FROBENIUS EXTENSIONS AND WEAK HOPF ALGEBRAS

LARS KADISON AND DMITRI NIKSHYCH

1. INTRODUCTION AND PRELIMINARIES

In its most general setting, the Jones tower is the iteration of the endomorphism
ring construction over any noncommutative ring extension S — Rg, which results
in a tower of rings over Rg [J85]. The first step is to form Ry < Ry := EndgRg
via left regular representation. The process may then be repeated to obtain Ry —
Ry := Endp, R1. For a finite index subfactor [J83] or a Markov extension [K2] N C
M = M the algebras in the Jones tower have their usual form M,, = M,,_1e, M,,_1
for n = 1,2,3,... where ¢,, are the Jones idempotents. Up to Morita equivalence
of rings, the Jones tower over a Markov extension has periodicity two.

In [KN] hypotheses of depth two are placed on a Markov extension N C M of
algebras over a field k& with trivial centralizer Cpr(N) = {m € M|mn = nm,Vn €
N} = k1 such that the centralizer A := C, (N) can be given a Hopf algebra
structure via the Szymanski pairing [S]. Moreover, A acts on M such that the
Jones tower above M is isomorphic to a duality-for-actions tower obtained from
the smash product of M and A and the standard left action of A* on A:

N & M < M < Mo

(1) I 1 = b=
N o M < M#A — M#A#A*

We can continue iteration in the isomorphic copy of the Jones tower by alternately
acting by A and its dual A*. Indeed, it is a well-known theorem in algebra and
operator algebras that the algebra M#A#A* above is isomorphic to the endo-
morphism algebra End(M#A) s (cf. [M] for Hopf algebras and [N] for weak Hopf
algebras).

In this paper, we obtain such a duality-for-actions result (1) for a Markov ex-
tension N — M which satisfies less restrictive conditions than trivial centralizer
and free extension M7 /M as in [KN]. We assume conditions slightly stronger than
U := Cpm(N) is a separable algebra on which the Markov trace T' is non-degenerate.
For the depth two conditions, we assume that the canonical conditional expecta-
tions Epr and Ejy, have dual bases in A and its dual centralizer B := Cyy, (M),
respectively. In exchange we obtain a weak Hopf algebra A, a more general self-dual
notion than Hopf algebra. Furthermore, the smash products above no longer have
k-vector space structure given by M#A = M @, A and M#AH#A* = My Qi B for
Hopf algebra A, but by M#A = M @y A and M#A#A* =2 My @v B for weak
Hopf algebra A.
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This paper is organized as follows. In this section we move on to cover pre-
liminaries essential to this paper — weak Hopf algebras and their actions, Markov
extensions, the Basic Construction Theorem, and conditions of symmetry and weak
irreducibility on Markov extensions that will be needed in the later sections. In
Section 2 we place depth two conditions on the Jones tower over a symmetric
and weakly irreducible Markov extension, and develop a series of propositions and
lemmas on depth two properties on the centrahzers UCACC=Cpu,(N) and
V C B C (), in both cases, C' being the basic construction for Markov extensions
of same mdex as M/N. In Sectlons 3 and 4 we show that A is a weak Hopf algebra
with action outlined above. First, in Section 3 we place an algebra-coalgebra struc-
ture on B by defining a non-degenerate pairing with A; the antipode S : B — B
follows from exploiting a symmetry in the definition of the pairing. The rest of
this section is devoted to proving that this structure on B satisfies the axioms of a
weak Hopf algebra. It follows that A is the dual weak Hopf algebra of B. Second,
in Section 4 an action of B on M; is introduced, and two equivalent expressions
for this action are given. Then we can establish a left action of A on M with the
outcome in (1): the two vertical isomorphisms following from Theorems (4.6) and
(4.3) together with Propositions (4.1) and (4.5), which establish the actions of A
and its dual.

We note here that the main results in [KN, Sections 1-6] are recovered in this
paper if U is trivial. Furthermore, the results of this paper may be viewed as an
answer to the challenge in [BNS, last line, p. 387]. In an appendix, we extend to
Markov extensions the Pimsner-Popa formula for the Jones idempotent generating
the basic construction of composites in a Jones tower, and we give a special example
of a depth two algebra extension.

Weak Hopf algebras. Throughout this paper we work over an field £ and use a
Sweedler notation for comultiplication on a coalgebra H, writing A(h) = h(1)® hy)
forh e H.

The following definition of a weak Hopf algebra and related notions were intro-
duced in [BS] and [BNS]. We refer the reader to the recent survey [NV3] for an
introduction to the weak Hopf algebra theory.

Definition 1.1 ([BNS], [BS]). A weak Hopf algebra, or quantum groupoid, is a
k-vector space H that has structures of an algebra (H, m, 1) and a coalgebra
(H, A, €) such that the following axioms hold:

1. A'is a (not necessarily unit-preserving)algebra homomorphism:

(2) Alhg) = A(h)A(9);
2. The unit and counit satisfy the identities:
(3) elhgf) = elhgn))e(9a)f) = elhgr))el9a) f),
4)  (AeidAl) = (A)ehleAl)=(1AM)AM) 1),

3. There exists a linear map S : H — H, called an antipode, satisfying the
following axioms:

(5) m(id® S)A(h) = (e ®id)(A(1)(ho 1)),
(6) m(S ®id)A(h) = (id®@e)((1® h)A(1)),
(7) S(hay)h@)S(ha) = S(h),

for all h,g,f € H.
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Here axioms (3) and (4) are analogous to the bialgebra axioms of ¢ being an
algebra homomorphism and A a unit preserving map, axioms (5) and (6) generalize
the properties of the antipode with respect to the counit. Also, it is possible to
show that given (2) - (6), axiom (7) is equivalent to .S being both anti-algebra and
anti-coalgebra map.

A morphism of weak Hopf algebras is a map between them which is both an
algebra and a coalgebra morphism commuting with the antipode.

Below we summarize the basic properties of weak Hopf algebras, see [BNS],
[NV3] for the proofs.

The antipode S of a weak Hopf algebra H is unique; if H is finite-dimensional
then it is bijective [BNS].

The right-hand sides of the formulas (5) and (6) are called the target and source
counital maps and denoted &, ;5 respectively:

(5) ci(h) = (¢ © ) (A (h © 1)),
(9 () = (id ©.2)(1© A(1).
The counital maps &; and &, are idempotents in Endg(H), and satisfy relations
Soeg=¢es;0S5and Sog;, =¢;085.

The main difference between weak and usual Hopf algebras is that the images of
the counital maps are not necessarily equal to k1g. They turn out to be subalgebras

of H called target and source counital subalgebras or bases as they generalize the
notion of a base of a groupoid (cf. examples below):

(10) He = {heH|e(h)=h}={(¢0id)A(1) |6 H,
(1) He = {he|e(h)=h}={(ded)A(1)| ¢ € H").

The counital subalgebras commute and the restriction of the antipode gives an
anti-isomorphism between H; and H;.

