A NETWORK TRAFFIC MODEL WITH RANDOM TRANSMISSION RATE

KRISHANU MAULIK, SIDNEY RESNICK, AND HOLGER ROOTZEN

ABSTRACT. The infinite source Poisson network model assumes sources begin data transmissions at
Poisson time points and continue for random lengths of time. The random transmission times have
such heavy tails that the variance is infinite. Transmission rates have been assumed non-random
and, usually constant. However, analysis of network data suggests that the transmission rate is also
a random variable with a heavy tail. So we consider an infinite source Poisson model with sources
transmitting for a random length of time at a random rate. Both the rates and lengths have infinite
variance but finite mean and are assumed asymptotically independent, a concept made precise. We
carefully discuss equivalent formulations of asymptotic independence and prove a limit theorem for
the input process showing that the centered process under a suitable scaling converges to a totally
skewed stable Lévy motion in the sense of finite dimensional distributions.

1. INTRODUCTION

Long range dependence, self-similarity and heavy tails are established concepts required for mod-
eling broadband data networks. This is especially true when analyzing internet data, as described
in, for example, [35]. The inadequacy of the finite variance model and short range dependence is
well documented (cf. [8, 21, 36]).

Network traffic models generally contain many sources transmitting data. Transmissions are
either modeled as superpositions of ON/OFF models ( [11, 12, 13, 17, 30]) or by means of the infinite
source Poisson model, sometimes called the M/G /oo input model ( [10, 13, 15, 14, 29, 23, 26]).
In the first case, only mild assumptions are made about the tail of the ON/OFF periods such as
existence of a finite mean. For the second model, the times between the starts of transmissions
are modeled as iid exponentially distributed random variables. Thus, to account for the long range
dependence and self-similar nature of the traffic, it becomes important to consider transmission
times to be heavy tailed [37].

Most of the existing research assumes the rate of transmission to be constant and non-random.
Konstantopoulos and Lin [16] replace the constant, non-random rate by a deterministic rate function
which is regularly varying and are able to show that the input process at a large time scale is
approximated by a stable Lévy motion. Their approximation is in the sense of convergence of finite
dimensional distributions, which does not permit further weak convergence queueing results based
on continuous mappings. Resnick and van den Berg [26] showed the convergence to hold on the
space D|0,00) of cadlag functions with Skorohod’s M; topology (cf. [27, 32, 33, 34]).

A recent empirical study on several internet traffic data sets by Guerin et. al. [10] shows that
the infinite source Poisson model often gives an inadequate fit to data. This study suggests that
the transmission rate is also a random variable with a heavy tail. There have been few studies of
this aspect of the internet traffic data modeling. In a series of recent papers, Levy, Pipiras and
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FI1GURE 1. Plot of the time of transmission against the rate of the transmission of
the BUburst data: left) in natural scale, right) in log-log scale

Taqqu [18, 19, 20] consider the case where the transmission rate is also random for a superposition
of renewal reward processes. They show that the limiting behavior for large time scale and large
number of superpositioned models can either be a stable Lévy process with stationary, independent
increments or symmetric stable process with stationary, but dependent increments, depending on
the relative rate of growth of the time scale and number of models. Their results parallel the results
of Mikosch et. al. [29] for the infinite source Poisson model who also obtain two different limits
depending on the growth rate time scale relative to the intensity of the Poisson process.

However, Taqqu et. al. [18, 19, 20] consider only the renewal-reward model and assume the
transmission rate to be independent of the length of transmission. It is difficult to conclude from
evidence in measured data that rate and the length of the transmission are always independent.
There are cases where we may reasonably assume that the rate and the length of the transmission are
at least asymptotically independent in a certain sense. As an example, we consider the BUburst
dataset considered by Guerin et. al. [10]. This is data processed from the original 1995 Boston
University data described in the report [5] and also catalogued at the Internet Traffic Archive (ITA)
web site www.acm.org/sigcomm/ITA/. A plot of the transmission length against the transmission
rate, (see Figure 1) shows that most of the data pairs hug the axes, which suggests the variables
are at least asymptotically independent. However, if we plot the data in the log scale on both
the axes, then a weak linear dependence is observable and the correlation coefficient between the
two variables after log transform is approximately -0.379, which argues against an independence
assumption. We consider the log transform to make the variables have finite second moment, so
that correlation coefficient becomes meaningful.

The Hill estimates obtained for the transmission length, the transmission rate and the size of
the transmitted file are 1.407, 1.138 and 1.157 respectively. These estimates are consistent with
the observations made in Guerin et. al. [10]. The corresponding Hill plots are given in Figure 2.
For each of the variables, the plots in the first column, named Hill plot, give plots of {(k,dx.p) :
1 < k < n}, where Gy, is the Hill estimator of o based on k upper order statistics. The plots
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Ficure 2. Hill plots of top) transmission length, middle) transmission rate, and
bottom) transmitted file size

in the second column, named AltHill plot, give the Hill estimates in an alternative scale and plot
{(9, drn9-| n) : 0 < 6 < 1} [25]. This plot blows up the original Hill plot on the left side and helps
looking at that part more closely. The third plot, named Starica plot, is an exploratory device

suggested by Stiricd (cf. Section 7 of [28]) to decide on the number of upper order statistics to be
used. It uses the fact that for a random variable X with Pareto tail of parameter o, we have

X
lim TP [—1 > r] =r %
T—o0 o
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For every k, we estimate the left hand side by

I/nlc k)z [n/kl/ank>’r:|'

We expect the ratio of ﬁn,k((r, oo]) and r~%.k_ called the scaling ratio, to be approximately 1, at
least for values of r in a neighborhood of 1, if we have made the correct choice of k. In the Starica
plot, we plot the above scaling ratio against the scaling constant r, and choose k so that the graph
hugs the horizontal line of height 1. The interesting point to be noted is the fact that the rate of
the transmission has a much heavier tail than the length of transmission. This justifies the study
of a model with a random rate with heavy tails. The tail of the size of the transmitted file, which is
the product of the rate and the time of transmission, is comparable to the rate of the transmission,
the heavier one between time and rate. This is in agreement with Theorem 3.2.

Since both the transmission length and the transmission rate have marginal distributions with
heavy tails, it is further reasonable to assume that their bivariate distribution has a bivariate
regularly varying tail, which is asymptotically independent (cf. [22]). The equivalent definitions of
asymptotic independence are considered in (3.1) and (3.2). However, as described in Sections 3 and
4, the usual notion of asymptotic independence from extreme value theory (cf. [22, page 296]) is not
sufficient for meaningful analysis. So we define an alternative and relevant definition of asymptotic
independence in Section 3 and describe other equivalent formulations of the concept. Before that,
Section 2 gives a quick review of the infinite source Poisson model, the case which we concentrate
on. In Section 4, we give different examples and check the relevance of our hypotheses in those
particular cases. In Section 5, we prove that in our setup, the input process of the infinite source
Poisson model is approximated for large time scales by a positively skewed stable Lévy motion in
the sense of convergence of finite dimensional distributions. Finally, in Section 6, we make some
comments on the model with respect to the empirical findings and suggest some further avenues of
research.

2. THE INFINITE SOURCE POISSON MODEL

We consider the M/G /oo input model of incoming traffic to a communication network. Let
{Tk,k > 1} denote the points of a homogeneous Poisson process on [0, 00) with rate A. Suppose
at time I'y, a source starts a transmission, and continues to transmit for a period of length Ly,
at a fixed rate Ry, both chosen at random. The total volume of traffic injected into the network
between 0 and ¢ is

o
(2.1) A(t) =) ((t—Tx)4 ALg)Ry, t>0.
k=1
We assume that (Ly, Ry) are iid with joint distribution function F' and let Fy and Fg be the

marginal distributions of Ly and Ry respectively. We make the following assumptions on the
distribution of (Lg, Rx):

(2.2) F(R%) =1, where R% = (0, c0),
(2.3) Fp(z)=1- Fy(z) € RV_q,, ar € (1,2),

(2.4) Fr(z) =1 — Fg(z) € RV_,,, ag € (1,2),
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where RV, stands for the class of regularly varying functions of index «;, i. e., G € RV, if

G(xt) o

im =
t—oo G (t)
Note that we use the same symbols for the distribution function and probability measures inter-
changeably. The choice will be clear from the context.
Recall that we define the left-continuous inverse of a non-decreasing function @ by

®(y) = inf{z : (z) > y}.
We then define the quantile functions of L1, Ry and the product LiR; respectively as follows:
1

(2.5) by, (T) = inf{a: L Fo(o) < T} _ (%)F (1),

(26) @) =t {y: Faw) < £} = () @),

(2.7) bp(T) = inf{z . PILiR: > 2] < %}

It is easy to see (cf. [6, 9, 3, 22]) that by, and bg are regularly varying functions of indices 1/ay, and
1/ag respectively. Properties of the quantile function bp will be given later.

