ﬁ(ﬁq) >u}}>
utw P{f( )>U}

<Tm—— 21 P{M(h) >, h/r(ﬁ“n {&(¢q) <u}}
utw P{f( )>U}

< 00 for a sufficiently small.
On the other hand, Albin (1990, Theorem 2.b) together with (3.21) imply that
(3.27) lim, . ¢ P{M(h)>u} / P{£(0) >u} > 0.

By an obvious modification of (3.17), using (3.25) instead of (3.2), we get

P{M(h)>u} _ . .. Ph(aq,u) = Ja(ag,u)
7z PLE(0)>ut /¢ Louwm PLEO0)>u}l/g

(3.28) 1'

Arguing as for (3.18), (3.19) together with (3.21) and (3.22) show that

(3.29) qJn(ag,u /P{f )>u}
[h/(aq)]

1
SWP{E(O)>UZ§(GQ)a kL:JQ {f(kGQ)>U}}

N—1N-1 P{¢((k—1)aq) <u, &(kaq) >u+daw, {(Lag) >u+daw, £(((+1)ag) <u}

< Z Z — aP{{(O,)>U}

— 1 P{{u<é(kag) <utdaw} U {u<é(fag) <utdaw}}

+ Z 2 T aP{E(0)>u)

k=2 (=k

. ”‘%‘“” P{E(0) >, €(kag)>u}

aP{£(0)>u}
—0+26(N-2)F'(0) +0 as utw and al0 (in that order).

Using (3.27) and (3.28) together with (3.29) we thus obtain
(3.30) lim, o lim .o q¥(ag, u )/ P{£(0)>u} > 0.

Hence (3.25) implies (3.2), so we get (3.3). Sending §|0 in (3.29) and using (3.30)
we get D, =0, so that (3.22) gives (3.4). Further (3.4) and (3.26) show that

S — Y P{M

T 0 2} g S TR SO T BE(0) 2] /s -
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4. P-differentiable a-stable processes. A strictly a-stable random variable 7

with scale o=07>0, skewness f=pz¢€[—1,1] and a€(0,2)\{1} satisfies
E{exp[i0Z]} = exp{—|0|*c*[1+1i3 tan(@)sign(&)]} for #eR.

Let {£(t)}ier be a separable and P-differentiable strictly a-stable stationary

process and {n(t)};er an a-stable Lévy process with o, =|t['/*. We have
(4.1)  the finite dimensional distributions of &(t) =4 those of [ _gi(s) dn(s)

for a suitable choice of {g:(-) }ser CL*(R). Here stationarity for £(¢) means that

(42)  ||Xiibigt4r||, and (3 .6igt,4-),  domnot depend on T,

where we use the notation (g) = [, g(z)dz, (g9)a = (|g|*sign(g)) and ||g|la =
{|g|*)/e. Further P-differentiability is equivalent with

(4.3) t ™ gi—go] = gy in L*(R) as t—0 for some gh(-)CL*(R).
See Samorodnitsky and Taqqu (1994) on properties of stable stochastic processes.
Proposition 2. Let £(t) be a separable a-stable process given by (4.1) and (4.2)

with a>1 and ||gg ||o>0. If (4.3) holds, then (1.3) holds if and only if

hﬁ)la <gO Vga> — {90 )a <gO Ve V/ala > + <go Ve Vs a)a— a> =0

for s€(0,h). [Here we use the notation g~ = max{—g,0}.] Further, (1.4) holds.
Proof. With C3'= [ sin(z) dz/z, Samorodnitsky (1988, Theorem 3.1) gives
P{Ni—o{&(la)>u}} ~ Co{gy A.. ./\g;a>au_a

P{Ue olé(la >U}} ~ <go V. Vgna> -

Moreover Albin and Leadbetter (1999, Theorem 5 and Corollary 5) show that

as UuU—0oQ.

(4.5) J(u) = p(u) ~ aCs{(9) (95)* Hu* as  u— 0o.

From this we readily conclude that (3.9) holds with ¢,(u)=a, since

o Ta(a,u) _ (L+h/a) (gy)a — (h/a) {95 A9 4)a
U—00 !ph(U) <90> +ha<(go) (g )a 1>
)
(

_ (+h/a){gg)a = (h/a) {9y Ngo(1—ago/90)]” )a
(90 )a + ha((95)~(90)*~1)

—1 as al0.
13




Since J(u) = O(P{£(0)>u}) by (4.4) and (4.5), (1.4) holds [cf. (2.5)]. Further
(3.15) shows that (1.3) holds if and only if

u—00

e [s/al
lim — P{E(O) >u, &(a) <u, EL:J2 {&£(£a) >u}}

«

= I “p{Utewu} -p{U . }-p{U .} +e{ "0 .. }]

oo a £=0 £=0 £=0

1y, _, _ _ - _ _
=Cq p [<90 Va >a — {90 )a — <90 V.. .\/g[s/a]a>a + <90 V.. 'Vg[s/a]a—a>a:|
—0 as al0, for s€(0,h). O

Example 2. (a-STABLE MOVING AVERAGE PROCESSES.) Take a>1 and g; ()

= f(z—t) where |[f]o>0. This holds when £(¢) is a moving average process.

