ON THE ASYMPTOTIC DISTRIBUTION OF A STATISTIC
FOR TEST OF APPEARANCE OF LINEAR TREND

By J.M.P. ABinb2, B. CARLssON? AND D. JARUSKOVA*

Consider the stochastic process Y (t) = (W (t)/vt, (f(;5 zdW (z)— %tW(t))/\/t3/12)
for t >0, where {W(s)}s>o is a standard Wiener process. The Euclidian norm
|Y ()2 of this process arises as the asymptotic (large sample) distribution of a test
statistic for a change point detection problem of appearance of linear trend. We
study the asymptotic behavior of P{SUPte[a,l] [Y(t)]?>u} as u— oo for a fixed
a €(0,1), and when a = a(u) | 0 at a certain rate as u — oo. Of course, the
statistical interest in these asymptotics lie in the possibility to obtain approximate
test levels for the mentioned statistical test.

1. Introduction. Let {W(t)}:cr be a standard Wiener process, and define

W(t) f&dW(@-%tW(t)) _ (W(t) %tW(t)—fgW(S)ds)_ 1)

Vit V/13/12 Vit \/13/12

We study the asymptotic behaviour of P{supte[a’l] Y (t)]?>u} as u— oo when

Y(t) = (

a€(0,1) is a constant, as well as when a=a(u) |0 at a certain rate as u— oo.
Consider a change point detection problem of appearance of linear trend, where

the null hypothesis “Hy : X;=e; for i=1,...,n” is tested against the alternative

ao—l—al%—i-ei for i=1,...,k

) , for some k€N and agp,a;€R”.
€; for i=k+1,...,n

“lexz:{

Here {e;}$°, is standardized discrete white noise. Under Hj, the test statistic

max (ixi)z/m(ié(;—g—;l)xi)z/(i(g—’;—ff) b sup [Y(D)2

[an]<k<n \;—7 i=1 t€la,1]

as n— o0o. Hence it is important to study the distribution of sup,e(y, 17 Y (£)[%
The literature on extremes of the norm of vector-valued Gaussian processes is

rich, and includes, for example, Sharpe (1978), Lindgren (1980, 1989), Albin (1990
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Section 4, 2000a Section 5), and Piterbarg (1994). However, the component pro-
cesses Y7 and Y3 in (1.1) are dependent, while the literature on non-differentiable

processes only deals with independent components, and thus does not apply to Y.

2. The case with a fixed «a€(0,1). Here we establish that

lim u'e?" P{supte[a,l] Y (t)]?>u} = —In(e) for a fixed a€(0,1).

uU— 0

This result follows immediately from our first theorem:

Theorem 1. For the process X (t) =Y ('), t€R, with Y given by (1.1), we have

lim u_le%”P{supte[O’h] X@®))*>u} =h for h>0.

uU—r 00

The proof uses Albin (1990, Theorem 1) and Albin (1992, Proposition 2), to-
gether with Albin (2000b, Lemma 1), which is stated here for easy reference.

Lemma 1. Let Z= o2 Aon2 where {n,}32, are independent N(0, 1)-distributed

n=1
random variables and A\ =...=AN>Any1>...20 are constants. There exists a

constant K =K(N)>0 (that depends on N only) such that

P{Z>u} <K exp{ (Z;:O:;?:fil):;ill/)AN—H)

}(u/)\l)%N_le_%“/)‘l for u>0.

Proof of Theorem 1. Since |X(0)|? is x?(2)-distributed, we have
P{X(0)>>u+2z} /P{|X(0)?>u} =e*  for z>-1lu (2.1)

Hence Albin (1990, Eq. 2.1) holds for |X|?, with w(u)=2 and F(z)=1—e"2.

For the process X in R? we have
X(t) = (X1 (), X2(8) = (X (0), V(X2 () 2! e} X1 (s)ds)).  (22)

where X is a stationary Gauss Markov (Ornstein Uhlenbeck) process with covar-

iance function Cov{X(s), X1(s+t)} = e !*//2. By routine calculations, we get

X1(s) 1 0 e 2t /3(e3t_e3t)
Xs(s) _ 0 1 0 e~ 3t
Var X1 (s+1) = o— bt 0 1 (2.3)
X2(8+t) \/g(e—%t_e—%t) e—%t 0 1

for t>0. Hence X5 is also a stationary Gauss Markov process and X is stationary.