3. ASYMPTOTIC INDEPENDENCE

For meaningful study of the quantile function bp and the input process {A(t) : ¢ > 0}, we
need to make assumptions on the dependence structure of the distribution function F. We make
assumptions which are somewhat weaker than independence, and which are a form of asymptotic
independence. This is not the usual concept of asymptotic independence discussed in the context
of extreme value theory, which requires that the distribution of the coordinatewise sample maxima,
(Vi L;, V4 R;), under suitable scaling, converges weakly to a product measure, and which is
equivalent to the existence of regularly varying functions bz and bg, such that,

(3.1) TP K% %) € ] = v(-) on [0,00] \ {0},

where v is a measure satisfying v((0, co]) = 0. The convergence above is vague convergence. This

means that v concentrates on the axes {0} x (0, 00] and (0, 00] x {0} (cf. [22, Chapter 5]). There is

an equivalent formulation of the above concept where the variables are transformed so as to have

the similar tails (cf. Section 4 of [7]), which states:

(b7 (L), bR (R))
T

where U satisfies 7((0, 00]) = 0, and 7 is also homogeneous of index -1. Thus if we define

(3.2) TP [ € ] % 5(-) on [0,00] \ {0},

(3.3) <I>(9):17{(s,t):th>1,§<tan0},O§0§g

then the asymptotic independence is equivalent to the fact that @ is supported on{0,%}. This
traditional concept, however, does not fit the observed data, as we have seen in the Section 1. Also
it fails to offer any useful result, as we shall illustrate through examples in the next section. So we
need to strengthen the concept.
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We have the following set of assumptions on the distribution function F. The assumptions differ
depending on which one of the random variables, L and R has a heavier tail. We shall make
two different cases accordingly. In the following we write vg for the measure on (0, co] satisfying
vs((z,00)) =2 %, 2>0,8>0.

Case I. L has a heavier tail.
(IA) oy, < aR.

(IB) TP [(bLL(i_F), ) € ] Y vy, X G(-) on D = (0,00] [0, 0],

where G is a probability measure with G(R;) = 1 and az-th moment finite, i. e.,

(3.4) / “L G(dz)
0

[
(IC) limlimsupTE < ) 1 = 0 for some § > 0.
el0 Thoo sty <]
Case II: R has a heavier tail.

(IIA) oy, > OR.

@B) 7P | (2 1,) €| B va, x G(-) on D,
br(T)
where G is a probability measure with G(R;) = 1 and ag-th moment finite.

(55007 i

In the data sets we have examined, both L and R have regularly varying tails and this motivates
the form of the above assumptions. We consider the cone D = (0, c0] x [0, oc] instead of the more
natural choice of [0, 00| \ {0} for the simple reason that we cannot have a desired characterization
of (IB) or (IIB) by means of multivariate regular variation on the larger set without further as-
sumptions, as shall become evident from Theorem 3.1, Lemma 3.2 and Remark 3.1. We first prove
the multivariate regular variation condition on (0,00) and then extend it to D. Under further
moment condition, as in Lemma 3.2, we extend it to [0, 00] \ {0}.

The conditions (IB) and (IIB) are the required asymptotic independence conditions for the
random variables L; and R;. Neither (IB) nor (IIB) is symmetric in L and R. We also make
certain assumptions about the truncated moment in (IC) and (IIC). The conditions (IB) and
(IIB) of asymptotic independence are stronger than the usual concept of asymptotic independence
discussed in the extreme value theory.

Lemma 3.1. Assume the condition (IB) holds as well as (3.1). Then v satisfies v((0,00]) = 0.

= ( for some § > 0.

(IIC) limlimsupT E

el T00

Proof. Fix £ > 0. Let us define x = (z,z). Since by, (T) — oo, we have, for all K > 0, br,(T) z > K,
for sufficiently large T. Hence we have, for all K > 0,

(3.5) v((x,00]) = Tlim TP[L; > br(T)z, Ry > br(T)z]
—00
(3.6) < lim TP[L, > K, Ry > bg(T)z]
T—o0
(3.7) = G(K)vay(z, 0]
Then letting K — oo, we get v((x,00]) = 0, for all z > 0. Thus we have v((0, c0]) = 0. O

We now state and prove a condition which is equivalent to the asymptotic independence, that
we defined.
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Theorem 3.1. Assume X = (X1,X5) is a random variable taking values in R%, i.e, P[X €

(_
R2)= 1. Defineb:= (—L—) , where Fx, is the distribution function of Xi. Suppose
+ 1 FXI 1

(3.8) TP[X; > b(T)] — 1.

Then the following are equivalent:

. X X
(i) TP [(ﬁfi) € ] 2 (ve x G)(-) on D
for some a > 0, and G a probability measure satisfying G((0,00)) = 1.
X
(ii) TP [m €| >v() on D,
where v({x : z1 > u}) > 0 for all u > 0.
In fact, v is homogeneous of order —a; i. e., v(u-) = u *v(-) on D, and is given by
(3.9) y_ (Va X G) o807 on  (0,00) x [0,00)
' =10 on D\ ((0,00) x [0,00)) °
where 0(z,y) = (z,zy), if (z,y) € D\ {(00,0)} and 6(c0,0) is defined arbitrarily.
Remark 3.1. In light of above theorem, we can rewrite the assumptions (IB) and (IIB) respectively
as follows:

(IB') TP [LhLlRl)

v,
€| »>v()on D,
bo(T) ] )
where v is a homogeneous Radon measure of order —ay,.

Ry, L1Ry) v
IIB) TP [(’76] —v(-) on D,
(1T ) ()
where v is a homogeneous Radon measure of order —ap.

This characterizes our asymptotic independence conditions in terms of standard multivariate reg-
ular variation on the cone D (cf. Chapter 5, [22]) and is in the spirit of the characterization of
multivariate regular variation using a polar coordinate transformation (cf. [1]).

Remark 3.2. The function 6 as defined above is Borel-measurable, irrespective of its value at
(00,0). The result can be easily seen from the fact that the singleton subset {(co, 0)} is a measurable
subset of D.

Remark 3.3. Since P[X € (0,00)] = 1, we have §—f is well-defined almost everywhere.

Remark 3.4. The condition (3.8) holds, for example, when X; has a regularly varying tail, as in
our case.

Remark 3.5. Observe that the measure v as defined above is Radon. To see this, note that the
relatively compact sets in D are contained in [a, 00| x [0, 00]. Now

v([a, 0] X [0,00]) = (Vo X G)([a,o0] x [0,00]) =a™% < o0

and hence v is Radon.
Proof of Theorem 3.1:
(i) = (ii): Let 0 < s < o0 and S € B([0,>]). Define

X
Vis={x€D:s<z <o0,— €85}
1
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Now V11, 1, is relatively compact in D for all 0 < #; < t2 < oo. Also if G({t1,t2}) = 0, then we
have,

X B X Xe
TP [@ € Vs,[tl,tz}:| =TP K—b(T)’X1> € (s,00) X [tl,tﬂ]
= (Va X G)((5,00) X [t1,t2]) = v (Vi 1y 2]) »
where v is as defined in (3.9). Now, fix sg € (0,00). Note T'P [b(T) € Vso,l0, ]] < T < o0, and
v (Ve f0.00]) = (Ve X G)((50,00) % [0,00]) = 55 € (0, 00).

Hence TP [ 51y € Vso,lo0. oo]] is strictly positive and finite for all large T'. So we can define probability
measures Q7 (-) and Q(-) on (sg,00) x [0, 00] for all large T, by

P| & €. (-
ST LAk PR TO N
P[5 € Vao o] v (Vo fo.001)
Then
(3.10) QT(V [t1,t2] ) — Q( J[t1,t2) ) Vs € (80,00),0 <t <tg < with G({tl,tg}) =0.
Let

P = {V‘il,[tl,tg] \ Vsz,[thtz] 1850 < 81 <89 <00,0K1t <t oo}

Observe B € P is a Q-continuity set iff G({t1,t2}) = 0. So by (3.10), Qr(B) — Q(B) for all
Q-continuity sets B € P. Also, clearly for every x in (sg,00) X [0,00] and positive ¢, there is an
A in P, for which x € A° C A C B(x,¢), where A° is the interior of A and B(x,¢) is the ball of
radius € around x. Now P is a w-system. Then, by Theorem 2.3 of [2], we have

Q1 = Q on (s9,00) x [0,00].
Thus Q7 (B) — Q(B) for all Borel sets B of (sg, 00) X [0, 0o] with boundary in (sg, 00) % [0, 00] having

zero (Q-measure, for all sy > 0. Hence the same result holds with Qr, ) replaced by T P [b(X—T) € ] ,

v respectively.