When f is unimodal, f is non-decreasing on (—oo,t) and non-increasing on

(t,00) for some {€R. Assume that f is left- or right-continuous at ¢, and set

A=\, = argmax{fgjaa_/\)af(x)a dz : A€ (0,1]} for a>0.

It is a straightforward matter to see that, for a >0 sufficiently small,

f+ia
(9o V--Vgno) = [ max f(z—ka)*dz= [ f(z)*dz+n [ [f(z)*dz.
© R Osksn R i—(1-X)a

Hence the limit in Proposition 2 is zero (already before a]0) so that (1.3) holds.

When f have multiple modes, f is non-decreasing on (7#—¢,#) and (4,%) and

non-increasing on (7,3) and (f,#+e) for some 7#<5<# and >0, with f(7), f(f)

> f(5). Assume that f is left- or right-continuous at #,§ and £, and set

At) = A(t) = argmax{fttjaci)\)af(a:)adx :A€[0,1]}  for a>0 and t=4#,{,

Alt) = A1) = argmin{fttjaa_)\)af(m)adm :A€[0,1]} for a>0 and ¢=3.

Now straightforward reasoning reveal that (for a>0 sufficiently small)

fte F4+X(F)a 3+A(8)a t+x()a

[ (Ve @-gz@)de=] [ = [ + [ |f@eds
e F—(1=A()a  s—(1-A(E)a  i—(1-A(H)a

and

f-l—e

Ik ((go_v. . .Vg[;/a]a)(ac) — (g, V.. .Vg[;/a]a) (a:)) dr =0 for s> {&—7+2e.

Hence the limit in Proposition 2 is bounded from below by
1 F4+A(P)a 5+A(8)a i+A()a
im—| [ = [ 4[| f@)dz = [0) (DT f(5)* >0
W0 L 1°AF)a  §-(1-AE)a  i-(1-A@)a
14



(since go V- . .\/g[;/a]a—g(;\/. . .\/g[;/a]a < go_\/g;—ga_), so that (1.3) does not hold.

Remark 4. Local extremes as u— oo of stable {(t) with f¢)>—1 are studied in
de Acosta (1977) and Samorodnitsky (1988). But relations between extremes and

upcrossings have not been investigated, and our characterization of (1.3) is new.

Now take a<1 and skewness () =—1, so that the scale becomes o = o¢;) =

lgd |l [with the notation g™ = max{g,0}]. We have u=0 with
(4.6)  P{E(t)>u} ~ Ay (—u/o)/PO= expl B, (—o/u)*/(=®}  as w10

for some constants Ay, B, >0 [e.g., Samorodnitsky and Taqgqu (1994, p. 17)].
By Minkowski’s inequality, we have ||go+9g¢||a > [|290||a with equality iff. go=g;
a.e., i.e., £(0)=&(t) a.s. So when ||go+9¢lla = ||290||a for arbitrarily small ¢ >0
stationarity show that £(t) is periodic with arbitrarily small period. By separability
and P-continuity this gives £(t)=¢(0) for all ¢ a.s. Since this is uninteresting, two

times differentaibility of ||go+g¢||o makes natural the requirement
4.7 lgo+gella> 1290lla+Ct*  for te€[0,t1], some constants C,t;>0.

[The first derivative is zero since |[go+gt||a > ||290]|a-] To ensure “total skewness”
B=—1 as well as sufficient accuracy of certain Taylor expansions of £(¢) we assume

that to each /€N there is a constant ty =t3(¢) >0 such that

(9¢—90) — (g(£+1)t_g€t)

(4.8) gi + A 2 >0 a.e. for A, t€0,ts],
49)  inf |lg+ 9T (‘;““)t‘g”) > [lgolle + O\)  as  ALO.
te[0,t2] t o

Theorem 4. Let {(t) be a separable a-stable process given by (4.1) and (4.2) with
a<1l and ||golla = lgg|le > 0. If (4.7)-(4.9) hold, then (3.3)-(3.4) and (3.19)-
(3.24) hold with q(u) = (—u)*/2C= and w(u) = (—u)/=2) for u<0.