Any morphism between weak Hopf algebras preserves counital subalgebras, i.e.,
if & : H — H’ is a morphism then its restrictions on the counital subalgebras are
isomorphisms: ®|g, : H; = H] and ®|g, : Hy = H..

The algebra H; (resp. H;) is separable (and, therefore, semisimple) with the
separability idempotent e; = (S ® id)A(1) (resp. e, = (id ® S)A(1)).

Note that H is an ordinary Hopf algebra if and only if A(1) = 1® 1 if and only
if € 1s a homomorphism if and only if H; = H, = klg.

The dual vector space H* = Homy (H, k) has a natural structure of a weak Hopf
algebra with the structure operations dual to those of H:

(12) (¢, h)y=(o @1, A(h)),
(13) (A(8), h@g) =9, hg),
(14) (S(8), h) = (s, S(h)),

for all ¢,¢p € H*, h,g € H. The unit of H* is ¢ and counit is ¢ — (¢, 1).

It was shown in [NTV] that modules over any weak Hopf algebra H form a
monoidal category, called the representation category and denoted Rep(H) with
the product of two H-modules V' and W being equal to A(1)(V @ W) and the unit
object given by H; which is an H-module via h -z = &;(hz), h € H,z € H;.

Example 1.2. Let G be a groupoid over a finite base (i.e., a category with finitely
many objects, such that each morphism is invertible) then the groupoid algebra
kG is generated by morphisms g € G with the unit 1 = "y idx, where the sum
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is taken over all objects X of (G, and the product of two morphisms is equal to
their composition if the latter is defined and 0 otherwise. It becomes a weak Hopf
algebra via:

(15) Alg)=g®yg, elg=1, Slg=9"" geGC.

The counital maps are given by £:(g) = gg~'

ids()’uTcE(g) o
If G is finite then the dual weak Hopf algebra (kG)* is generated by idempotents

Pg, 9 € G such that pyp, = d, 5py and
(16) Alpg) = Z Pu®pu, &(Pg) =dggg1 =0g9-19, S(pg) =pg-1.

uv=g

= idtarget(g) and Es(g) = g_lg =

It is known that any group action on a set gives rise to a finite groupoid. Simi-
larly, in the non-commutative situation, one can associate a weak Hopf algebra with
every action of a usual Hopf algebra on a separable algebra, see [NTV] for details.
More interesting examples of weak Hopf algebras arise from dynamical twistings
of Hopf algebras [EN] and from the applications to the subfactor theory ([NVI],
[NV2]), see discussion below.

Definition 1.3 ([BNS], 3.1). A left (right) integralin H is an element [ € H (r €
H) such that

(17) hl = e (h)l, (rh = res(h)) forall h e H.

These notions clearly generalize the corresponding notions for Hopf algebras
([M], 2.1.1). We denote f;_, (respectively, f;l) the space of left (right) integrals in

H and by fH = f;l N f;l the space of two-sided integrals.

An integral in H (left or right) is called non-degenerate if it defines a non-
degenerate functional on H*. A left integral [ is called normalized if (1) = 1.
Similarly, r € f; is normalized if £5(r) = 1. The Maschke theorem for weak Hopf
algebras [BNS] states that a weak Hopf algebra H is semisimple if and only if it is
separable if and only if it has a normalized integral. In particular, every semisimple
weak Hopf algebra is finite dimensional.

Example 1.4. (i) Let G be the set of units of a finite groupoid G, then the
elements I, = Zgg_lze glee GU) span fle and elements r. = Zg_lgzs g(e€ GO)
span fk-rG'
(i) If H = (kG)* then fIl{ = [;; = span{p, e € G°}.
Definition 1.5. An algebra A is a (left) H-module algebra if A is a left H-module
viah®a — h-a and

2) h-1=¢i(h)- 1.

If A is an H-module algebra we will also say that A acts on A. The invariants

A" = {a € Alh-a = &(h)-a,Yh € H} form a subalgebra by 2) above and a
calculation involving [BNS, (2.8a),(2.7a)].

Definition 1.6. An algebra A is a (right) H-comodule algebra if A is a right H-
module via p : a — a(®) @ a!) and

1) p(ab) = al®p() @ o(p(1)

2) p(1) = (id ® e0)p(1).
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It follows immediately that A is a left H-module algebra if and only if A is a
right H*-comodule algebra.

Example 1.7. (i) The target counital subalgebra H, is a trivial H-module al-
gebra via h -z = &,(hz), h € H, z € H;.
(i1) H is an H*-module algebra via the dual, or standard, action ¢ — h =
h)(¢, hzy), 6 € H*, h€ H.
(iii) Let A = Cy(Hs) ={a € H|ay =ya Vy € H,} be the centralizer of H; in
H, then A is an H-module algebra via the adjoint action h-a = h(1yaS(h()).

Let A be an H-module algebra, then a smash product algebra A# H is defined
on a k-vector space A ®@pu, H, where H is a left H;-module via multiplication and
A is a right Hi-module via

a-z:S_l(z)~a:a(z-1_), a€ A,z € Hy,

as follows. Let a#h be the class of a ® h in A ®p, H, then the multiplication in
A H is given by the familiar formula

(a#h)(b#g) = a(h(l) > b)#h(Z)ga a, b; S A; th S Ha

and the unit of A#H is 1#1.

A relation between weak Hopf C*-algebras, which are weak Hopf algebras and
C™*-algebras such that A is a x-homomorphism, and finite depth II; subfactors
of finite index was established in [NV1] and [NV2]. Specifically, it was shown in
[NV1] that if N ¢ M C My C My C ... is the Jones tower over a depth 2
inclusion N C M with [M : N] < oo, then the centralizers A = Cp, (N) and
B = Cum,(M) have natural structures of weak C*-Hopf algebras and there is a
minimal action of B on M, such that M is the fixed point subalgebra of M; and
M5 1s isomorphic to the smash product of My and B: this extends the well-known
result for irreducible depth 2 inclusions [S]. Furthermore, it was shown in [NV2]
that every finite index and finite depth II; subfactor is an intermediate subalgebra
of a weak Hopf algebra smash product. Any such a subfactor is completely and
canonically determined by some quantum groupoid and its coideal %-subalgebra.
As a result one can express the bimodule tensor category of a subfactor in terms of
the representation category of a corresponding quantum groupoid and the principal
graph as the Bratteli diagram of an inclusion of certain C*-algebras related to it.

Symmetric Markov extensions. Recall that an algebra extension M /N is Frobe-
nius if there is a N-bimodule homomorphism E : M — N and elements {z;}, {y:}
in M such that for all m € M,

(18) E(mz;)y; = m = 2; E(y;m),

where summation over repeated indices is understood (we use this convention
throughout the paper). We refer to E, {2;}, {y} as Frobenius coordinates, F
being called a Frobenius homomorphism, and the elements {z;}, {y;} are called
dual bases. Another Frobenius homomorphism F' : M — N with dual bases {r;},
{£;} are related to the first set of Frobenius coordinates by F = Fd and dual bases
tensor by e =r; @ 4; = 2; ® d='y; where d = F(2;)y; is in the centralizer Cpr(N)
[K60, O, P]. Note that e is a Casimir element, i.e., satisfies me = em for all m € M
by a computation as in Lemma (1.8) below. A Frobenius homomorphism E is left
non-degenerate (or faithful) in the sense that E(zM) = 0 implies z = 0; similarly,
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(=]

E 1s right non-degenerate. Being Frobenius is a transitive property of extensions
with respect to the composition of Frobenius homomorphisms [P].