Let K be relatively compact in D with v(0pK) = 0. Then there exists s9 > 0, such that
K C (s0,00] x [0,00]. Define B =K N ((s0,00) x [0,00]). Then B is Borel in (sq,00) x [0, 0] and
v (B(SO’OO)X[O,OO]B) = 0. We have

TP [i

b € B] since P[X e R}] =1

— v(B) = v(K) by definition of v in (3.9).
Therefore
X v
TP [— € ] — v(:) on D,
where v is defined as in (3.9). Thus,
v({x:z1 >u}) =W xG)({x:z1 >u}) =u"*>0, VYu>0.
(ii)= (i): Define U = {x € D : z; > 1}.
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Choose integer n, such that b(n,) < v < b(n, +1). Fix 0 < s < 00, 0 < t < o0, so that
v(0([s, 00] X [t,00])) = 0. Then

X
ny (ny +1)P [m € [s,00] X [t,oo]] _ P [X € [s,00] x [t,00]]
X X
ny +1 n P[5 € U] P[5 eU]
Ny +1 ™P [% € [s,00] x [t,oo]]
Mo (e + )P [k € U]
and taking the limit as v — oo, we find,
p[X t
P[%eU] v(U)
Arguing as before, normalizing to probability measures and so on, we have
P[X € v]

v, V()
PX eot]  w(o) 7

Then, by the usual argument, (cf. [22]), % is homogeneous on D of order —a, for some a > 0,
and hence this is true for v(-); i. e., v(s:) = s *v(-) on D.
Now, by (3.8) and the fact that P[X € R3] =1,
. X4 . X1 X9
1=1lm TP |—>1|=1lm TP |——>1,—/—
T [b(T) > ] T [b(T) X
Thus G(-) := v(V4,.) is a probability measure on [0, co] with G(Ry) = 1.
Also, for all s > 0, S € B([0, >]),
v(V,5) = (va X G)((s,00] x S) = (va x G)(67'Vs.5),
and thus v has a form as defined in (3.9).

Again, V3, 1,1 is a v-continuity set iff (s, 00] X [t1, 2] is a (vo X G)-continuity set iff G({t1,%2}) = 0.
Thus for all s > 0, all 0 < ¢; < to < o0 with G({t1,%2}) =0, i. e., Vi 11,1, @ V-continuity set, we
have, for all s >0, S € B([0, x]),

X1 Xo X
TP m > s, E (S [tl,tg]:| =TP [m € V;’[tl,t2]:| — V(Vs,[tl,tz]) = (Va X G) ((S,OO] X [tl,tg]).
Then, arguing by normalizing to probability measures as before, we get,

P [(%%) € ] 5 (va x G)(+) on D.

€ (0,00) | = v(V1,(0,00))-

a

Note that we have neither used the moment condition (3.4) on G, nor have we used the condition
(IC) or (IIC). Assuming these and (3.1), stronger conclusions are possible.

(_
Lemma 3.2. Assume X = (X1, X2) is a random variable taking values in Rﬁ_. Let b := (ﬁ) .

Suppose T P[X1 > b(T')] — 1. Further assume
. X1 X
(i) TP [(ﬁ,ﬁ) € ] Y% ve xG on D,
for some a > 0, and G a probability measure satisfying G((0,00)) = 1 and having finite
a-th moment,
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Xy

é
(ii) limlimsupTE (@> l[b;((_TI)SE]] =0 for some 0 > 0.

0 Teo
Then
(3.11) TP [% € ] 5 7 on [0,00] \ {0},
where
~ v onD
(3.12) ”:{ 0 on {0} x (0,00] ’

with v defined as in (3.9).

Proof. First we observe that o, as defined in the lemma, is Radon on [0,00] \ {0}, given the
existence of a-th moment of G. To see this, note that a relatively compact set in [0,00] \ {0}
is contained in [0,00] \ [0,a] for some a > 0, where a = (a,a). So it is enough to check the
finiteness of 7([0,00] \ [0,a]). We consider the set [0,00] \ [0,a] in two disjoint components,
namely, (a,o0] x [0, 00] and [0,a] x (a,c0]. Now

v((a,00] X [0,00]) = (Vo X G)((a,00] X [0,00]) =a™¢ < o0,
and

2([0,a] X (a,00]) = v((0,a] X (a,0]) = (Vo X G)({x:0< 21 < a,z122 > a})

_ / ((%)a_a—a) G(dzy) = a—° / 23 G(dzs) — G((1,00)).

(1,00) (1,00)

Thus 7 is Radon iff f(l 00) T3 G(dzz) < oo iff G has finite a-th moment, which has been assumed.

Now we consider the vague convergence. We have already seen in Theorem 3.1 that, (i) implies
vague convergence in (3.11) on D.

Let K be relatively compact in [0,00] \ {0} with #(0K) = 0. Choose ¢, | 0 such that K., :=
K N ([eg, 00] x [0, 00]) satisfy #(0K,,) = 0. Then

X X
IminfTP|— € K| > lim TP |—— € K
oo [b(T)e ] T [b(T)E e

Letting ¥ — o0, and using the definition of 7,

] = U(K.,) = IK.,).

o X . N
thingP [m € K] >v(KND)=rv(K).

Since K is relatively compact in [0, co] \ {0}, there exists s € (0, 00) such that K C [0, s]¢, where
s = (s, s). Therefore,

X X X
. X <1 X . X
hql}l_)supTP [b(T) € K] < Thm TP [b(T) € Ksk] —f—hjl}i_)supTP [b(T) € KN([0,ex) x (s,00])

. ) X1 Xy
< (K, 1 TP | = , =
P(He) +limsup [b(T) < ) >S]
X 6
—51- 2
+ 1 TE — 1 1 .
R (zm) [—}]

<

N

(K,

€k
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Letting k — oo, by (ii),
X
limsupT' P [— € K] < (K).

T—o00 b(T)
Hence,
TP [% € ] % 5(.) on [0, 00] \ {0}.

O

In fact, it is easily seen from Theorem 3.1 and Lemma 3.2 that the converse also holds, which is
summarized in the following corollary.

Corollary 3.1. Assume X = (Xi1,X3) is a random wvariable taking values in ]Rﬁ_. Let b =
(_
(ﬁ) . Suppose TP[X1 > b(T)] — 1. Assume the moment condition:

X5 \°
IimlimsupTE | — ) 1 =0 for some § > 0.
o8| (7)1 <4] y

el0 T00

Then
P [(%,%) € ] 5 va x G(+) on D = (0,00] x [0, 0]
for some a > 0, and some probability measure G on [0,00] with G((0,00)) = 1 and finite a-th
moment, with vy ((z,00]) =z7¢
if
TP [i € ] % () on [0,00] \ {0}
b(T) ’

for some Radon measure U satisfying
(3.13) v({x:z1 > u}) >0 for some u > 0.

In fact, U is homogeneous of order —a and is given as in (3.9) and (3.12).

The importance of the above lemma and corollary lies in the fact that we could extend the
multivariate regular variation condition to the set [0,00] \ {0}, which is the natural domain for
studying the vague convergence of %. Note that under the set of assumptions (IA)-(IC) or (IIA)-
(IIC), the assumptions of the above corollary hold and we get a@ = ay, or ag respectively. Also

for X1 = Lj or Ry, which have regularly varying tail, TP [b(X—T) € ] converges to the measure v,

with appropriate «, and hence the positivity condition (3.13) is satisfied. The specialization of
Corollary 3.1 to case (I) is given next.

Corollary 3.2. Assume (L1, R1) is a random variable taking values in Ri. Suppose L1 has a

regularly varying tail of order —ay,. Also assume the condition (IC) holds.
Then the condition (IB) holds iff

(3.14) TP [% € ] % (-) on [0,00] \ {0}

for some Radon measure v satisfying (3.13) and which happens to be homogeneous of order —a.