Proof. Set t = t; Ah. Since ¢ is non-increasing (3.20) holds, while (4.6) gives
(3.19) with F(z) = 1 — exp{—Ba1%|l9o/|a’""®z}. Taking D > 0 such that
(1+ LlgollztCt?)*/ (=) > 14+ Dt for t€(0,%], (4.6) further shows that

P{£(0)>u, £() > u} < P{(0)+£(8) > 2u}

a/[2(1—a)] 2na/(1—a)
-2 2 +
<2Aa< " ) exp{—Ba<H 90_||a - ) }
||290||a 2u
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_u a/[2(1-a)] llgoll a/(l-a)
§2Aa< ) exp{—Ba( a) (1—1—Dt2)}

1g0lla —u

< 4P{£(0)>u} exp{ ~BaD (~lgolla/u) ™12}

for t€[0,#] and w close to zero (negative). From this we readily obtain (3.21).
Noting that w/(q(—u)) = ¢ and q/(—u)*/(=®) =1/q, (4.8) and (4.9) yield

[£(qt) —€(0)] — [€((£+1)gt) —€(£gt)] 25w}

> -
(qt)? ut qt

<2A <_—u)a/[2(1—a)] exp{_B ( ||gO||a+0(Q) >a/(1—a)}
o “\ =u—20w/(qt)

Ly \o/20-a)] a/(1-a)
S () I Sl ) R )
190l —u l—a t

a 0

< 4P{£(0)>u} eXp{—Ba lgoll &/~ T— g}

(4.10) P{ﬁ(qt) +4q

for t>0 small compared with 6 >0, and u close to zero. From this we conclude
that (3.22) and (3.23) hold. Now Theorem 3 gives (3.3), (3.4) and (3.24). O

Remark 5. When f¢;)=—1 and a>1 we have u=oc with a very light tail for
P{&(t)>u} as u—oc: This case is studied in Albin (1999, 2000).

5. Markov jump processes. Let {£(t)}:cr be a stationary pure jump Markov

process with transition probabilities P, (t,dy) = P{£(t) €dy|&(0)=z} such that

J(u) = lim 2°F, (277, (u, ) F(o)(dz) = lim 2", (277, (u, 0)°) Fe(o) (dx)

n—oo Jr<u n—o00 Jr>u

is finite [i.e., (1.5) holds]. By the Markov property we have

[2" 5]
(5.1) lim 2"P{»:<o>>uzs<2—">, U {5(2—"e>>u}}

n—00
(2" s]

< 1im 2 3" PLe(0)>u>£(27), €27 (-1) <u<€@ ) }

n—00 =2
2" s]
— tim 20y / P,(27", dy) P,(27"(0—2), dz) Po(2 ", (u, 1)) Fe(o)(de).
z>u,y<u, z<u

Introducing the transition kernel P, (dy) = limy ot~ [Py (t, dy) — 6:({y})], we ex-
pect the right-hand side of (5.1) to be equal to

(5.2) / P, (dy) P,(t, d2) P,((u,@)) Feo(dz) -
o<t<s, z>u, y<u, 2<u
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If (5.1) really is bounded by (5.2), then Theorem 1 and Fatou’s lemma show that
(5.3) (1.3) [(1.4)] holds if limyg sup,<,, P.((u, 7)) = 0 [<1].
Note that (1.3) [(1.4)] and (1.5) follow directly from (5.1) (and Theorem 1) when
limy4z limy, e SUp,<, 2" P, (27", (u, 1)) = 0 [<1].
Now assume that &£(t) is a stationary Markov chain in Z that satisfies

(5-4) lim Py (t, {y}) = 0= ({y}), |P|EzléIZ>|Py({y})|<OO and XEZZPx({y})ZO

for each x€Z. By e.g., Chung (1967, Corollary p. 137), we have
(5.5) 2"P,(27", A) —» P,(A) with 2"P,(27",A) < |P| for ACZ~{z}.
Using (5.5) together with the Dominated Convergence Theorem we see that
Jw) = lim Y 2P, {y})P{E0)=a} = Y  P({y})P{£(0)=5}
Ty << y<[u]<z
is bounded by |P| and thus finite. Since P,(t,{z}) is continuous in ¢ we have

1

(2" s]
[2ns]—1 /

S P2 (e-2), {2}) — %/OsPy(t, (D) dt  as n—oo

=

Since the functions on both sides are densities, (5.5) and Scheffe’s Theorem give

[2™s] s
> [ mere-ndaremwe) - X [ BaE) S R o
= Jesu <0 v>Tu]

where the left-hand side is bounded by s|P|. Moreover (5.5) shows that

2" 3 P27 {y}) = X P({y}) and 2" 30 P(27",{y}) < |P|.

y<[u] y<[u] y<[u]
Using the Dominated Convergence Theorem we conclude that the right-hand side

in (5.1) is equal to the expression in (5.2). Hence (5.3) yields the following result:

Theorem 5. For a separable and stationary Markov chain &(t) in Z that satisfies

(5.4), we have that

(1.3) [(1.4)] holds if My 00 SUPG<u] DoysuF=({y}) =0 [<1].
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6. Differentiable n-dimensional Gaussian processes. Let {X(¢)}icr be a
centered and a.s. continuously differentiable stationary Gaussian process with values
in R,; [the set of n x 1-matrices with real elements]. Since differentiability a.s.

implies that in mean-square for Gaussian processes, we have
(6.1)  R(t) = E{X(s)X(s+t)T} = R(0)+7r't+ 1"+ o(t*)  as t—0.