An algebra extension M'/N' is said to be split if N’ is isomorphic to a bimodule
direct summand in M’. For example, a Frobenius extension M /N is split if there is
d € Cy(N) such that E(d) = 1 in the notation above, since Fd is then a bimodule
projection M — N.

A Frobenius extension M/N is symmetric if there is a Frobenius homomorphism
F such that Fu = uF for each u € Cp(N); ice., E(uz) = F(zu) for allz € M,u €
Cu(N) [K61]. Let U = Cp(N) for the rest of this section. For example, the
symmetry condition is satisfied by a symmetric algebra A/k [Y]. As an application
of the symmetry condition, we have:

Lemma 1.8. For allu e U,
(19) TiuQ Y = T; Quy;
n M @y M.
Proof. We compute using Eqgs. (18):
ru@y =z E(yeiu) @y =5 @ E(uyjz;)yi = @uy;. O

Recall that a Frobenius extension M/N is strongly separable if F(1) = 1 and
zyi = A1 € k1 [K1, K2]. We say that a strongly separable extension has a
Markov trace if there is a trace T : N — k such that T(1) = 1y and Top :=T o F
is a trace on M [K1, K2]. We call such a Markov extension and such a Frobenius
homomorphism F, which is a trace-preserving bimodule projection, is referred to
as a conditional expectation.

Let M/N be a symmetric Markov extension of algebras with coordinates F,
{z;}, {y;} and Markov trace T} i.e., given u € U, we assume E(uz) = E(zu) for
every x € M. We also assume that M /N satisfies

1. (Symmetric product assumption.) z;y; = y;z; = A~'1 € kl.

2. (Weak irreducible assumption.) U is a Kanzaki separable k-algebra [Kan]

with non-degenerate trace Ty .

We recall here that a k-algebra A is Kanzaki separable? if it has a symmetric
separability element, or equivalently, if the trace of the left regular representation of
A on itself has dual bases {z;} and {y;} such that z;y; = 1. Yet another equivalent
condition: A is k-separable with invertible Hattori-Stalling rank as a finitely gen-
erated projective module over its center [SK]. For example, the full p-by-p matrix
algebra over a characteristic p field F' is separable but not Kanzaki separable. Over
a non-perfect field F', a separable F-algebra is in turn finite dimensional semisimple,
but not necessarily the converse. In characteristic zero, all three notions coincide.

As one example, the symmetry condition is trivially satisfied by the irreducible
Markov extensions in [KN], since U is trivial for these. As another example, the
symmetry condition is satisfied by a subfactor N C M of finite index [W], since we
have the following fact.

Proposition 1.9. If the Markov trace T is non-degenerate on N, then uF = Fu
for every u € U.

!n the terminology of [W], F is a conditional expectation with quasi-basis 2;,y; and nonzero
index E in k1.
2 Also called strongly separable algebra in the literature.
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Proof. We note that: forallne Nyme M
T(nE(um)) = Ty(num) = To(unm) = To(nmu) = T (nFE(mu)),
which implies that E(um) = E(mu) for all m € M. O

Let M1 = M @v M = End(My) denote the basic construction of M/N: i.e.,
My = Mey M where e; = 1®1 1s the first Jones idempotent with conditional expec-
tation Epr : My — M given by Epr(me;m’) = Amm/, dual bases {A\~'z;e1}, {e1y:},
and index-reciprocal A. Recall that My = End(My) is given by me1m’ @ £y, Elpy
where £, is left multiplication by m € M. The E-multiplication induced by com-
position on End(My) is given by

exmey = e E(m) = E(m)eq
forallme M.

Theorem 1.10 (“Basic Construction”). My is a symmetric Markov extension of
M with Markov trace Ty = T o E' and is characterized by having idempotent e and
conditional expectation Epr - My — M such that

1. M1 = M@lM

2. Ep(er) = Al;

3. for each x € M: ejzeqr = e1 E(z) = E(x)eq;

Proof. Most of the proof is found in [K1] or [K2]: we need only establish the
symmetric condition and the characterization above.

Let V = Cy, (M) = AN B. We note that U is anti-isomorphic to V' as algebras,
via the map

(20) o U=V, ¢(u) = zuey;,
which has inverse given by v — A‘lEM(vel). Clearly then V' =2 U°P, Note too
that
Eum(ver) = Enm(e1v)
as a consequence of the lemma.
We compute that Eyv = vEpy for all ¢(u) € V: for all a,b € M,
Eun(p(u)aerb) = Ep(zjuerysaerd) = Epr(2: E(ysa)uerb) = Aaub,
while

Eun(ae1bp(u)) = Ep(aerbruery;) = Epr(aer E(bxiu)y;) = Aaub.

Suppose M is an algebra with idempotent f and conditional expectation E :
M — M satisfying the conditions above. Since M= MfM and nf = fn for each
n € N, there is surjective mapping of M; — M. By Condition (2), f = fa for
some z € M implies fzf = fE(z) = fz, and applying E, we see that z = E(z) €
N. Tt follows that the mapping M; — M is an algebra isomorphism forming a
commutative triangle with £ and Ey;. O

It follows from the proof that V' is also Kanzaki separable. The next proposition
shows that T} := T'E Ejs is a non-degenerate trace on V.

Proposition 1.11. We have the identity Ty o ¢ = Ty on U.
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Proof. Let uw € U. We compute using the symmetric product assumption that
yixs A = 1t

Ti¢(u) = Ty (ziuery;) = XTo(zuy;) = Ao (yiziu) = To(u). O

For the purposes of this paper, the symmetric product assumption may be re-
placed by the commutative triangle implied by the statement in the proposition.
This last condition holds trivially for an irreducible Markov extension as in [KN].

Since M;/M is also a symmetric Markov extension with index A~!, we now
iterate the basic construction to form My = M;es M7 with conditional expectation
En, (zeay) = Azy for each z,y € My and second Jones idempotent e;. We recall
the braid-like relations,

e1ege1 = Aeg
and
ese1e9 = Aes
established in [K2], and the Pimsner-Popa relations,
req = A_lEM(a:e])el Ve M

and three more such equations [KN].

2. PROPERTIES OF DEPTH 2 EXTENSIONS

Let M/N be a weakly irreducible symmetric Markov extension, which we recall
from the previous section as entailing three conditions on a Markov extension (E :
M — N,xz;,y;, \,T: N = k):

1. F: M — N is symmetric: Fu = uF for each u e U = CM(N).

2. U is Kanzaki separable and Tp|y is a non-degenerate trace.

3. yir; = A7' = x;y;; alternatively, Tyl = T1 0 ¢ where ¢ : U — V is the

anti-isomorphism defined in Eq. (20).