Note (3.14) is a strengthening of (IB’) as it extends the vague convergence to the natural domain
[0,00] \ {0}. Thus, in presence of the condition (IC), (IB) is equivalent to the fact that (L1, L1 R1)
is multivariate regularly varying. Similar results hold for case (II).

Next we consider another interesting equivalent statement of (IB).
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Lemma 3.3. Assume (L, R) takes values in ]R%_, where L has a marginal with reqularly varying
tail of index —ay,. Then

(3.15) TP [(bLL(—lT),&) € ] % vo, xG(-) on D
iff
(3.16) P[R; € {|L; > z] = G(-) as z — o0,

where the second convergence is the usual weak convergence.
Proof. Observe that (3.15) holds iff for all z > 0 and y > 0, we have

Ly
br(T)

(3.17) TP [ >z,R; < y] — "G (y).

However,

L1 Ll
TP | ——— Ri<y|=TP|——== PR < y|L br,(T)z],
[ty > = <) =P [ > o P <ol >

and, by the nature of the marginal distribution of L, we have,

TP [bLIgT) > az] — 1 °L,
Thus (3.17) holds iff

P[R; < y|L1 > br(T)z] — G(y)
as T — oo, for all y > 0. This is equivalent to (3.16), since by (T) — oo. O

Now let us consider sufficient conditions under which the conditions (IA)-(IC) or (IIA)-(IIC)
hold. We check that the conditions are indeed generalizations of independence, i. e. they hold in
particular, when F' is a product measure. We first check the moment condition. We only consider
the condition (IC). The case for the condition (IIC) is exactly similar.

Lemma 3.4. Let Ly and Ry be independent random variables taking values in (0, 00) with respective
marginal distributions Fr, and Fr and quantile functions by, and bg. Let Fr € RV_,, and Fp €

RV_,, with af, < ar. Then (IC) holds for 6 € (ar,ar).
Proof. We have by independence and § < ar and Karamata’s theorem that as T' — oo
) Yl g 1
TE R 1 =E(R])+———+E | L{1
(5257) Mted | = B B [ 15
T
:ER‘57/ 5291 Plz < Ly < br,(T)e] dz
( 1)(bL(T))6 (0,61, (T)e] | 1 < bu(T)e]
T — _
=ER57/ 5z VF () dx — (br,(T)e)’ Fr,(br(T)e
( 1)(bL(T)),§ 0o (z) (br.(T)e)” Fr.(br(T)e)
~ B(R) o | (b, (T)e) T (b1 (T)e) o (b2.(T)e)’ Fr(br(T)e)
Y (br(T))? §—ar,
= 2L E(R)&TF(by(T)e)
6 — ay,
ar,

~

E 4 J—aL
5 — oL (Rl)g —0
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as € — 0, since § > ay,. Thus,

limlimsupE
el0 T00

Ly o
)1 —0, V6 (ap,an).
(™) [bfem«]] (z,en)
O

Next we consider the condition of asymptotic independence. This also holds in particular under
independence. We again consider the case (IB) only.
Lemma 3.5. Let Ly and Ry be independent random variables taking values in (0, 00) with respective

marginal distributions Fr, and Fr and quantile functions by, and bg. Let Fp, € RV_,, and Fg e
RV_4, with ar, < ar. Then (IB) holds.

Proof. For S, € B((0,00]) and Sa € B([0, 00)),

L L
lim TP [(—1 Rl) € 51 x SQ:| = P[Rl S 52] Tlim TP [ L S 51:| by independence
—00

T—o0 br, (T) ’ br, (T)
— P[R; € S2)vy,, (S1) since F, € RV_,, .
So (IB) holds with G = Fg. Since P[R; € (0,00)] = 1, we have G((0,00)) = 1. Also ar, < ag
implies G has finite az-th moment. O

Finally, empowered with all these tools we study the quantile function of the product, bp. Again,
we consider the case I only.

Theorem 3.2. Suppose (L1, R1) is a random variable on R?H where Ly has a regularly varying tail
of index —ay,. Let (L1, Ry) satisfy the conditions (IB) and (IC). Then

o
TP [lil(]’;l) > z] ~z AL /uo‘L G(du),
0
and hence .
0 ay,
bp(T) ~ / Wt Gldu) | b (T).
0
Proof. Let

A, ={(z,y) e <z <elzy> 2z}
Note A. is relatively compact in D and
0A; = ({5} X E,oo]) U ({7} x [ze,00]) U{(z,y) e <z < et 2y = 2}.

Choose a sequence ¢, | 0 such that (v, X G)(0A.,) =0, for all k. Then
.. Ly ) I
1 > St = :
llTII_l)ngP [bL(T) R; > z] > Th_}néoTP [(bL(n)’Rl) € Ask] (Va; % G)(As,) by (IB)
Taking the limit as k — oo,

- L,y
] > :
thl)loréfTP [bL(T)Rl > z] > Vo, X Q) {(z,y) : 2y > 2,0 < z < 00})

= (VOéL X G)({(.T,y) Ty > Z,O <z S OO}),
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since V4, ({00}) = 0. Also, since {(z,y) € D:z >¢,'} is a vy, X G continuity set, we have,

2 . Ly Ly _1]
limsupTP | ——R; > < 1 TP Ri)1€eA +1 TP >e¢
b [bLul ] 00 [(m() ) ] S0 [bm) k
) [ Iy Ly
+1 TP|——R; >z, ———
Tl b (@) T P by (T

= (Vay X G)(As,) + gy ([e,;l,oo])
) ([ Ly
1 TP Ri)1
T _(bL(T) 1) (st <es] >Z]

L 6
< (Vay X G)(Ag,) + 0% + 2 limsupTE [( : R1) 1[ - ]
bty <en]

T—00

< Ek]

Taking limits as k¥ — oo, and using (IC) and the fact az, > 0

L
limsupT P [ L

Tan br.(T) ] < (Yo, x G)({(z,y) : 2y > 2,0 <z < 00})

= Vo, X G){(z,y) € D : zy > z}.

Thus,
Ly
limsupT P [—Rl > z] < (Vo X G){(z,y) € D:zy > 2z}
T—00 br(T)
o o0
= /VaL ((2,00]) G(du) zz_o‘L/uO‘L G(du)
0 0
Therefore
L r T
1 ar, — ,—ar
11_>II;OTP bL(T)Rl /u G(du) >z z7r,
0
and hence
o é o
by (T) ~ / wr Gldu) | bu(T) ~ by, / W G(du)T
0 0

We get a similar result for the case IT by interchanging the roles of L1 and Ry and thus the quantile
function of the product, bp is a regularly varying function of index O%, where ap := ap, Aag, i. e.,

the product has a behavior similar to the factor random variable with the heavier tail.

4. PRODUCTS, ASYMPTOTIC INDEPENDENCE, MULTIVARIATE REGULAR VARIATION

In this section, we discuss some examples to illustrate the concept of asymptotic independence
discussed in section 3 and show its difference from the usual concept used in extreme value theory.
The first example shows that the usual concept and (3.1) might hold, but the asymptotic inde-

pendence, as defined by us, can fail.
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Example 1. Let X and Y be random variables with regularly varying tails of indices —ax and—ay,
with 1 < ax,ay < 2. Let bx and by be the corresponding quantile functions, defined as in (2.5).
Let B be a Bernoulli random variable with probability of success 0.5, independent of X and Y.
Then define

(L,R) = B(X,0) + (1 — B)(0,Y).

Then we have

) <= ) ] {nm) <]

5 EVax X go() + %60 X Vay (*) on [0,00]\ {0},

where g is the Dirac measure at 0. Thus the limiting measure is concentrated on the axes; i. e.,
on the set ({0} x (0,00]) U ((0,00] x {0}).

But, observe that LR = 0 and hence we do not get anything interesting about the product.

In the previous example, (3.1) holds, yet we observe that the product is degenerate at zero. In
the next example, again (3.1) holds. The product LR is not degenerate, but still we cannot make
any interesting conclusion about the tail behavior of the product, as the conditions (IB) and (IIB)
fail.

Example 2. Let X, Y and B be as in the previous example. Define
(L,R) = B(X,VX) + (1 - B)(VY,Y).