We can assume that R(0) is diagonal since rotations do not affect (6.3) below.
Writing P for the projection on the span of the eigen-vectors of R(0) with maximal
eigen-value, the probability that a “high” extrema of X(¢) is not generated by
PX(t) is asymptotically negligible [e.g., Albin (1992, Section 5)], so we can assume
that all eigen-values of R(0) are equal. Taking unit eigen-values we get R(0)=1.
We shall study extremes of the process &(t) = || X(t)]| = (X#)TX ()2 To

exclude periodic components we require that, writing S, = {zERnH : sz:l},
(6.2) infyes, 2 [I-RE)R(t)T)z > 0 for each choice of t€ (0, hl.

The first works on extremes for Gaussian processes in R™ are Sharpe (1978) and
Lindgren (1980). See Albin (2000, Section 5) for more historic details.

In Albin (2000, Theorem 4) we treat two-times differentiable processes. However,
in some applications one has differentiability only once [e.g., Jaruskova (2000)].

Let x™(-) denote the (n—1)-dimensional Hausdorff measure over Ry;.

Theorem 6. Let {X(t)}ier be Ry)q-valued, centered and a.s. continuously differ-
entiable stationary Gaussian with R(0)=1I in (6.1). If (6.2) holds, then we have

_ds"(y)
\/%“n(sn)

7. ,rl —Tll]y

Pqisu X(@)|>u
o) g TR KO
u—oo  uP{[|X(0)||>u} YES,

Proof. The process X.(t) = X (t)—R(t+¢e)T X (—¢) is independent of X (—¢) and

(6.4)  £(t)°-¢&(-e)
= [ Xe@®*+2 X (—e) " R(t+e) Xe(t) — X (—e)"[I-R(t+e)R(t+€)"] X ().

Clearly Xo(t) = X(t)—R(t)TX(0) is continuously differentiable a.s., with X} (0)
=4 N(0, 7'r'—r"") [by (6.1) together with symmetry of r” and skew-symmetry of

r']. Since X¢(0)=0, this in turn gives (with obvious notation and a.s. convergence)

(6.5)  X}(0) = lim
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— lim X(e)—R(e)TX(0)-X(0)+R(e)TX () N XE(O))
el0 ) g
= liﬁ)l XEE(O) =4 N(0, r'r'—1").

Using (6.1) again it follows that, given constants 4>0 and y€R,|;, we have

v = X0 +2uy"R(e) X (0) —u?y"[I—R(e) R(e) ]y

6.6 X2

— y7X;(0)
a.s. as €10. Writing X(—e) = £(—¢) X(—¢) with X(—e)€S,, we further have

ng(—g),X(—s)("B7 y) = fg(—e) (l‘) ’in(sn)_l d.’E dﬁn(y) fOI‘ (.’L', y) € (03 OO) XSn-

Taking 0<d < A<u/e, and using (6.4)-(6.6), we obtain

(6.7) %P{U—A€<£(O)SU—5€, u<£(—e)§u+A€}

2_ 52 N2 2 2_ A2
:/ P{:E—HS—I- (= )e < §(=e)"=£(0) < x-l—A-l—L )e
z€(0,A),yESn 2u 2eu 2u

fe(—e)(utze) drdr™(y)
K™ (Sn)

‘ £(—e)=u+ze, X(—e):y}

° / dr™
—>/0 UyesnP{xM < —yTX1(0) < x+A} H:(éi))] dr fey(u) s €l0

for 0<d<A<oo. Since E{[yTX}(0)]*} = /yTlr'r'—r"]ly /V2r by (6.5) and

feoy(w) ~ uP{||X(0)[|>u} as u—oo (which is elementary), it follows that

| Jw T de)
(68) uli%uP{||X<o>||>u}‘/yesn T (s

When the integral in (6.8) is zero (1.2) gives (6.3). When the integral is non-zero,
(2.1) together with (6.7) and (6.8) show that (1.3) and (6.3) hold if

(6.9) %WP{U—AE<§(O) <u—de, u<{(—e) <u+Ae, M(h)>u} —0

as u—oo for 0<d<A<oo: Using (6.4) as for (6.7), the limit in (6.9) becomes

_ 2_52 2_ A2
Tim P{m+5+u<—X;f’y§m+A+u, sup (||X€(t)||2
fe(—e) (utxe) dzds™(y)

+2uyTR(t+e) X (t) + u2yTR(t—|—€)R(t+€)Ty) > uz}

19
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Using that —X»Y > 240+ @ and rearranging, this can be bounded by

lim P{ U {||X6(t)||2+2uyTR(t+6)X6(t)—2uth’y
&30 Jze(0,4),ye5,  Lte[0,n]

dxdr™(y)

> u®—u’yT R(t+e)R(t+e) 'y +1[2u(x+0) + (°—6%)e] }} K™ (Sn)