In this section, we work with the Jones tower above M/N:

B Enr Bty

— —
(21) N M < M < M,

We denote the ‘second centralizers > by A = Car,(N), B = Cy,(M), and the
‘big centralizer’ by C' = Cps,(N), which contains A, B. Note that U and V are
contained in A; V and W = Cy, (M) are contained in B. See Figure 1.

Definition 2.1. We say that M/N has a (weak) depth 2 property if the following

conditions are satisfied by its Jones tower:

1. FEpr has dual bases {z;}, {w;} in A.
2. Epr, has dual bases {u;}, {v;} in B.

We note that depth two conditions in [KN] are a special case of these. However,
the weak depth two conditions may depend on the choice of conditional expectation
E:M— N.

Remark 2.2. If M/N is a subfactor of a finite index von Neumann factor (i.e.,
[M : N] < 00) then the above notion of depth 2 coincides with the usual one.
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FIGURE 1. Hasse Diagram for Centralizers.

Note that the definition of depth two makes sense for a Frobenius extension M /N,
since for these we retain an endomorphism ring theorem stating that Frobenius
coordinates E, ;, y; for M/N lead to coordinates Fps(meym') = mm’ (m,m' € M)
with dual bases {x;e1}, {e1y;} for M1 = M @y M = End(My) as a Frobenius
extension over M [O]. (However, we no longer necessarily have F(1) = 1 and
e? =ey.)

We will denote by T' the restriction of the normalized trace Ty = T1 Fpr, of My
on C'.

Lemma 2.3. A, B are separable algebras with T|4,T|p as non-degenerate traces.

Proof. From the first of the depth two conditions, we see that Ey(azj)w; = a =
2 Epr(wja) for all a € A C My. Since z;w; = A7 and Ep(A) = U, we readily
see that A is a strongly separable extension of U/ with Markov trace of index A~1.
Similarly, B/V is a strongly separable extension with Eps, : B — V as conditional
expectation, dual bases {u;}, {v;} and index A~!. Tn particular, A is a separable ex-
tension of the separable algebra U, and is itself a separable algebra [HS]. Similarly,
B is k-separable. T|4 is a non-degenerate trace on A since it is a Frobenius homo-
morphism by transitivity: T'|a = T|v o Fm|a by the Markov property. Similarly,
T|p is a non-degenerate trace. (]

Lemma 2.4. As vector spaces, My = My @y B via the mapping mi; @ b — mqb.
Similarly, My = M Qpu A.

Proof. The inverse mapping is given by z — Eu, (zu;) ® v;. We note that
Ewn, (ybu;) @ v; =y @ E(buj)v; =y @b

for y € My,b € B, since Ep, (B) = V. The second statement is proven similarly.
O

We develop the following depth 2 properties for the algebra extension M/N
above in a series of propositions. We let E4 = Euy,|c-

Proposition 2.5 (Existence of Eg). There exists a B-bimodule map Fp : C — B
such that Fg|p = idp, Fp is a conditional expectation such that Fg(e;) = Al and
T(Ep(c)b) = T(bc) for allb € B and c € C.
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Proof. Let {a;}, {b;} denote dual bases in U for T restricted thereon. Tt follows
from Proposition (1.11) that the elements {¢; := ¢(a;)}, {d; = ¢(b;)} are dual
bases for the trace 7' restricted to V. Then define Ep by

(22) EB(C) = T(CUjCi)di’vj.

Since {ujc;}, {d;v;} are dual bases for T'= T'Eys, : B — k by transitivity, it follows
that Fg(b) = b and Eg(cb) = Ep(c)b for every b € B. The left B-module property
of Ep follows from: for all b € B,c € C,

EB(bC) = T(bCUjCi)divj = T(CUjCib)din = T(CUjCi)bdivj
since ujc;b @ djv; = uj¢; @ bd;jv; by Lemma (1.8).
Next,
T(Ep(c)) = T(cu;jc;)T(div;) = T(c)
since uje; T(djvy) = 1.
Finally, let F = EpFE4 and use the Pimsner-Popa relations as well as the ex-
pression for ¢~ to compute:

Eg(e1) = T(eruje;)div; = T(e1Ea(uj)e;)div;

/\_1T(€1 Feyuy)e;)div;
T()\_lEM(elci)F(eluj))divj
zrerT(Enr(er(Ealug))a;)biypv;
= Azpei Ea(uj)vjye = AMa,. O

Proposition 2.6 (“Commuting square condition”). We have Eq40Ep = Ego E4.
Proof. We compute: for each ¢ € C|
EsEg(c) = T(cuje;)d; Ea(vj) = T(cuj Ea(vj)e;)d; = T(ee;)d;
while
EpBa(c) = T(Ea(c)Ea(uj)ei)divy = T(Ea(c)ei)di Baluj)v; = T(cci)d;
by the Markov property TE4 =T. O

Proposition 2.7 (“Symmetric square condition”). We have AB = BA = C. More
precisely, A®y B = B®y A =2 (C as vector spaces.

Proof. We note that E4(C') = A and V. = AN B. The proposition follows easily
from the dual bases equations and the depth two assumption:

Ealeuj)v; = c = u;E4(vjc),

forall c € C. O
Proposition 2.8 (Pimsner-Popa identities). We have

A_legEA(ezc) = e, A_lEA(cez)EQ = ces

A_lelEB(elc) = ec, A_lEB(cel)el = cej.

As a consequence we have
0(32 = A@?, 620 = 62A
061 = B@l, 610 = 61B.
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Proof. Now esC' = es A and Ces = Aey follow from the usual Pimsner-Popa equa-

tions for Far,lc = Fa. At a point below in this proof, we will need to know
that
(23) C = A62A

This follows from
c= FEa(cuj)v; = A_lEA(czieQ)EQwi
for by the basic construction theorem u; ® v; = A~ ze0 @ eqw; in Mo ®nr, Ma.
Note that F(C) = U. We compute: for each ¢ € C,
erc = e1 Ea(cuj)v; = A_lelEM(elEA(cuj))vj
= A_lelT(F(elcuj)ai)bivj
)\_ST(cquM(ciel)el)elEM(eldi)vj
= A_lT(cujciel)eldivj = A_lelEB(elc)
Thus, e;C' = e1 B.
The computation ce; = A~ E';(ceq)eqr proceeds similarly, where
(24) Eg(c) = uje; T(d;vjc),

clearly defines a bimodule projection of C' onto B (cf. Proposition (2.5)). As a
result, we have C'e; = Bej.

We will show that Fp = FE% by showing that C' = Be; B and noting that
E%(e1) = Al by a computation very similar to that for Eg(e;) = Al above. Using
the braid-like relations and Eq. (23), we compute:

C:A62A2A626162A:C(310: B@lB. O

It is not hard to show that Fp : C'— B is isomorphic to the basic construction
of the strongly separable extension B/V, where C' = Be; B. Similarly, E4 : C — A
is isomorphic to the basic construction of the strongly separable extension A/U,
where C' = Aeq A.