Suppose ay < ax, so that Y has a heavier tail. Now observe that ax < 2 < 2ay, since ay > 1,
and similarly also ay < 2 < 2ax. So we have \/bx(T') = o(by(T)) and /by (T) = o(bx(T)) as

T — o0o0. Then
X VX . VY Y .
bx(T)” by (T) bx(T)’ by (T)

I R T T
r [(bx(T)’by(T)) © ] ~2"
% Sax X 20() + 520 X vay () on [0, 00]\ {0},

—P
+2

v,

and the limiting measure is concentrated on the axes.
However,

2
_T o, I 2, 2
= 5 Px(T)z < X <y’] + 5 Pbx(T)’s” <Y <y] = 0,

TP [(IU(L(T)R) e-] %50  onD.

So, the condition (IB) fails. Similarly we can show that the limiting measure in the condition (IIB)

is also identically zero.
Also LR = BX3/2 4 (1 — B)Y®/2, Then, since ay < ax, we have,

T T
TP [ >z,R < y] = ZP[X > bx(T)z, VX <y] + E13[\/17 > bx(T)z,Y <y

L
bx (T)

since bx (T') — oco. Thus,

1
P[LR > 1] ~ 5 P[Y3/2 > ],

which is regularly varying of index —2ay. Since P[L > ] € RV_q,, P[R > ‘] € RV_,,, the tail
behavior of LR cannot be concluded from the tail behavior of the factors even though (3.1) holds.
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This example, as well as Example 1 reinforce the idea that the classical notion of asymptotic
independence from extreme value theory contains little information about the tail behavior of the
product.

For the next example, we need the following result.

Proposition 4.1. Suppose (U,V) is multivariate regularly varying in the sense that there exists
reqularly varying functions by, by, such that

(4.1) TP [(% bV‘(/T)> € ] Su()£0

on [0,00] \ {0} and V(({oo} x (0, 00]) U ((0, 00] x {oo})) =0 and v((0,00]) > 0.
Then for some ay > 0, ay > 0,we have
P[U > € RV_q,,
PV > €RV_,,

and

PUV >.] € RV_ agay .
aygtay
Proof. Let by and by be regularly varying with indices 1/ay and 1/ay respectively. Now, for any
u > 0, such that (u,00] x [0,00] is a v-continuity set, we have,
U v

> u] =TP [(WW) € (u,00] X [0,00]] = v((u, 00] X [0,00]) =: Ky,

rr [bU(T)

where K, is a positive and finite for some uy > 0, since V((O, oo]) > 0.
Now, we have, for any u > 0,

v > U ]
T 0
wcbu(T)

~() (o) bU((;)“T) o

— (ug)*Kyou™ @

TP[WUT)>u]:TP

and hence P[U > ‘] € RV_,,,. Similarly, we can check that P[V > -] € RV_,,,.
Define for z > 0 and any positive number K,

Ak g = {(u,v) :uv > z,u < K,v < K}.

Then, for any x > 0, we have,

r [% ”] > 1P [(%’%) EAK@] |

Then, letting 7" got to oo first, and then letting K go to oo through a sequence so that Ak, is a
v-continuity set, we have

. uv
hjrjn_)solipTP [W > m] > v({(u,v) : uv > z}).
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On the other hand, we have,

uv U Vv

TP|——————=>z| < TP||—=,—- €A
bu (T)by (T) ] [(bU(T) bV(T)> K’””]
U U
+TP [— >K] +TP [— >K:|
bu(T) bu(T)
Now, by regularly varying tails of U and V, the last two terms converge to K~ %V and K%V

respectively, as T — oo. Then letting K go to oo through a sequence so that Ax ; is a v-continuity
set, they go to zero. Hence, we have

. uv
Thus,
uv
TP [W > .’L‘:| — V({(U,’U) Tuv > .’I)})

Then, since byby is a regularly varying function of index %’U"'—O‘K, and v({(u,v) : wv > z}) > 0 for

av
some z > 0, we have, arguing as in the case of U,

P[UV > ] € RV_ agay .

apytay

O

Now we consider an interesting example, where the vague limits in (3.1) are two different non-
zero measures for two different choices of by, and bg on the sets [0,00] \ {0} and (0,c0]. In the
first case the limiting measure is supported on the axes only. But in the second case there is a
non-degenerate limit although with different sets of scaling. Further modification of the scaling
shows that the conditions (IB) and (IIB) hold, but the conditions (IC) and (IIC) fail. We still fail
to conclude anything meaningful about the tail behavior of the product using the tail behavior of
the factors.

Example 3. Suppose we have independent vectors (U,V), (X,Y) which are independent of the
Bernoulli random variable B with probability of success 0.5. We assume

(i) The random variables (X,Y’) are independent with
P[X > € RV_,,, P[Y > -] € RV_,,
with
l<ag<a; < 2,

so that Y has the heavier tail.

(ii) The random variables (U, V') are dependent with multivariate regularly varying distribution
in the sense that there exists regularly varying functions b3 and b4 of indices 1/a3 and 1/ay
respectively, such that

U v v
A . - :
(o) €] 2 evt
on [0, 00] \ {0}, where vy ((0,00]) > 0 but vy, ({oo} x (0,00] U (0,00] x {c0}) = 0 and
1 < ay < ag < 2. Then by Proposition 4.1,

P[U > € RV_,, and P[V > € RV_,,,

and V has a heavier tail.
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Assume further that

a1 < ag, ag < 04.

We define

(L,R) =B(U,V)+(1—-B)(X,Y).

Then we have the following conclusions.

(1)

(2)

We have
1 1
Pw>ﬂ:§HU>ﬂ+§HX>ﬂeRKm,

1 1
P[R>a:]:5P[V>:c]+§J.D[Y>;c]eRV_,12

so that R has the heavier tail.
Define the measure vy = 3¢ X Vg, + 3V, X €0, and we have on [0, 0] \ {0}

|G i) < =

where by and bs are quantile functions of X and Y respectively. To see this, note

|Gy nm) <] = 7+ (G em) <] -2+ (G ) <

and the first term goes to zero since b € RV, i=1,...,4, and (4.2) imply

b3(T) = o(b1(T)), ba(T) = o(b2(T)),
and the vague limit of the second term is v on [0, 00] \ {0}.

We obtain a different vague limit on the cone (0,00]. For z > 0,y > 0, we have, using
assumption (ii), that

T8 | (5 ) € <1 % 09 =37P (5 > iy >3]

27w > 7[5 >

—)%UU,V((:B, OO] X (y, OO]) +0

and thus the vague limit on (0, co] is %VUJ/. To verify the limit of 0 for the second term,
note b;” € RV,,,i=1,...,4and as T — oo
T
b1 (b3(T)x) b5 (ba(T)y)
To~ Xy a2
Tbi 0 by (T)bs 0 ba(T)
which as a function of T' is regularly varying with index 1 — 2 — 22. The result follows if
3 Q4

we show & + 32 > 1. However

TP[X > b3(T)z]P[Y > by(T)y]

a 167 1
D2 (e ta) >
Qs (87 2

since l < a; <2, fori=1,...,4.

=1,

N DN
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We have that

P[LR> -] € RV asas , and = < — % 1,
agztay 2 a3+ oy
Note
LR=BUV + (1 — B) XY,
so that

P[LR > ‘]| = %P[UV >+ %P[XY > .

From [4] or Lemma 3.4, Lemma 3.5 and Theorem 3.2, we have that P[XY > :] € RV_,,,
and from Proposition 4.1, we have that P[XY > :] € RV_ a3as . But

agtay
304
—— <1< as.
a3+ oy

So we have
PILR > ]~ S POV > ],
which is surprisingly heavy — it has no first moment — considering the facts that
P[L > € RV_,, and P[R > ‘] € RV_,,,

and 1 < aq, ag < 2.

We conclude that the tail of the product is hidden from a condition like (3.1) or knowledge
of the marginal distributions.
We have that conditions (IB) and (IIB) hold but conditions (IC) and (IIC) fail.

For (IB) we have,

L T U T X
= <yl==pP|— < “pl—— <yl
TP [bl(T) >J;,R\y] 5 P[bl(T) >$,V\y] + 5 P[bl(T) >x] P[Y <y

Then the second term converges to (%l/a1 X Fy) ((z,oo] X [O,y]), where Fy denotes the
distribution function of Y. Also,

%P [blr(]T)

T [U L b

>z, V < <=P
y] b3(T) = b3(T)

5 z] — 0.

since b3(T) = o(b1(T))). Thus if we define by, (T) = 2~'/*1b,(T), then
L v
TP [(m,R) € :| — (Val X FY)()
on D.