The four eigenvalues of the variance matrix in (2.3) are given by
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1+e 2 \/2e2t 3et+2+2(et—1) —et+1

(This can be conveniently verified with mathematical programme packages like for

example Mathematica.) The two largest of these eigenvalues are at most

A(t) =x(t) =1 +e_%t\/2e2t—3et+2 +2(et—1)y/e2t—et+1 <2 —Cqt

for t € [0,h], for some constant C; = Ci(h) € [0,(2h)7]. The two smallest

eigenvalues are at most A3 = A4 = 1. Using Lemma 1 we readily obtain

P{|X(0)]*>u, | X(qt)?>u} <P{|X(qt)>+|X(0)]*>2u}

6-(+2) | _ujniar)
2 (1 —Clqt)

<Ke].8 ——C]_t —§u

< Kexp{

:Kelse_%cltP{|X(0|2>u} for u>4 and qt<h.
(2.4)

It follows that Albin (1990, Condition B) holds for the process |X|? = {|X (¢)|?}ter-
By (2.3), (X1(t) X2(¢))" is independent of

(B4) - (5)- (2 5) (35
Zg(t) o Xg(t) 0 e%t XQ(O)
for t>0, where
Var{Z;(t)} = 3e*—6e*+4e'—1 < 3(e**—1) < 9te® and Var{Z,(t)} =e*—1.
By elementary matrix algebra we have

( ELIVETCHAE lt)) <X1(0)) _ <X1(0)>

0 est X,(0) X,(0)

when | X (0)| <u. Moreover, we have

VI+2n/u—1> 1nju> Injut /443 (e327" —1) > Ly /u+ /443 (e3 % -1)

for 0<+vt<n<{s <u. From this we conclude that

2
3¢
2

< (4+V/3) (e2?

P{|X(qt)]*>u+2n, | X(0)* <u}

P{|X (qt)~ X (0)| > in/Vu, |X(gt)|*>u, [X(0)P <u}



< P{|2(at) > bn/va— 1V 1) Vi, (X (qt) P> u)
(P{z1 gt)2> Ln/u} +P{Zy(gt)>> Ln 2/u}) P{|X(0)2>u}

<2P{N(0,1)?> sXe 2/t } P{|X(0)*>u}  for 0<Vi<n< i <u.

Hence, by Albin (1992, Proposition 2), |X|? satisfies Albin (1990, Condition C).

By routine calculations, we have, for any event A,

T=o00 0=27
P{A|1(X(0))P-u)>0} = [ [ P{A]|X(0)=vu+2z(cos(f),sin(6))}

=0 6=0 2me®

Since Zi(s) = X1(s)—e~2*X1(0) is independent of X;(0) for s>0, and X(0)
is independent of X (s) for s>0, (2.3) further shows that, with obvious notation

(writing =p for equality of finite dimensional distributions),

(IX®)1?] X (0)=(y, 2))
=5 (Xl(t)2+3(X1(t)—e_%t( —2 [ye? (70 Xy ( )d5)2

<o>=y)

=p (%1 (t)-i—e_%ty)2 + 3(21 (t)— (e 7P—e~ 2t)y+ %e_%tz — 2f0te%(s_t)21(s) d5)2.
Since the finite dimensional distributions of /u Z1(qt) converge to those of W (t)
as u— 00, it is now a straightforward matter to deduce that
(%(|X( "~ )| X (0) = Vut2z(cos(6), sin(0)) )
p (cos(0)+v/3 sin(0)) W (t) — 3 (cos(0)+v/3 sin(0))% + z as u— 00
=p \/EW(%(COS(O)—{—\/g sin(0))?t) — 1 (cos(d )+V3sin(9))%t +
(where —p is convergence of finite dimensional distributions). Picking random var-

iables ©® and U with uniform distribution over [0,27] and unit mean exponential

distribution, respectively, such that ©®, U and W are independent, we thus get
(3(X®)=w) | 3(1X(0)P~u)>0) =p V2W (3¥1t) - 3¥i+ T,

where ¥ = (cos(©)++/3 sin(©))2. Hence | X |? satisfies Albin (1990, Condition A (0)).
By application of Albin (1990, Theorem 1) to the process |X|?, we obtain

u) P{Supte[o,h] X (t)]>>u}
hP{|X(0)[>>u}




1
— lim —P{sup\/iW(%J/ak) —iWak+U< 0}
all0 a k>1

27 1 3 2
:/ 1im7P{sup\/§W(ak)—&k+Ugo} (cos(0) + V'3 5in(6))* db
o aloa k>1 2 2

1
:hmTP{sup\/éW(ak)—ango} as  u— oo.
a0 a k>1

Here well-known results for extremes of Gaussian processes [e.g., Albin (2000c)]
show that the limit on the right-hand side equals H; =1, where {H,}qac(0,2) are
the the famous constants introduced by Pickands (1969). O

3. The case when «a=a(u)]0. Here we establish the double exponential law
ulgglo P{Supte[exp{_ufleu/2},1] LY () P—u) <z} = exp{—e~"} for zeR.
This result follows immediately from our second theorem:
Theorem 2. For the process X (t) =Y ('), t€R, with Y given by (1.1), we have
ulgIolo P{Supte[()’uqeu/g] X ®)P—u) <z} = exp{—e~"} for zeR.