Sending €]0 and using (6.6), this becomes

1 X012+ 2yTR(t) Xo(t
/ P{ U {u [ Xo(®)]] +t y R(t) 0()—2yTX(’)(0)
z€(0,4),y€S,  (t€[0,h]

uyT [I-R(t)R(t)T] dzdk™(y)
> 4 " y+2($+5)}}TSn§}'

Hence (6.9) follows from (6.2) and the fact that [by (6.5)] the process

[ Xo()[1?+ 25" R(t) Xo(t)
t

¢(t) = —2¢yTX}(0) is continuous a.s. with ¢(0)=0. O

7. Moving L?-norms of differentiable Gaussian processes. Let {X(t)}:cr
be a standardized, stationary, separable and mean-square differentiable Gaussian

process. The covariance function R of such a process X satisfies
(7.1) R(t) = Cov{X(s), X(s+t)} = 1+ 1R"(0)t>+ o(t*) as t—0.

We shall use Theorem 3 to prove the relations (3.3), (3.4) and (3.24), by means

of a verification of the conditions (3.19)-(3.23), for the moving L?-norm process
— 2 2 1+t 2
(72) €0 = MeasnX o = MogOX (+0[Fm = [HX(s)ds, teR

To that end we have to make two additional requirements: The first one is that
1,1
(7.3) / / £ f(s) R (s—r)dsdr <0 for
0J0 L
f= argmax{/ / f(r)f(s) R(s—7)dsdr: fel?([0,1]), Il fll2 (0,17 :1}.
0J0

[We have fol fol f(r)f(s)R"(s—r)dsdr <0 since —R" is a covariance function.]
In Examples 3 and 5 below we show that (7.3) holds when the derivative process
X'(t) has a spectral density, but also for example when the spectrum is discrete
with only one frequency-component (i.e., when X is a cosine-process).

The second additional requirement we have to impose is that

(7.4) /0 /0 FVF(s) [R(s—r)—R(s—r—t)]dsdr >0 for te(0,h] and
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;- argmaX{/Ol/Olf(r)f(s) R(s—r)dsdr: f€L?([0,1]), ||f||L2([0,1])=1}'

[The integral on the left-hand side is equal to 1 Var{ fo $)[X(s)—X(s—t)]ds},
and is therefore non-negative.] In Examples 4 and 5 below we show that (7.4)
holds in the case when lim;_, o, R(t) =0, but also for example for the (periodic)
cosine-process. In addition, it follows from the latter part of the proof of Theorem
7 below, that (7.3) implies that (7.4) holds for some (sufficiently small) A>0.

Put (flg) = [,cx f(s)g(s)ds for f,g€lL?([0,1]). We can view X=Ijp 11X as

an IL2([0, 1])-valued zero-mean Gaussian random element, because
YAfil%) = Zfolfi(s)X(s) ds is a zero-mean Gaussian random variable in R
i=1 =

for any choice of n€N and fq,..., f, € L?([0,1]). The covariance operator R:
L2([0,1])xL2([0,1]) >R of X is given by

(Rf1g) = B{(f1X)(g|X)} = [y Jo R(s—r) f(r)g(s)drds for f,gel?((0,1)).

There exists a complete ortonormal system {e,}3%; in L2([0,1]) of eigen-
functions of R with eigen-values A =...= Ay > Any4+1 > ... > 0 that satisfy
22021 An < 00. Since the process X is continuous a.s., we have the Karhunen-
Logve expansion X (s) = Yo7 ; VAnfnen(s) (with uniform convergence) for all
s €[0,1] with probability 1, where {n,}52, are independent N(0, 1)-distributed
random variables. [See for example Adler (1990, Sections 3.2 and 3.3).] This gives

[e.°]
(7.5)  £(0 fo )2ds =(X|X)= > A,n2  as. and in mean-square.
n=1

Here we have Y o2, A, = E{{(0)} =1, and the largest eigen-value \; is given by

(7.6) Al—sup{// f(s)f(r) R(s—r)dsdr: f€l?([0,1]), ||f||]L2([0,1]):1}.

The asymptotic behaviour of the upper tail P{||Z||>u} as u— oo of a zero-
mean Gaussian random element 7 in a separable Hilbert space were determined by
Zolotarev (1961). The next lemma completes Zolotarev’s result with upper bounds

on the tail-probability where Z may depend on an “external parameter” (e.g., u):

Lemma 1. Let {n,}5,
M=...=Av>Ant1 >...>0 (N >1) constants with Y .. Ay < 1. Put

be independent N(0,1)-distributed random variables and

zZ =3, An2, and let gn be the density function of the random variable
21



A Zn 1 n2. There ezists a (universal) constant K >0 such that

1+ A /ANt
2(A1—AN+1)

Moreover, we have, by Zolotarev (1961),

(7.7)  P{Z>u} < K2\ gn(u) exp{ } for uw>4X (N/2—1)%,

(7.8) P{Z>u} ~ 2\ gn(u H as u— oo.

n=N+1V 1- )\n/)\l

Proof. We only prove the inequality (7.7) when Ax.y1>0, because it reduces to an
elementary statement concerning the x2(N)-distribution when Ay.1=0.