Similarly, condition (IIB) holds with bg(T) = 2~ 1/@2py(T).
For (IC), observe that,

e (ﬁRyl[h%ﬂg]l B %E (%)51[63&)@] E[YJ]
[
(G R
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So, if § > as, then E (Y?) = oo and hence condition (IC) fails. Also a closer look at the

proof of Lemma 3.4 will show
X )
1 =0
(bl(T)) [I’I)(CT)<E:|]

iff 6 > a1 > ay. Thus, for no positive 4, the first term in the RHS of (4.3) can go to zero.

Since I;fg)) =2V condition (IC) fails even if we scale by by,

For (IIC), observe that,

limlimsupT E
&0 Too

8| (55%) Yotmel] = 75 () Yl 540
d
+28| (%) l[b;m«]]

For any § > 0, we have,

U}l 1 > E U] 1
(b2<T) ) [530my <] (bz(T) ) [52my <5y >

ba(T)ba(T) \° 14 uv
2( @) )TP[@(T)“’%(T)@(T)”]

TE

Now,

b3(T)bs(T)
(1) VAL
1

Sinceais+ai4>§+%:1>a%,and5>0,weha,ve,
bs(T)ba(T)\°
( ) o .
Also, we have

uv uv uv

Vv
e <O @) 1] =Ty {bs(T)buT) > 1] - [@(T) Z O @)

bao(T)

The second term is bounded by T'P [% > e], which goes to zero, since bs(T") = o(b2(T)).
The first term goes to v({(u,v) : uv > 1}), by Proposition 4.1. Thus

V (5
U) 1 — 00.
<b2<T) ) [t <e]
br(T) _

Since 357 _ﬁ, condition (IIC) also fails.

So we observe that the asymptotic independence condition, as we have defined alone is
not enough to conclude about the tail behavior of the product and we need to have some
truncated moment condition.

TE

The examples in this section justify our conditions of asymptotic independence and truncated
moments and show neither of the conditions can be dropped, if we expect any meaningful result.
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5. LEVY APPROXIMATION

We now give a Lévy approximation to the cumulative input process when input rates are random.
Observe from the Theorem 3.2 that the product LRy has a tail of index ap := aj, A ag, and hence
has a finite mean. Let us call it up := E(L1R;). Then we have the following asymptotic behavior
of the process A(t), defined as in (2.1), measured at a large scale.

Theorem 5.1. Under assumptions (2.2)-(2.4) and (IA)—(IC) or (ITA)—(IIC), we have

XM M x,,(0),

where
A(Tt) — A\Ttup

bp(T)

XM @) =

Q=

and X, is a mean 0, skewness 1, a-stable Lévy motion with scale parameter (Cia) and

l—«

Co = I'(2 — a)cos (Z2)

We shall prove the theorem in two parts. First we prove the one-dimensional convergence and
then we prove the finite dimensional convergence for any number of dimensions.

5.1. One-dimensional convergence. For the analysis, it helps to consider the Poisson point
process,

o0
M = Z €(Tk, Ly, Ry)
k=1
with mean measure Adt x F on (0, 00)3.
The random variable A(T) is a function of the random measure restricted to R(T) = {(z,y,2) €
(0,00)3 : z < T'}. Tt helps to split RT) into two disjoint sets
R%T) = {(z,y,2) € (0,00)% : z +y < T},
’RgT) ={(z,y,2) € (0,00 : z < T < z + y}.

The corresponding input processes are

o0
(5.1) A(T) = ; Ry Lyl [(Fk’Lk’Rk)engT)] ’
o0
(5.2) A(T) = Z Ry (T —Tg)1 [(Fk,kaRk)eRgT)] '

with A(T) = Ay(T) + A2(T). Since Ay(T), i = 1,2 are functions of M| (), i = 1,2 respectively,

and R1(T) N Ra(T) = 0, we have A;(T) and Ay(T) are independent.
Now,

E( / / / \dz F(dy, dz)

z=0y€(0,T—xz] z€(0,00)
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=X | F(T —1)dz =\ | Fr(z)ds = \FL(T),
/ /

E( / / / \dz F(dy, dz)

T= Oye(T z,00) z€(0,00)

and

T
=A / Fr(T —z)dz =\ / Fr(z)dz =: Amp(T) = \ur, as T — oo,
z=0 =0
where g, = E(L1) < 0o as ar, > 1. Since E (M (RZ(T)>) < 00, t = 1,2, we have the representation
P(T)

d
M = €
|R§T) kgl (TIET) 7JIE:T)’SIE:T)) ,

where P(T) ~ POI(AFL(T)); i. e., a Poisson random variable with parameter AF},(T), independent
of the iid random vectors

(5.3) (D, 57,51 ~ ds F(dy, dz)
FL(T)

where the above statement means the vector on the left has a distribution given on the right.
Similarly

bl

R

PU(T)
d
M|pr) = ; © (™., 5,0)
where P'(T) ~ POI(Amy(T)) independent of the iid random vectors
dz F(dy,dz)
5.4 ASRI AR R PN S SR8 B
(5.4) ( k ) mr(T) RED)

The key step in the entire analysis is to study the tail behavior of Jl(T) SgT). We summarize this
in the following lemma.

Lemma 5.1. Under the assumptions of the model,
J(T) S£ )
bp(T)

where the convergence is uniform for w € [a,0), Va > 0.

TP

>w] —w ®as T — oo,

Proof. We study the tail behavior in the cases (I) and (II) respectively.
First, we consider the case (I). Using (5.3) and the fact that +F.(T) = %fOT Fr(u)du ~

Fr(T) — 1, we have,
/ / (T — y) F(dy,dz)

yE (0,7
yz>by, T)w

TPID 5T > by (T)w]
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~/ /duF dy, d2)

ye OT) Y
yz>br (T)w
T
:/ // F(dy,dz) du
0 ye(0,u]
yz>br (T)w
. T
(5.5) —T/TP{Ll\u,b(T)R1>'w] du
0
T
bo(T) [y, LiRy)
L 1, Ls14v]
. = TP | ——= .
(5.6) : / [ P € 0] x (w,oo)] du

Now, (0,u] X (w, 00) is bounded away from 0 and hence is relatively compact in [0, oo]\ {0} and has
boundary with v-measure zero. Hence by the assumptions (IB) and (IC) and using Corollary 3.1,

(L1, L1 Ry)
br(T)

where Ay, = {(y,2) : y < u,yz > w} and

Jm (o, X G)(Auw) = (Yo, x G)({(y,2) : yz > w})

(5.7 TP € (0,u] x (w,oo)] = v((0,u] X (w,00)) = (va, X G)(Auw),

o
(5.8) =w L /uaL G(du) =: ¢y < 0.
0

Also, by Theorem 3.2,
Ly
br(T)

Fix ¢ > 0. Choose M > 0, by (5.8), such that (vo, X G)(Armuw) > cw — €. Also observe, J—T) €

RV, 1 and since ar, > 1, we have
ar

(5.9) TP [ R; > w] — Cyp-

(5.10) r
. — Q.
br(T)
Then by (5.10), (5.7) and (5.9), choose Tp, such that VT' > T, each of the following three inequalities
hold

(i) 5 (T) > M,

(i) Yu> M, TP [LLEH) € (0,0] x (w,00)] > TP [LH) € (0, M] x (w,00)] > cu — 2,

(iii) Vu, TP[% (0, u] x(w,oo)] TP[ L(I)R1>w] < ¢y + 2¢.