The proof relies on Albin (1990, Theorem 5), which in turn builds directly on
Leadbetter and Rootzén (1982, Theorem 4.3).

Proof of Theorem 2. By Theorem 1 together with Albin (1990, Theorems 2.c and
5), it is enough to verify that Conditions D’ and D(0) of Albin (1990) hold: By
(2.3), (X1(0) X2(0))" is independent of

= (320) - (oo o) (R0)
for t>0. Here (2.3) shows that
Var {@;Eg)} B (\/3 (1e;e—_(:—2t) 1—3£$;Zj§t_—2i1)e—3t>

for t>0, the eigenvalues of which are given by

(1—et) (1—e_t+ 2¢~% + 2e_t\/1—e_t+e_2t) <1436t

Also notice that

N

l\DN>P—'N>

N N

o~ o~

N N

N—
I

Z(t)| > |X ()| — Cae 2| X (0)] > (1-Cae™#t)[X(0)]  when  |X(8)] > [X(0)],
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where Cy = (4++/3)'/2. Tt follows that

P{|X(0)]*>u,|X(®)|*>u} = 2P{|X(®)]*>|X(0)*>u}
<2P{|Z(t)| > (1—Cae™ ") /u} P{|X(0)|*>u}
< 2P{(1+3e")|X(0)[>> (1-Coe™*)2u} P{|X(0)|*>u}

(1 Cge t)2
2 (1+3et)

< 2exp{ }P{\X(O)\2>u}.

Picking a constant A >0 such that 1—Cse™ 2 h'> 0, this gives

[21n(u)/(ag)] | ey
S, P{[X(agk)?>u||X(0)*>u} <4 I;(;i) exp{_( Coe2h) u} i

k=[h/(ag)]+1 2(1+3eh)
(3.1)
as u— oo for each choice of a>0. Moreover, we have
[xet/?) (1-Cs/u)?u
> P{|X (agk)]*>u||X(0)*>u} < 2)\e“/2exp{——2} — 0
k=[21n(u)/(aq)]+1 2(1+3/u?)

as u—oo and A]0 (in that order), for each a>0. This together with (3.1), show
that Albin (1990 Conditions D’) holds for |X|2.
Inserting X;(t) =p f e2(s=DdW(s) in (2.2), routine calculations give

X(t) =p (fj e2(0dW (s), V12 [t e2<8—t>—§e%(s—t>)dW(s)).
Given constants a >0 and 0<A<7<o00, pick §1<... <5, <t;1<...<tlpy in

{agk : ke, Ogakqgnfle%“} with ¢ —sp> Au~lez¥. We shall verify that

p P’
i (P{ A 1xGoP<u, N 1X ()<}
U—00 i=1 j=1
P P’
—P{N{IX(s)P<ub}P{ N {\X(tj)|2ﬁu}}> —0.  (32)
=1 1=1
To that end we introduce the truncated process
X(r;t) = (f e2(s— t)dW \/_f es(s—t)_ 1 (s_t)) dW(s)) for r<t.

Notice that the components of X (r;t) = X (£)—X(r;t) have variances

Var{X;(r;t)} =e"t and Var{X,(t)} =4e3)_6e2("H13e"t < 37,
(3.3)



Since X (sp;t1),..., X (sp;t,) are independent of X(s1),...,X(sp), we have
P ) P )
P{OIX () <u), N {IX ()P <u}
1= Jj=

< P{irjl{|x<si>|2su}}P{ﬁlﬂX(sp;tj>| <Vt + P{jgl{lf((sp;tm >=1)

IA

.

P{ A xR }P{ 01X 0 <Va+ 21} + 25 PR it > )

I =

Sp{ﬁﬂX(saPsu}}P{ {(IX(t)P<ut}+p P{Vu <|X(0)| <Vt 25

=1

29 P{X (s 00)] > 55

for €>0. Since p’ < a 7 P{|X(0)|>>u}, (2.1) and (3.3), together with the fact

that t1—s, > )\u_le%“, readily show that the limessuperior of the difference in (3.2)

—26)

is at most a~!7(1—e2¢). Sending €0 it follows that the limessuperior in (3.2)

is at most 0. In an entirely analogous way, using the same truncation technique as
before, it is seen that the limesinferior of the difference in (3.2) is at least 0. Hence

(3.2) holds, meaning that Albin [1990, Condition D(0)] holds. O
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