As another remark, the irreducible separable Markov extensions considered in
[KN] trivially satisfies the weak irreducibility assumption as well as the conclusion
of Proposition (1.11). Tt follows that all the results of the next sections apply to
these.

3. WEAK HOPF ALGEBRA STRUCTURES ON CENTRALIZERS

Let f = f(0 @ f(® be the unique symmetric separability element [SK] of V =
Car, (M), and let w = [fT(f*)]=1 € Z(V) be the invertible element satisfying
FOT(vwfP)) = v for all v € V. Tn other words, f(!) @ wf(®) is the dual bases
tensor for T : V — k.

Proposition 3.1. The bilinear form,
(a, b) = X" *T(aeserwbh), a€ A be B,
is non-degenerate on A ® B.

Proof. If (a, B) = 0 for some a € A, then for all z € C' we have T'(aeze12) = 0,
since e1B = e1C (depth 2 property). Taking z = esa’ (¢’ € A) and using the
braid-like relation between Jones idempotents, and Markov property of T' we have

T(ad') = )\_IT(a62€1(52(1/)) =0 for all a’ € A,
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therefore @ = 0. Similarly, one proves that (A, b) = 0 implies b = 0. O

The above duality form allows us to introduce a comultiplication on B as follows:

(25) <(11, b(1)><(12, b(2)> = <(11(12, b>
for all a1,as € A, b € B, and counit ¢ : B — k given by (Vb € B)
(26) e(b) = (1, b).

A proof similar to that of Proposition (3.1) shows that (a,b) = A7?T'(bejeswa)
is another non-degenerate pairing of A and B. We then introduce a linear auto-
morphism S : B — B by the following relation

(27) (a,b) = A"2T(S(b)es eawa)

for all @ € A, b € B, or, equivalently,

(28) Ea(eaeqrwb) = Ea(S(b)eres)w

Note that we automatically have

(29) En, (eszwb) = Epr, (S(b)zes)w, for all z € M;.
Proposition 3.2. We note that: (for all b,¢ € B)

(30) e(b) = A7 T (eqwb),

(31) e(5(b)) = e(b)

(32) A =s71(fD) e

Proof. The formula for ¢ follows from the identity Fp(e1) = Al and T o Ep =T
g(b) = )\_2T(62€111)b) = A_lT(ezwb).
Then the second equation follows:

g(b) = )\_1T(62wb) = /\_2T(bEB(61)62w) = )\_2T(626111)S_1(b) = E(S_l(b)).
To establish the third formula, we use the Markov property, commuting square
condition and compute: for all a,a’ € A,

(a, ST N, FPy = )\‘ST(aegele‘l(f(l)))T E4o0 Ep(deiw)f?)

)\_ST( eleQwa T(EB(a'el)wf(g))
= )\_2T(EB(11 e1)ereswa)
)\_QT(aa ereaw) = (aad’, 1). O

The following lemma gives a useful explicit formula for S—1.
Lemma 3.3. For all b € B we have S“l(b) = /\_sw_lEB(elegEA(beleg)_)w.

Proof. We obtain this formula by multiplying both sides of Eq. (28) by e1es on the
left and taking Eg from both sides. O

Corollary 3.4. We have S(V) = W, where W = Ch, (M).
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Proof. Let us take y € W, then using Lemma (3.3), the commutingsquare condition
and the Markov property we have

S_l(y) = /\_311)_1EB(eleQelEA(yEQ))w
/\_Qw_lEB(elEA(yez))w eV
Therefore, S (W) C V and since W = V as vector spaces, we have S(V) =W. O
Lemma 3.5. For all b € B we have b = wS™ (wS™ (h)w=Hw™?!.

Proof. Using non-degeneracy of the duality form and definition of S we compute
for all a € A:

T(aese1d) = A_lT(EA(baez)EQel)
= A_lT(EA(EQIIMS_l(b))w_16261)
= T(eQawS_l(b)w_]el)
= T(EA(11)5_1(b)w_leleg)um)_la)
= T(aFa(ezerwS™ (wS™ (H)w™"))w™'),

whence the formula follows. O

Proposition 3.6. S is an algebra anti-homomorphism, i.e.,

S(bb') = S(¥')S(b)  for all b,b € B.

Proof. We use the non-degeneracy of the duality form:
T(aegele_l(b’_)w_ls_l(b)) = A_lT(w_lEA(S_l(b)aez)EQele_l(b’))

= )\_IT(EA(w_legawS_z(b))w_lege]wS_l(b'))
)\_1T(bl€162EA(€2aw5_2(b))w_1)
T(wS_Q(b)w_lb'eleylw)

= T(aeserwS™ (wS™2(b)w™ b )w™1),
therefore, we have S~ (0 )w=1S~1(b)w = S~ (wS~2(b)w~1b’). Using Lemma (3.5)
we conclude that

ST SN (wST2(B)w™ ) = ST )wT ST (b)w = ST H(wSTE(b)w™Y).

We replace wS~%(h)w=! by b to obtain the result. O

Corollary 3.7. For all b € B we have S?(b) = gbg~™" where ¢ = S(w™"w. In
particular, S%|y = idy from (3.4), so S maps V to W and vice versa, as well as
S?lw = idyw.

For example, we obtain A(1) = S(f(") @ f(2) from this and (3.2).
Lemma 3.8. For allb€ B and v € V we have
(33) A(by) = A(B)(v® 1).
Proof. Let a,a’ € A then
(a®ad', A(bv)) = (ad, bv)=(vad, b)
= (a, bayv)(d, b)) O

Now we are in the position to establish the unit and counit axioms for B.
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Proposition 3.9. We have
(34) (deAAMN) =AM )(1aA(1) =1 A)(A(1) 1)

Proof. We have seen that A(1) € W @ V, therefore (1 @ A(1)) and (A(1) ® 1)

commute. By Lemma (3.8),

(tTeA)amel) =

MY @ 10)f@ @ 1)

o«
ST eAr®) =(dea)A(). O

Proposition 3.10. For all b,c,d € B we have

6(bcd) = E(bC(l))E(C(z)d) = 6(1)6(2))5(6(1)(1).

Proof. First, one can define a coalgebra structure on A using the duality form from
Proposition 3.1 and show that A(14) € A® Ca(N). Then we compute:
g(bed) = )\_lT(ezwbcd)
= A_ST(EA(d62)6261wa)
= (L, b)Y AT Ea(des) 1z, c)
= (1ay, b)(1(2), ) X A LE A (des), cqy)

= 6(1)6(2))5(6(1)(1).
Note that in the third line E4(des) commutes with each of the elements in {1(2)} -
U, so that g(bed) is also equal to e(be(1))e(ca)d). O

The next step is to prove that A is a homomorphism. To achieve this we first
need to establish a certain commutation relation (see Proposition (3.13) below)
that corresponds to the two different ways of representing C' = AB = BA.

We will need several preliminary results.

Lemma 3.11. The following identities hold for allb € B and v € V:

(a) S71(es) = wleqw,

(b)(1®v) = A(b)(S(v) @ 1),

)
(c; AT Ea(eqwb)w™! = e(b1(1y)1(2),
) AB)A(T) = A(b).