24 KRISHANU MAULIK, SIDNEY RESNICK, AND HOLGER ROOTZEN
Then, for all T > Ty,

T [ (L1, L 1
cw+2e>bL( ) /TP ME(O,u]x(w,oo) du
| () ]
0
T

> b (1) / TP % € (0,u] x (w, 00)- du > (1— %(T))(Cw — 2¢).
) i |

Taking limit as 7" — oo, and using (5.10) and the fact € > 0 is arbitrary, we get

bL(T) / TP M S (Oau] X (w,OO) du — (VaL X G)(Aoo w) =w /uaL G(du)
T b (T) ’
0 0
Thus, by (5.6),
7@ g(T) T
(5.11) TP—E&T>w—Nf%/w”mW)

Now, we consider the case (II). As in (5.5), we have,

T
(5.12) TP M>w l/TPL<uLi>w du
' br(T) T PSR (T) '

Since {(y, 2) : y < u,yz > w} =: Ay, is bounded away from [0, co] x {0}, it is relatively compact
in [0, 00] x (0, 00]. Also, if u is a continuity point of G, then (G X vq,)(0Ayw) = 0 and hence

TP |:L1 u, L1

Ry
br(T) > w] = (G X vop)(Ayw)-

Then, arguing as in case (I), we get,

Ry
— —QR aR
/TP[ ule ol )>w] du — ¢y = w /u G(du).
0

Hence, by (5.12),

(T) o(T)
(5.13) TP[iLfi—

br(T)
Combining (5.13) and (5.11), we have,
T) S(T)

o
> w] — w R /uaR G(du).
0

TP

> w] —w u®? G(du),
where b is read with subscript L in the case I) and R in the case (II). Hence

s
(5.14) TP | "L =L > w| - w™oP,
b(T)
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1

(e}

N 00
where b(T) := (f u*P G(du)) "’ b(T) ~ bp(T) by Theorem 3.2. The LHS of (5.14) is monotone
0

non-increasing and RHS is continuous in (0,00). Hence, (cf. pg. 1 of [22]) pointwise convergence
implies locally uniform convergence in (0, 00), and thus

J1(T) S§T)

bp(T)

Since LHS in (5.15) above is monotone non-increasing with a continuous pointwise limit on (0, co)
which has a finite limit at oo, the convergence is uniform on [a,00), Va > 0 (cf. pg. 1 of [22]). O

(5.15) TP >w| = w P,

To complete the proof of Theorem 5.1 for one-dimensional convergence, we need to prove three
(T) o(T)
more lemmas studying the moment conditions of %.

Lemma 5.2. Under the model assumptions, we have

. g
(5.16) A/}floohqrwn_,solipTE Wl[J§T)S§T)>M:| = 0.

bp(T)

Proof. First observe that, from (5.3),

T
PIDSD > bp(T)w] = < / / Fldy, d2) du
0

Fr(T)
y€(0,u]
yz>bp (T)w
L7 LR
(5.17) = = /P [Ll <u, 2L w] du.
FL(T) : bP(T)
Now,
7T g(T) 7T g(T) ® 7(T) g(T)
TE| 21— 1 =MTP |21 > M +/TP L =l > z| de
( bp(T) ~[40517 u] bp(T) bp(T)
p(T) L M
- - T
I 5T T 7 LR,
=MTP |22 _ > M|+ = //P[L < u, >x]duda: by (5.17
br(T) ) G v (510
- - M 0
[ (1) g(T) T T 7
<SMTP |22 S M|+ = /TP[L1R1>bp(T):c] dz
| be(T) | Py )
I A L
=MTP |21 > M|+= P[Li1R;: > 7] dz.
b (T) (T b @) Lk >
B . Mbp(T)
Therefore, using Lemma 5.1 and Karamata’s theorem,
I M) T Mbp(T) P[LiR; > Mbp(T)]

li TE| L1 1 <M 411
sup bp(T) [J§T)S§T>>M] S T B (T ap—1

bp(T)
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_ ) LRy
= M!er lim TP M
+ Otp—lTl—>H<§o [bp(T) :|
e Mo ppap

ap — 1 N ap — 1
Thus, since ap > 1,

(T) o(T)
lim limsupT E 15

—1 =0.
M350 Tosng bp(T) [J$T)S%T)>M]

bp(T)

Lemma 5.3. Under the model assumptions, we have,

(1) S(T) ap

(5.18) limsup7 Var | 2—21—1¢ 1y < ———M?>7*? YM >0,

T 00 bp(T) |:J1 51 <M] 2—ap

bp(T) X
and hence
- e
(5.19) lglﬁ)l lim sup 7" Var Wl JI(T)S§T) =0.
T—o00 P 55 () <e

Proof. We know

7T g(D) 7D g(T)
TVar | 211 STE|[Z2—2-] 1
bp(T) [{}g&? SM] bp(T) [”(())SM]
M
(T) o(T)
Js
= [ 2TP [t< 2L "L < M| dt
/ bp(T) ]
0
T 77 LR
= — /2t/P [Ll <ut< 22 gM] dudt by (5.17)
FL(T) 0 bP(T)

M
LRy ]
<T [2tP|t< < M| dt
/ [ bp(T)
0
7 IR LR
—or [ tP |22 >t] dt—TMQP[ ke >M]
0/ [bP(T) bp(T)
bp(T)M
2T LRy
= tP[LiRy >t dt—TMQP[ >M]
(br (T))? 0/ Ly > ] b (7
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2T L1R1 LlRl
~ M*P [ > M] —~ TM?P [ > M] by Karamata’s theorem
2—ap bp(T) bp(T) y
ap o | L1Ra ap 2—a
= TM*P M M=—F Thi 2.
5 ap [bp(T) > ] — 5 ap by Theorem 3
Therefore
57 0wy
limsupT Var | ———1 <——M“"% VM >0.
Tﬁoop bP (T) |:J£6TP)(SQ£)T) < 2 — ap
U
Lemma 5.4. Under the model assumptions, we further have,
(T) o(T)
J'S
2 lim E{ =2—L | =0.
(5-:20) o ( bo(T) ) 0
Proof. We know
(T) o(T) it (T) o(T)
o) (ANl e :/P A O
bp(T) / bp(T)
T LiR
== //P [Ll <u, =22 >t] du.dt by (5.17)
Fr(T) bp(T)
00
T o
(5.21) < — / P[L Ry > bp(T)] dt
Fu(T) )
17 E(LR:)
~ P[LiRy > ] dt = ——— 0 ince E(L1Ry) < oo.
bP(T)O/ [L1Ry > 1] b (T) — since E(L1Ry) < 00

O

Now, we are ready to prove Theorem 5.1 for the process A1, as defined in (5.1), albeit with a
different centering.

Theorem 5.2. Under assumptions (2.2)-(2.4) and (IA)—(IC) or (IIA)—(IIC), we have
A(T) — P(T)E (J{T) 5§T))
bp(T)

where X,,, s as defined in Theorem 5.1.

(5.22)

= Xap(1),

Proof. As in section 2 of [24], using (5.16), (5.18)—(5.20), we get
ST = Sap in D([0, 0)),
where
[Tt

Sr(t) = Z

2+ | "bp(T) bp(T)

J]ST)S](CT) ~ <J1£T)S](CT))
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and S,p is an ap-Levy motion with the skewness parameter 1, mean 0, and scaling parameter
o;ﬁ R R
Since P(T) ~ POI(AFL(T)) and AFL(T) ~ AT — oo, by the central limit theorem,
P(T) = Ay(T)
AFL(T)

(5.23) = N(0,1) in R,

where N(0,1) is a standard normal random variable. Then, by Slutsky’s theorem,

P(T) — AFL,(T) o
AFL(T)

bl

and hence P(T)/T = X in [0,00). By independence of St and P(T')/T, we have

(sT, P?) =5 (S, A) in D([0,00)) x [0, 00).

Hence, by [31],
T
ST (%) = SaP(A) in R.

Thus,

(T) o(T)
Sr (P;T)) _ ;)4;((%) - P(T)E (%) = Sop(A) in R.

Note, Su, () is ap-stable random variable with skewness parameter 1, mean 0 and scaling param-
eter (A/ Cap)l/ “? and hence has same distribution as X, , (1), and the result is proved. O

Now, we consider Ay and its negligibility in the following theorem.
Theorem 5.3. If As is defined as in (5.2), then

As(T)

i £o.

(5.24)

=

Proof. Tt is enough to show %TZ)Z £ 0, where b(T") is by, (T') or bg(T) in cases (I) and (II) respectively,

since be((TT)) — constant, which is positive and finite.

Fix € > 0, 7 > 0. Choose M such that P[P'(T) > M] < §. Then

P [AQ(T) > n] <P [AZ(T) >, P'(T) < M] +P[P(T) > M]

b(T) (T)
A €
<P |3 (7-7T) o > s
k=1
()
/(1) 51 n|, €
<mP|(r-T) oy M| T2
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Ay (T) A

Thus, to show BT £ 0, it is enough to show P [(T—T{(T)) Ty 7]] = 0Vn >0, i e,

1 (T)
(T _ T{(T)) bz;l(T) £o. Now, by (5.4), we have,

P [T—T{(T) < s] =P [T{(T) >T—s]

=T F
_a=1—-s _ / L(:E) de
my(T) / m(T)
Thus, T - T{(T) has density ELL(('T)), supported on (0,7"), which converges pointwise to a density
function F:L('), supported on R, . Hence, by Scheffé’s theorem, T' — T{(T) converges weakly to a
positive random variable with density F:—L() So it is enough to show, by Slutsky’s theorem, that
S{(T) P
5.25 —— = 0.