Take N>2 and let § be the density function of > 7 41 Ann2. Since
(7.9) gn(z) = (L&) (20) " N/2 N2 em2/ (M) for >0,

elementary considerations reveal that

w o0 Y=T+u N/2—

Since (14x/u)V/?2~texp{—xz/(4\1)} is a non-increasing function of >0 provided

that u>4X;(IN/2—-1), it follows that (for such values of u)

P{Z>u}

T=00 Y=00
<gn(u) [ [ e7®/EITCA(y) dyde = 4 g (u H

z=0 y=0 nN—i—lVl )\n/)\l

Since —In(1—z) < A\ (A1 —Ang1) 'z for 2€[0,Any1/A1], we have

(7.10)
1 0 )"n, } { 1 oo An }
=eX - In{1+ < ex — S LA
n= 11'_1 V 1= /)‘1 p{2n=¥+1 ( )‘I_An) P 2n:¥+1 )\1—)\N+1

1
< -\
- eXp{ 2(A1—=Any1) }

Here we used that > -2, A, <1 by assumption. This gives (7.7) for N >2.

Now take N =1. By basic properties of the modified Bessel function Iy(z) =
> reo(z/2)%%/(k!)?, the random variable A1m?+MA9n3 has density function

Pisnt(() = [ el = (574 50 ) | 5o
2 2 = —_—
Ani+Azn; :EZ—.’E p 2\ 29 21/ A1 A2

= i 1 4( WG )) e




[recall (7.9)]. Since I is continuous with Iy(z) ~ (2rz)~'/2e® as = — oo, we

have K= sup,soVv2rze™? Ip(z) € [1,00). In the case when A\3=0 we get,

utz /1 1 utz /1 1 dz
P{Z>u} = / exp{ 4 ()\_1+)\_2)}IO<—4 ()\—2—)\—1)> 2

< K1 g1(u) /Ooo Vu ((u_,_x) (i _ i)>_1/2e—z/(2xl) de

vV )\2 A2 )\1
A
SK12)\191(U) b\ 1A for UZO
17— A2

This gives (7.7) in case A3=0 since /z <e®/2.
Finally consider the case when N =1 and A3 > 0. Write g for the density
function of Y77 4 Anny and put Kp=sup,sq/7/2e* Iy(x). The fact that (7.7)

holds also in this case follows from the following sequence of estimates [cf. (7.10)]

P{Z>u}
T=00 y=T+u utz—y /1 1 u+rz—y,1 1 dydz
— I = =\ )\;
mio yfo exp{ 4 ()\ +)\2>} O( 4 (Az /\1)>g(y) 2v/A1 2
w oo y=u/2 1 13\~ 1/2 i
<Kigpw) | J L ( ut+z—y) (A——)\—)) o~ e=0/Pg(y) dyda
z=0 y=0 2 1

=0 y= u/2 2

P T e e RE)
21

A=Az nl;[?’\/l—l)\m
+ K92X1 g1 (u) [Supﬁ eXp{E(i_i)} ﬁ 1

< K12X1 91(u)

2>0 VA2 8\ A

|
S\/§K12)\191()9XP{1 A1 }exp{%§1n(1+ An )}

2 =X\

4\ /e 1 & SAn(AT AT
+ K22\ g1(u) )\11/)\2 exp{EZ ln(1+ jl M1 2 )))}
2

1
< V2 K12\ g1 (u) exp{ M } exp

+ 2K52)\1 g1(u) eXP{



< \/§K12)\191(u) exp{ =) Z)\ }

1— N\2
1 X\ 122 A (1+A1/A2)
2 Al—/\Q} Xp{2n§3 A= Ao

14+A1/A2
2(A1—A2)

+ 2K52)\1 g1(u) eXP{

S (\/§K1+2K2) 2)\1g1(u) exp{ } for uz()

Here we used the inequality +/z < e®/2 and the assumption ZZO=1 A<1. O

Theorem 7. Let {£(t)}ier be given by (7.2) where {X (t)}ier is a standardized,
stationary and separable Gaussian process such that conditions (7.1), (7.3) and

. old. Equations (3.19)-(3.23) hold with q(u)=(1Vu)~ and w(u)=1.
7.4) hold. E hold with 12 and

Proof. Using (7.5) together with (7.8) and (7.9) it follows that (3.19) holds with
F(z) = 1—e~%/(X1) Further (3.20) holds since ¢ is decreasing.

