An Elementary Construction of Brownian Motion*

By J.M.P. Albinf

Brownian motion on [0, 1] is a zero-mean Gaussian stochastic process {W (t)};c[0,1], that has co-
variance function Cov{W (s),W(t)} = sAt = min{s,¢}, and is continuous with probability 1.
The purpose of this note is to give a short and self-contained proof of the existence of this process,
making use of only the most elementary concepts in probability theory.

Let &1,&,... be independent N(0, 1)-distributed random variables, and define
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By the Cauchy criterion, this random series is well-defined as a mean-square limit
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where E{W (t)?} < oo, if and only if the partial sums form a Cauchy-sequence
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as m,n—00. However, this holds, since the mean on the left-hand side is
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By symmetry in (1), we have E{W(¢)}=0. The covariance function is given by
Cov{W(s), W(t)}
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by the elementary trigonometric identity 2sin(z)sin(y) = cos(z—y)— cos(z+y), and

since Cov{-,-} commutes with mean-square limits. Here we have
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By symmetry, it is enough to show (3) for ¢ € [0,2]. For such ¢, (3) holds since
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the left-hand side and right-hand side of (3) are continuous functions of ¢ (by basic

math), and, according to Mathematica, their one-sided Laplace transforms coincide:
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wExp[-xx ], {t, 0, 21, {k, 0, Infinity}]1]
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From (2) and (3), we get the covariance function desired
Cov{W(s),W(t)} = (1—|t—s|)/2— (1—|t+s])/2=sAt  for s,t€]0,1].

Moreover, W is Gaussian, since each linear combination of process values is a mean-

square limit of a sequence of univariate Gaussian random variables
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for ai,...,a,€R and n€eN, so that the limit is also univariate Gaussian.

Finally, to prove that W is continuous with probability 1, we notice that
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where X, is the zero-mean Gaussian process given by
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By the elementary trigonometric identity sin(z)—sin(y) = 2 cos(%¥) sin(%52), toget-
her with the fact that |sin(z)| < |z|, we readily obtain
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Using that X, is continuous and symmetric, with X,,(0)=0, it follows that
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Since Y 02, S < 00, the right-hand side of (4) is 1 by the Borel-Cantelli lemma. O