Proof. (a) We have T'(aeseqwS™"(e3)) = T(esereqwa) = T(aesereqw), whence the
result follows by non-degeneracy of the bilinear pairing a @ b — T'(aeqe1b).
(b) We compute, using part (a) and the anti-multiplicativity of S:

)\2<a, 5_1(1)62)> = T(vesereswa)
= T(a6261w5_1(1)62))
= )\T(GBQU)S_I(’U))
= T(S7'(v)esereawa) = A*(a, STH(S™(v)es) ).
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(c) Since both sides of the given equation belong to V, it suffices to evaluate
them against T'(-v) for all v € V:

T()\_lEA(Ewa)v) = A_lT(€2111b1)) = A_lT(1)6211)b)
T(e(bl))lyuwe) = e(dS(FN)T(vwf®)
= e¢(bSw)) = A~ 1T(62wbS(v))
= AT (veqwb),
where we used part (b).
(d) We evaluate both sides against elements of A® A (note that S(v) commutes
with A):
(a@a', byS(v) @ b)) = )\_QT(S(U)aezelwb(l)x a', beay)
= )\_2T(111)6261wb(1))< a', beay )
= (av, by )(d', b)) = (avd’, b)
= <(1®al,b(1)®b(2)v>.
(e) From part (d), properties of S and the separability element f we have
ABAM) = bayle ® byl b( )5(1< 1) @ be2)
= b(l ( 2 ) )® b( 2)- O
Applying S to part (a) above, we obtain from part (b):
(35) S(es) = weqw.
Proposition 3.12. For all a € A and b € B we have

(i) A"'Eg(e1wba) = (a, by >wb(2),
(ii) A_lb(Q)EA(egwb(l))w_l =b.

Proof. (i) Let o' € A then
(a', \"lw ™ Ep(eqwba)) = A73T(a'eses Ep(eqwba’))
= )\_QT(a'tigelwba') = (aa', b)
(a', (a, bay)bez)).
(i) From Lemma (3.11) (c) and (e) we have
A_lb(Q)EA(ewa(l))w_l =e(bayl))biyly =>4 O
The next Proposition (cf. [KN], 4.6) is the key ingredient in proving that B is a
weak Hopf algebra acting on M.
Proposition 3.13. For all b € B we have
(36) wleqwh = A_lb(Q)w_lEA(ezelwb(l)).

Proof. First, let us note that for all ¢1,¢5 € C we have ¢; = ¢5 if and only if
Ep(cia) = Ep(cga) for all @ € A. Indeed, if ¢ € C' and Eg(ca) = 0 for all
a € A then T(abc) = T(bEp(ca)) = 0 for all b € B. But since AB = C and T is

non-degenerate, we conclude that ¢ = 0.
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Let ¢4 = w™leqwb and ¢q = A_lb(Q)w_lEA(EZE]wb(l)). We compute, using
Proposition (3.12) and the commuting square property:
Eg(cia) = w_lEB(elwba) = w_1<a, by ywb(a
= {a,ba))be),
Ep(cqa) = A_lb(Q)w_lEBoEA(egelwb(l)a)
A_lb(Q)w_lEA(ezEB(elwb(l)a))
= )\_1<a, bey >b(3)w_1EA(egwb(2))
= {a,ba))be),
whence the result follows. O

Corollary 3.14. For all b € B and z € M; we have
(37) wlzh = /\_1b(2)w_1EM1 (ea2b(1)).

Proof. This follows from the fact that every z € M; can be written asz = ), z;e1y;,
where z;,y; € M commute with B. O

Corollary 3.15. For all z,y € My and b € B and we have
(38) Enr, (eswyzd) = /\_IEMI(Bwab(Q))w_lEMl(egwmb(l)).

Proof. This is obtained from Corollary (3.14) by replacing 2 with wa, multiplying
both sides by eswy on the left, and taking E4 from both sides. O

In order to prove the multiplicativity of A we first need to establish anti-
comultiplicativity of S.

Proposition 3.16. S is anti-comultiplicative, i.e.,
(39) AS(b) = S(beay) @ S(b1y) for all b € B.
Proof. Let a,a’ € A then using Corollary (3.15) and Lemma (3.11d) we compute:
(ad’, S_l(b)> = )\_BT(elegEA(ezwaa'b))
= )\_4T(6162EA(ezwab(Q))w_lEA(62wa'b(1)))
)\_2< w_lEA(egwab(z))w_lEA(62wa'b(1)), 1)
AT 2( w_lEA(GQUJab(Q)), Ly ¢ w_lEA(EQU)alb(l)), L(2) )
' GT(S(l(l))6162EA(Ezwab(z)))T(S(l(z))el62EA(62walb(1)))
AT 4T( 5(1(1))eleQwa)T(b(l)5(1(2))6162wa')
(
(

a, S 1

(b2 5(( )))(a S~ (b
a, 1(b2)
~(bz)

1 1S (12))))
W', STHba)11)S(1)))
= (a, W', S7Hbw)),

since f(2) f(1) = 1, whence the proposition follows from non-degeneracy of (, yand
bijectivity of S. (]

Proposition 3.17. A is a homomorphism of algebras:

(40) A(bb) = A(B)A(Y)  for all b, € B.
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Proof. Using the definition and properties of S and Corollary (3.15) for all 2,y € M,
we have:

EMI(S(b)mw_]yeQ)w = FEumy (egmw_lywb)
= A_lEMl(EQJ:b(Q))w_lEMl (eaywb(1y)
= )\_]EMI(S(b(Q))Iw_]EQ)EMI(S(b(l))yEQ)w
and using Corollary (3.16) and bijectivity of S we obtain:
(41)  Ewr, (bzyes) = A_lEMl(b(1)$62)EM1(b(Q)yeg) for all z,y € My,b € B.
Next, using the duality form we have: for a,a’ € A,
(a@ad', A(bb')) (ad’, bb")
_1<EA(b'aa'62) b)
= A(Ea(biyyaea), by )( Ea(blsyaes), bea))
= {a, baybiay X a', baybia) ),

as required. O

Next we establish properties of the antipode with respect to the counital maps.

Proposition 3.18. For all b € B we have the following identities:

(42) Sbapbe = Laelble),
(43) b(l)S(b(2)) = 6(1(1)b)1(2).
Proof. To establish the first relation we compute, using Eqn (41), for all a € A:

(a, STH(bay)w b)) = AT Ea(wbyaes), ST (b))
= )\_4T(EA(w_]b(g)aeg)egEA(6261w5_1(b(1))))
= )\_ST(EA(b(2)a62)EA(b(1)e]62))
= )\_QT(belaez).