By a classical result due to Landau and Shepp (1970) and Marcus and Shepp
(1972), given an >0 there exists a constant wug=1wug(¢) >1 such that

2

P{ sup X(5)>u} < P{ sup X(s)>u} < exp{l} for u>wug and t€(0,1].
s€[0,t] s€[0,1] 2 (1+¢)

Moreover, there exists a constant Cy; =C4(£) >0 such that

V(t) = Var{ /0 (X (lt+5)—X(s)] ds} —9 ( /0 t /0 " /g t(mﬁ/ot) R(s—r) dsdr < Cy *

for t€]0,1]: This follows from noting that V' (0)=0 and
=4[ R(s)ds — 2 (¢+1) [TV R(s) ds + 2 (e=1) [, R(s) ds,
so that V'(0)=0 and, by (7.1),
LV"(t) = 2R(t) — (¢4+1)°R((+1)t) + 202 R(€t) — (¢=1)*R((¢-1)t) = —6R" (0)t*+o(t>)
as t—0. Taking Cp = sup,¢ o1 V"(t)/t?, a Taylor expansion therefore gives
t
V(t) = / (l—s)V"(s)ds < Crt*  for te[0,1].
0
By application of the estimates obtained above we conclude that

P{g(O) <u+tv, E(qt) > utv+ot, E(gt) > utv+ot, E((E+1)qt) < u—i—y}
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IN

1+qt qt 1+(£41)qgt (£+1)qt
P{ / ) (s)2ds > ot, (/ —/ ) ()2ds<—(5t}
1 1+£qt

14+(€4+1)qt (E—i—l)qt 1+qt
SP{(/ - )X(s ds—(/ / ) )2ds < 2(5t}
1+£qt qt
1+(£+1)qt 1+qt (¢+1)qt qt
<P { / )X(s)2d3<—5t}u{(/ / ) ds>5t}
1+£qt 1 V4
= 2P{ X (Lgt+s)> — X (s)?] ds>(5t}
0

< 4P{82E(1)I’)qt]X(s)> 2_\/\/;} +2P{/Oqt[X(£qt+s)—X(8ﬂ ds > 55;2}

g4exp{ﬁ}+P{N(o,1)>ﬁ%ﬁW}

for t€(0,1], £>1 and u>wug. Hence (7.5) and (7.8) give (3.22) and (3.23).

Let 1L2([0,1],R?) denote the Hilbert space of functions (fi, f2):[0,1] —R? such
that f1, f2 €L?([0,1]), with inner product ((f1, f2)[(g1,92)) = (filg1) + (f2!g2)
and norm ||(f1, f2)[|? = ||f1||]i2([0,1])+||f2||]i2([0’1]). We can view 9); = \/W(I[O’HX,

Itp )X (-+t)) as an L2 ([0, 1], R?)-valued zero-mean Gaussian random element. The

arguments used to establish (7.5) carry over to show that

1) HEO+E0]= 3 + )X as] = 19 = X0

(a.s. and in mean-square), where A\ (t) =...=An(t) > Any1(t) > ... >0 satisfy
3% An(t) < oo and {n,}2; are independent N(0,1)-distributed random vari-

n=1

ables. Since the process {||9¢]|?}tcr is (two times) mean-square differentiable,
=E{3(m-1) 1D/} is two (four) times differentiable.
The condition (3.21) holds if the largest eigen-value A;(t) in (7.11) satisfies
(7.12) A(t) < A\ — Kst?  for t€(0,h], for some constant Kz>0,

where Ay =A1(0) is given by (7.5): Because by Lemma 1 together with continuity
of the eigen-values A, (t) (as functions of t), (7.12) readily yields

P{(0)>u, £(kgt) >u} _ P{3[£(0)+&(kqt)]>u}
P{£(0)>u} - P{£(0)>u}

for u>1 and kqt<h, for some constant K4 >0. This in turn easily gives (3.21).
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In analogy with (7.6), the largest eigen-value A(¢) in (7.11) is given by

Ar(t)

= sup  E{((f1, f2)[Ds) ((f1, [2) Do) }
I(f1,f2)lI=1

S Y N R (ACTATAETAE e

I(f1.f2)l1=1 2 Jo Jo
+ fi(r)fa(s) R(s—r+t) + fz(T)fl(S)R(S—T—t)> dsdr

- ||(fSlfII))||=1 % /0 /0 ([fl(T)Jrfz(r)][fl(s)+f2(s)]R(3_T)
+ 22111 fa(s) + o) o (9)] R (7)) dsdr + o(#)

— su 1 pl f1(r)+ fa(r) fi(s)+fa(s) -
e flp;h)n:l/o/o ( V2 7o Tsr)
vz V2

1 o fi(r)+fa(r) fi(s)+fa(s)
+ 5t ( 7 7
fi(r)=fa(r) fi(s)—fa(s)

7 7 ) R”(s—r)) dsdr + o(t?)