Fix n > 0. Now observe, by (5.4),
1
P [S{(T) > b(T)n] = / / / F(dy, dz) dz

z<T y>T—x 2>b(T)n

:ﬁ(T)O/P[Ll >T—w,%>n} dz
(5.26) = le(T) /TP [Ll >w,b1(%—711) >77] dx.
0

Now we show (5.25) by considering the cases (I) and (II) separately.
In case (I), we consider b = by,. Now, by (5.26), with b replaced by by,

1 R

P [SQ(T) > bL(T)n] = mn (D) /P [L1 >z, ﬁ > n] dz
0
1 Ry :| 1 [ Ry bL(T)
< TP >n| = TP > —-0 asT —0,
mi(T) [bL @ "] T m@ [ba(D) T ba(T)"
since Z}igg € R‘%—ﬁ and ay, < ag imply Zzgg — o0 and mp(T) = pr < oo. Therefore,
1 (T)
51 By
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In case (II), we consider b = bg. Again, by (5.26), and with b replaced by bgr, we have, for all
To > 0,

T
P[S{()>bR( /P[L1>x (i[)>n]dx
0
T T

Ry
m(T) PRy > br(T)n] + (D)

br(T)

>

<

P |:L1 > Ty,

1 -
— —G(To)n " as T — oo,
nr

by (IIB), for all continuity points Ty of G. Then letting Ty — oo through continuity points of G,
we conclude

S (1)
br(T)

>n| —0,

which proves the theorem. O

Then, combining (5.22) and (5.24) and using Slutsky’s theorem, we get Theorem 5.1 for one-
dimensional convergence with a random centering;:

(1) o(T)
(5.27) b‘i((?) _ P(T)E (%) S X (1),

Now, we prove Theorem 5.1 for one-dimensional convergence with correct centering.

Proof of Theorem 5.1: (for one-dimensional convergence)

(T) o(T)
Observe that we should replace the centering P(T)E (Jlbp(‘g}) ) by 2‘:(“155 in (5.27) to get the

required result. We shall show the difference of the above two expressions goes to 0 in probability.
Now,

SOSON
P(T)E< br(T) )~ bp(T)
_P(T) = \FL(T) [ g M) A - (T) o(T)
(5.28) = ¥ \/)\FL(T)E< })P(TE) -3 [Tup —F(T)E (J1 st )]

Now, as in (5.21),

(T) (1)
AFL(T)E (Jl 51 ) / P[LiR; > bp(T)t] dt
FL(T) 4
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since % € RV%_L and ap < 2. Thus using (5.23), we get the first term in the RHS of (5.28)
ap

goes to 0 in probability. Thus, we only need to show the second term in the RHS of (5.28), which
is just a number, goes to zero. Observe that, from (5.3),

T
Tup—ﬁL( T)E T) / // yz F(dy,dz) dac—/ / / yz F(dy,dz) dz
Oy

2=0(y,2)€R]. =0 y<T—x 2£(0,00)

(5.20) = /T / / yz Fdy, dz) dz = /T / / vz Fdy, dz) ds
=0y 2=0

>T—x 2€(0,00) =0y>T 2€(0,00)

/ / yz Fdy, dz) + / / vz F(dy,dz)| do

z=0 [>T 2€(0,1] y>x z>1

- / vELdy) + [ uFP(du)] dz,

y>x u>r
where L1R1 has distribution Fp. Then, by (5.29) and (5.30), we get,

T

(5.30)

o\’ﬁ

A = (T) (T)
A T T
5.31 < dy) d Fp(du)dz.
(31 i | [ vrandos s | [ urv
z=0y>x =0u>zx

Now, Ff, € RV_,,, and therefore, by Karamata’s theorem, fy>m y Fr(dy) ~ zFp(z)/(ap — 1) €
RV1_4,, so that, again by Karamata’s theorem, we get,

A T?F(T)
F ~ .
y Fr(dy) dx @—ap)(ar—1) bp(T) € RV, a2
z=0y>x
But
2map— L gomapo Lo ler 7
ap ap ap
Hence
\ T
F i
bp(T) / / y Fr(dy)dz — 0
z=0y>x
Similarly,
T A T?Fp(T)
P
F ~
oy | [ vER O e T € RV
z=0u>z
and hence goes to zero. Thus, by (5.31),
A 7 (1) o(T)
32 | Tup — F(T)E _
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Thus, we have,
A(T) — ATup
—— = X, (1 R.
bp(T) = Xop(1) on

So,
A(Tt) — XT'tup _ bp(Tt) A(Tt) — XTtup
bp(T) bp(T) bp(Tt)

This is the required one-dimensional convergence:
A(Tt) — XTtup
X
be(T)

1
= tar X, (1) £ X, () in R.

vVt > 0,

(5.33) ) inR Vt>0

a

Finally, we consider the finite dimensional convergence, which will complete the proof of Theo-
rem 5.1.

Proof of Theorem 5.1: (for finite dimensional convergence)

Let 0 < s < t. Observe
A1 (Tt) — A1 (T's) /// yz M (dz,dy,dz)

T's<z+y<Tt

A1(Tu) = /// yz M(dz,dy,dz) Yu < s,

z+y<Tu

is independent of

since they are the functions of Poisson point process restricted to disjoint sets. Hence, A;(T") has
independent increments. Also, let us define,

(5.34) A (Tt) — A (TS) = BT(S, t) + OT(S,t),
where
/// yz M (dz,dy,dz,) and Cp(s,t) = /// yz M (dz,dy,dz).
0<zT's Ts<zTt
Ts<z+y<Tt Ts<z+y<Tt

Note that setting N(A) = M(A + (T's,0,0)) gives

/// yz N (dz,dy,dz) 4 /// yz M (dz,dy,dz) = A1 (T (t — s)),

0<uT (t—s) 0<z+y<T(t—s)

0<u—|—y<T(t s)

where the equality in distribution in the second last step follows from the fact, that by invariance
of Lebesgue measure under translation, M and N have same mean measure and hence the same
distribution. So, by (5.33), we get,

Cr(s,t) = XT'(t — s)pp d

(5.35) D) = Xop(t—8) 2 Xop(t) — Xap(s).
Also,
E(ii((;:f)) 04[[ yz F(dy,dz) d olllsyw dy,dz)d

Ts<x+y<Tt w+y>Ts
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 bp(Ts) Tsup — Fu(@s) E (177s{")

— by (5.29
bp (T) bp (T's) y (5:29)
— s .0 by (5.32),
which implies
BT(S, t) P
5.36 — 0.
Set

A1 (Tt) — )\Ttﬂp

X0 ==

Then, by (5.34) — (5.36),

Ai(Tt) — AT'tpp) — (A1(T's) — AT'spp)
bp(T)

xI(1t) — xD(Ts) = ( = Xop(t) — Xop(s) in R

By independence increment property of X 1(T) and X, ,, coordinatewise convergence of increments

implies joint convergence of increments. Thus,
(5.37) x M x, .

Also, by (5.24),
Ao(Tt)  As(Tt) bp(Tt) p

= . = 0.
bp(T)  bp(Tt) bp(T)
Thus,
Ay(Tt1),- - , Ao(T
(5.38) 2(Tt), -, Ao(T'te) Bo, forallo<t < - <t
bp(T)
Now, X(T)(t) = ALO=2twe — x D (y) 4 22000 implies, by (5.37) and (5.38),

xM M x, .

6. CONCLUSION

Our result is crucially dependent on the modeling of the joint distribution of (L, R). If our model
of asymptotic independence holds, then so does the classical asymptotic independence model. How-
ever, an estimate of the spectral measure, defined in (3.3), of the time and the rate of transmission
(cf. Sections 4 and 5 of [7]), as given in Figure 3, does not seem to be supported on {0, 5}, and
so suggests a lack of asymptotic independence between the two random variables. This fact is
reflected in the conclusion as well. Our result predicts that, if the model is true, then the input
process measured at a large time scale should have independent increments. But this is not cor-
roborated by the empirical findings reported in [10]. This observation suggests considering the case
when the joint distribution of (L, R) is multivariate regularly varying in the sense of (4.1), and not
asymptotically independent. We shall consider this in a later paper.
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FIGURE 3. Spectral measure estimates of time and rate of transmission
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