Next we recall the formula for A(1) from Proposition (3.2), formula for S$? from

Corollary (3.7), Lemma (3.11d), and that A(w) = A(1)(w @ 1) = (w ® 1)A(1):
(a, 1(1)6(b1(2))> = y Ty >T(€2wbl(2))

= LN (eawb fP))
_1(EA(62wbw_1_))>
(ezwbw_l)eleQwa)
_2T(egwbw_1elwa)
wa, S_l((wbw_l)(l)_)w_l(wbw_l)(g)>
a, S_l(wb(l)w_l)w_lb@)w)
a, S_l(wS(w_l)b(l)S(w)w_l)b(g))
a, S(b())b(z) )-

The second identity follows from the first by (3.2), the symmetry of f and the
anti-(co)multiplicative properties of the antipode imply

bayS(by) = S(S(STH(B)1))ST (b)z)) = S(11))e(S™" () 1(2))
= E(S(l(g))b)S(l(l)):E(l(l)b)l(g). O

|
—
S~
Q
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At this point we define the two mappings &, : B — V and ¢, : B — W given
by e:(b) = e(1(1)b)1(2), and e5(b) = 1¢1)e(b1(2)), corresponding to the right-hand
side of the equations in Proposition (3.18). They are called the target and source
counital maps, respectively (cf. Section 1). By a computation quite similar to that
for Lemma 3.11(c), we may check that:

(44) er(b) = A" E 4 (be2).
Indeed, we have for each v € V,
T(e(1)8) L) = £(S(ow™)8) = X T(eawS(w™)S(0)b) = A~ T(ezu)
while also T(A™T E 4 (beg)v) = A= T (eqvb).
Theorem 3.19. (B, A, ¢, S) is a weak Hopf algebra.

Proof. We have shown all the axioms listed in [BNS, 2.1], except the one we show
below. At a point below, we let ' = S(b), at another 6" = wb’, and use Eq. (37)
as well as Lemma (3.8). For all b € B,

S(b1))b2)S(ba)) = A‘lS(b(l))EA(b(Q)eg)
= )‘_lbl(z)EA(S_l(b/(l))EZ)
= A by Ea(cawg™ byyg)w ™!
= )\_lbl(2)EA(52'lUbl(1)S(w_1))
= A‘lb’(’z)w‘lEA(eQb’(’l)) =w " =Sk). O
From Eq. (44) we see that ey is a normalized left integral in B:
bes = A" Ea(bes)es = e4(b)es.

Defining a comultiplication and counit on A similarly to Eqgs. (25) and (26), as
the dual of multiplication and unit on B, and an antipode S4 on A by (Sa(a),b) =
(a, S(b)), the corollary below follows from the self-duality of the axioms of weak
Hopf algebra [BNS].

Corollary 3.20. A is isomorphic to the weak Hopf algebra dual to B.

4. AcTION AND SMASH ProbpuUCT

In this section we define an action of B on M suggested by the measuring in
Eq. (41), and show that this is isomorphic to the standard left action of a weak
Hopf algebra on its dual. We then show that M is the subalgebra of invariants of
this action, and that M5 is isomorphic to the smash product of M; with B.

Proposition 4.1. The mapping > : B ® My — My given by

(45) bz = A" Ey, (bres)

defines a left action of a weak Hopf algebra on M, characterized by
(46) brma =m(acz),blaq)

for each m € M,a € A, b € B; whence M is the invariant subalgebra of this action.
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Proof. From Eq. (41) it follows that » satisfies the measuring axiom. From Eq. (44)
it follows that o> 1 = ¢;(b). The action of B on M; is a left module action of an
algebra by the Pimsner-Popa relations and Far, (zes) = Az for 2 € M.

Recall that My = M A. Since B = Cy, (M), it is clear that b>ma = mbr a for
every m € M. We compute for every a € A,b,b' € B:

(a@y, b ) a@y,b) = (a,b'b)
(A" E4(baes), b")
(bra,b")

whence Eq. (46) follows. Thus the action of B on A coincides with the standard
left action of a weak Hopf algebra B on its dual B* = A [BNS, 2.14]. Since the
invariant subalgebra AP is k1, it follows that M = M. O

The next proposition provides a simplifying formula for this action. We will need
the equation,

(47) b1)S(bez))b) = b

for each b € B, which follows from Eq. (43).

Proposition 4.2. For every b € B,z € M1, we have
box =b)zS(b)).

Proof. We use Eq. (38), Lemma (3.11d) and its opposite (obtained by applying
S ® S), Proposition (3.18), and Eq. (47) in the next computation: for every b €
B, xr € Ml,
b(l)l‘S(b(Q)) = A_lwa(b(Q))w_lEMl(ezl‘S(b(g)))
A_lb(l)S(b(z))EMl (GQIS(w_lb(g)w))
= A_let(b(l))EMl(w_lgb(2)$62)w
= A_lEMl(S(w_l)ba:EQ)w

Next note that A(v') = 1® v’ for all v/ € W, which follows from an application of
S to Lemma (3.8). Then let ' = S(w~=')b and compute:

b ox= (S(w)b')(1)xS((S(w)b')(2))w_1 = bEl)xS(S(w)bEQ))w_l = b’(l)xS(bEQ)). O

Theorem 4.3. The mapping ¢ : x#b — xb € M> defines an isomorphism of the
algebras My and the smash product My #B.

Proof. That v is a linear isomorphism follows from Lemma (2.4).
That 1 is a homomorphism follows almost directly from Eq. (47) and the con-
jugation formula in Proposition (4.2):

br = b(l)l‘&?s (b(g)) = (b(l) g Jr)b(Q),
since for all ¥’ € B: ¢,(b') = S(b’(l)_)b’2 €W = Cun, (M). O
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Action of A on M. In this subsection, we define a left action of A on M by a
formula similar to that for > of B in Proposition (4.2). Denote the antipode of A

by S below. We let €5 and &; again denote the right and left counital projections
on A.

Lemma 4.4. The counital projection €; on a weak Hopf algebra A is a left module
homomorphism aA — aq A with respect to the natural and adjoint actions of A on
itself.

Proof. We compute using Proposition (3.10) and other known properties of weak
Hopf algebras: for each a,a’ € A,

a(l)Et(lll)S((l(g)_) = ¢£la

= &(ad). O
Proposition 4.5. The mapping>: A ® M — M given by
(48) a>m = agymS(a))
is a weak Hopf algebra action of A on M.
Proof. First we check that abm € M given m e M,a € A. Let p: M1 — M1 ® A,
p(r) = (o) @ x(1), denote the coaction dual to the action B ® My — M; above.