RO /ol/ol(f (r)f(s) R(s—r

+ L[ () f(s) - g(r)g(s)| B (s=r) ) dsdr + o(t?)

sup // R(s—r)+ 1t*f ()f(s)R”(s—r)) dsdr + o(t?)

||f||1L2( 0,1)=170

for t>0 sufficiently small. It follows that A;(t) = A\; — K5t?>+ o(t?) as t—0, for
some constant K5 >0 when (7.3) holds. In order to establish (7.12) it is therefore,
by continuity, sufficient to prove that Ai(t)<A; for each ¢€(0,h]: We have

= s 1Var{ / X () dr+ / ()X (51) ds}
< ||(fls}121))|| 1(Var{/ fi(r)X dr} +Var{/ fa(s)X (s+t) ds })
_ ||f||;:;11]):1Var{ /0 ()X (s) ds}

= )\1.

Here equality takes place for a t€(0,h] if and only if

Var{/olf(r dr—i—/ f(s)X(s+t) ds}



—2Var{/ F(r dr}—l—QVar{/ (s s—l—t)ds},

with f choosen as in (7.4). This in turn holds if and only if Var{fo1 f(s)X(s)dr—
fol f(s)X(s+t)ds} = 0, which contradicts (7.4). O

Example 3. (THE CASE WITH CONTINUOUS SPECTRA.) Assume that the co-

variance functions R and —R have spectralrepresentations

R(7) = /00 e?™T H(v)dv and —R'(7) = /00 ™7 (2r1)2¢(v) du.

— 00 —00

Let f(v) =2 fo e'2™VT f(s)ds, where f is the function in (7.3). We have

/ 1 | 1) Rl dsr = [ NGRS

o0

f(s8)f(r)R"(s—r)dsdr = — (27v)?| f(v)|? dv
IvA /

—0o0

I

where the upper two integrals are strictly positive with common value A;. It follows

that the lower integrals are strictly negative, so that (7.3) holds.

Example 4. (THE CASE WHEN lim;_,, R(t)=0.) Let Y (¢ fo f(s)X (s+t) ds
for t€R, where f is the function in (7.4). The process Y has covariance function
p(1) = Cov{Y (1), Y (t+7)} = [y [y f(r)f(s)R(s—r—T)dsdr, so that the integral
in (7.4) is equal to p(0)—p(t). Now an elementary argument shows that (7.4) holds
if and only if p is not periodic with period at most h. It follows that (7.4) holds

when lim;_, o, R(t) =0, since p(t) cannot be periodic in that case.

Example 5. (THE COSINE PROCESS.) Let X(t) = ncos(wt) + (sin(wt) for
t € R, where  and ( are independent N(0, 1)-distributed random variables and
w#0 a constant. We use the programme Mathematica to compute the eigen-value
A1 in (7.5) together with its multiplicity N. (The actual calculations are quite
elementary, but turn out to be very long indeed. This is the reason we find it
fitting to do them by means of a computer.)

First we calculate £(0) = fol X(s)?

In[1] := Integratel[(eta*Cos[omg*s]+zeta*Sin[omg*s])~2,{s,0,1}]

Out [1] etazeta  eta’+zeta?  etazeta Cos[2 omg] n (eta® —zeta?) Sin[2 omg]
u = pa—
2omg 2 2omg 4 omg

We can write £(0) = (An+B()2+(Cn+D(¢)? where An+B(¢ and Cn+D( are
27



independent, so that \; = max{A%+ B? C%?+D?}, A\, = min{A?+ B2, C?+ D?}
and A3=MXs=...=0 in (7.5). Now we calculate \; and As:

In[2] := Solve[{A*C+B*D==0,A"2+C"~2==1/2+Sin[2*omg] / (4*omg) ,B~2+D"2==
1/2-Sin[2*omg] / (4*omg) ,2%A*B+2%C*D==(1-Cos [2*omg]) / (2*omg) },

{A,B,C,D}]

In[3]:= Simplify[A~2+B~2/.%]

/S 2 ; 2
Out [3]= { omg—+/Sinfomg]? omg+ /Sin[omg] }

2omg ’ 2omg

In[4]:= Simplify[C~2+D"2/.%%]

Out [4]= { omg++/ Sln[omg]2 omg— 4/Sin[omg]? }

2 omg 2 omg

This gives A; = 1[1+|sinc(w)|] and A2 = 1[1—|sinc(w)|]. Since R(t) = cos(wt)
and R"(t) = —w?R(t), (7.3) hold with [, [, f(r)f(s) R"(s—r) dsdr = —w?As.
In order to check (7.4) we note that

/ 1 / )1 (5) [R(s =) Ra—r—t)] ddr

// f(r [R(s r)— R(S—r—i—t)]—i—[R(s—r)—R(s—r—t)])dsdr
= [ [ 16021060 i) (st -+ 30) — sin(otsr— ) dsar
=2 / F(r)F(s) sin?(2t) cos(w(s—r)) dsdr

= 2sin®*(1wt) A

when f is the function in (7.4). It follows that (7.4) holds if and only if h<2n/|w|.
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