Then b2 = z(g)(2(1),b). It follows from Eq. (46) that p restricted to A is the
comultiplication:

a(0) ®aq) = aq) © ag2).
Since M is shown above to be the invariant subalgebra of this action of B on M,
it is also precisely the coinvariant subalgebra of p. We then compute using Lemma

(4.4):

agym(o)S(agy) @ agee(m))Sags))

= amym)S(ag)) @ er(a@ym))
t

((1 > m)(o) X e (((1 > m)(l))

pla>m)

whence a>m € M.
Since e5(A) = V = Cur, (M), we compute that > measures M:

(a@y>m)(ac) > m') = a(l)mS(a(Q))a(g)m'S(a(4))
= ( 1Es (a))mm’S(ae))
= av(mm).
We note also that a> 1 = £;(a) and that
av (a'>m) = (ad')pm

by the homomorphism and anti-homomorphism properties of A and S. Finally,
1 >m = m since both 1(1y and S(1(2)) belong to V', while 1(1,5(1(3)) = 1a. O

Theorem 4.6. The mapping ¢ : m#ta — ma € M, defines an isomorphism of the
algebras M7 and the smash product M#A.
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Proof. That ¢ is a linear isomorphism follows from Lemma (2.4).
That ¢ is a homomorphism follows from the conjugation formula in Proposition
(4.5):

am = aqyme; (acz)) = (ag) >m)ag,
I
(2

since for all @’ € A: g,(a )—S(a’(l)) )EV Chr, (M). O

Proposition 4.7. Under the action of A on M, N = M4,

Proof. If n € N, then for every a € A:
avn =amnS(ap)) =e(a)(1vn) = Lae(a)nS(1(z)) =e(a) > n,

using [BNS, 2.4, 2.7a, Prop. 2.4].
We similarly compute for each z € M4, a € A:

zS(a) = e&s(ap))eS(a ())
= Slam)(ap )
= S(ag )( t(ac
= S( (1)_)6,3( (2 )_) a ):L’S(l(g)) = S(a)(l I>:B) = S(a).l‘
From the bijectivity of S : A — A and e; € A, it follows that e;z = zeq, so that
rer = erxzer = E(x)er, whence ¢ = E(x) € N. O

5. AppPENDIX: THE CoMPOSITE BAasic CONSTRUCTION AND A DeEpTH Two
EXAMPLE

In this appendix we discuss the two unrelated topics in the title.

Extending the Jones tower in (21) indefinitely to the right via iteration of the
basic construction for a subfactor N C M of positive index A~!, Pimsner and
Popa [PP2] have shown that the basic construction of the composite conditional
expectation

F, =FoFEpmo...0oEym,_,: My— N
is isomorphic to Ms,,+1 with Jones idempotent f,, € Ms, 41 given by

(49) fn = )\_n(n+1)/2(€n+15n " '51)(5n+26n+1 e '52) T (@2n+162n e '€n+1)~
We will prove here that the same is true in the more general algebraic situation
where M/N is a strongly separable extension of index A=!. We do not need a

Markov trace here. This appendix is not needed in Sections 3 and 4.
Let Fayy, = Epr, 00 Epg,, t Mapy1 — My,

Proposition 5.1. f, is an idempotent satisfying the characterizing properties of
a basic construction:

Moy = My, fu M,
faxfn = foFa(z) = Fa(z)fn, Vo€ M,
Far, (fa) = A4,
Proof. The proof in [PP2] that f2 = f,, Far, (fu) = A"t 1 and £, F,(2) = F.(2) fa
is valid here as it only makes use of the e;-algebra A, x, the subalgebra of M,

k-generated by eq, ..., e,, and an obvious involution on it. Note that the theorem
is true for n = 0 (where fy = e1). Assume inductively that the proposition holds
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for n — 1 and less. We use the induction hypothesis in the second step below, and
the Pimsner-Popa identities for sets f,_1 Msp_1 = frn—1 Mp—1 in the fifth step:

Moy 41 = Msnean 41 May,

Moy 169y Moy _ 12741 Moy 169, Moy
Man_1eaneany1 Mp_1fno1Mp_1€2, Map_1

Moap_sean_1€an€any1 Man_afn_1Map_se3p€2n 1Moy _»
= Map_2€9n_1€3n€2m 41 frn—1€2n€2n—1Map_»
— = Mnen-l-l s '62n+1fn—162n . '6n+1Mn - Mnann;

the last step by [PP2, Lemma 2.3].

Let 72 denote the shift map of A, x — Anja x induced by e; — €45, Tt
follows from the induction hypothesis that 7%(f,_1) is the Jones idempotent for
the composite expectation

e~

Fo 1 =FEyp,0---0Fpy, : Mpy1 — M.

Let © € M, and 2’ = Fpu,_,(z). For the computation below, we note that
ent1Zent1 = 2'enq1 and by [PP2, Remark 2.4]:

o= A" (engren - e1)T (Faz1)(e263 - €ng1).

We compute:

faxfn = AN (eng1 1) (faz1)(e2 - eny1)r (engr - e1) T (Fao1)(e2 - -ent1)
= )\_Zn(en+1 - '61)Fn—1(62 e '6n$'€n+16n e '6261)72(fn—1)(62 e '6n+1)
= X "(eny1-€e1)Emo- Em,_, (:17)617'2(fn_1)(6263 Cepgt)
= Fn(:L‘)fn O

As a final topic in this appendix we provide examples of depth two extensions
in the next proposition and corollary.

Proposition 5.2. Suppose M/N is a weakly irreducible, symmetric, strongly sep-
arable extension such that its bimodule projection £ : M — N has dual bases in
the centralizer U/. Suppose moreover that the center C' of U coincides with the
center Z of N. Then M/N has depth two.

Proof. Let z;,y; € U = Cy(N) be dual bases of E. It follows that M = N @z U
via m — E(mz;) ® y;. By the symmetry condition on F, F restricted to U is a
trace with values in 7 = C'. Then Az; ® y; is the symmetric separability element
and

U = Az;uy;

gives a C-linear projection of U onto C coinciding with F|gr, since U is an Azumaya
C-algebra [SK, Section 3].

Let z; = A" zjeq and w; = e1y; in My: these are dual bases of Fpy : My — M
by the Basic Construction Theorem. But we see that z;, w; € A.

Next we compute that there are dual bases z},y; € V = Cu, (M) for Epr. By
the construction of the last paragraph, it follows that Fas, has dual bases in B,
whence M/N has depth two. We let 2} = z;z;e1y; and y; = zryieiyx, both in V.
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It suffices to compute for a,b € M:

Ey(aE(bxjzi)eiy;)y;
AaFE(z:ibx;)y; xryse1yn
Aaz;zpyie1yrb

En(aeibz})y:

= ae1E(zr)ypb = aeqd

Similarly we compute #} F(y;ae1b) = ae1b by using the equivalent expressions z} =
zjerx;y; and Yy = zpeyiyn. O

For the next corollary-example, we need a few definitions. An algebra A is central if
its center is trivial, Z(A) = k1. A ring extension M /N is H-separable (after Hirata)
if there are elements f; € (M @ M) and u; € U = Cp(N) such that e; = u; fi,
where e; again denotes 1 @ 1 in M @n M [K2].

Corollary 5.3. Suppose M/N is a split H-separable extension of central algebras
where U is Kanzaki separable. Then M/N is a depth two strongly separable ex-
tension.

Proof. By the results of [XY, Theorem 2.1], the center of U is trivial and N@U = M
vian ® u — nu for n € N,u € U. But by hypothesis U has non-degenerate trace
t : U — k with dual bases z;,y; € U. Tt follows that F : M — N defined by
E(nu) = Ant(u), where A=! = #(1), has dual bases in U/. The conclusion now
follows readily from the proposition. O
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