CAPELLI IDENTITY AND RELATIVE DISCRETE SERIES OF
THE LINE BUNDLE OVER TUBE DOMAINS
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ABSTRACT. We use the Capelli identity to give the explicit realization of some
relative discrete series of L2-space of sections of line bundle over a tube domain.
This amounts to a geometric construction of some Opdam shift operators.

1. INTRODUCTION

In this paper we shall study the connection between the Capelli identity for tube
type Hermitian symmetric spaces, and the problem of constructing explicitly the
discrete spectrum of L2- spaces of sections of line bundles over such domains. The
main result is Theorem 4.2 which gives the explicit intertwining operator between
the two models of holomorphic discrete series representations of the group. It is
interesting to remark (as is done after Corollary 4.4) that this differential operator
is actually of a very canonical type, namely that of a generalized gradient operator.

Let D = G/K be an irreducible Hermitian symmetric space of non-compact
type realized as a bounded symmetric domain in a complex vector space. The
group K thus has one-dimensional center and the one-dimensional representations
on K then induce homogeneous line bundles over D. In his paper [15] Shimeno
gives the Plancherel decomposition for the L2?-space of sections of a homogeneous
line bundle over D. There appear finitely many discrete parts in the decomposition;
they are also called relative discrete series. It is proved in [15] that all the relative
discrete parts are G-equivalent to holomorphic discrete series by identifying the
infinitesimal character. For the unit ball in C* this was proved also in [20] by
explicit calculations. On the other hand the holomorphic discrete series have their
standard module as weighted Bergman spaces of holomorphic functions on D. Thus
it is of interest to find the explicit intertwining operators from the relative discrete
series into the holomorphic discrete series. For the unit disk this is done in [19] via

the holomorphic differential operator (8%)’ and the Bol’s lemma, which asserts that
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the operator intertwines the actions of G = SU(1, 1) on some two line bundles over
the unit disk. Later we realized that the those intertwining operators can also be
constructed via the invariant Cauchy-Riemann operator, and consequently we find
the intertwining operators for the unit ball in [13] and a general bounded symmetric
domain in [21]; see also [12] for the case of the Riemann sphere.

The L2-space of sections of the line bundle can be realized as a functions on
the domain D. The corresponding L? space is then a weighted L2-space on D.
The corresponding weighted Bergman space of holomorphic functions on D is one
of the relative discrete series, whereas the other relative discrete series consist of
non-holomorphic scalar-valued functions on D. It is proved in [15] that they are G-
equivalent to a holomorphic discrete series with the highest weight being irreducible
representations of K in the symmetric tensors of the tangent space of D. Now some
of those representations of K are one-dimensional, namely those corresponding to
the Jordan determinant representation. In this present note we find the intertwining
operator for the corresponding relative discrete series via the Cayley type operator,
which are generalization of the differential operator %.

2. WEIGHTED L?-SPACE ON BOUNDED SYMMETRIC DOMAINS

We briefly recall the bounded realization of a Hermitian symmetric space, see
[5], and [9].

Let D = G/K be a irreducible bounded symmetric domain of tube type in a
complex vector space V of dimension d. The space V has a structure of a Jordan
algebra. Let A(z) be the Jordan determinant function. We normalize a Hermitian
inner product on V' so that a minimal tripotent has norm 1, and denote dm(z) the
corresponding Lebesgue measure on V. Let g = € 4+ p be the Cartan decomposi-
tion of the Lie algebra of G and let h be a Cartan subalgebra of €, which is then
also a Cartan subalgebra of g. Let g€ = €€ + pt 4+ p~ be the decomposition of
the complexification of g© under adjoint action of the center of € with p* being
identified with the vector space V. We fix an element Z in the center of £ so that
it has eigenvalue % on the space pT. Let 71,...,7, be the Harish-Chandra strongly
orthogonal roots. We fix a system of unit root vectors {ej,ea,...,e,} in V. We

define a K-invariant polynomial h(z) on V by

T

h(0161 + -+ Crer,-) = H(l — |Cj|2)

Jj=1

and let h(z,w) be its polarization, which is holomorphic in z and anti-holomorphic
in w. The Bergman reproducing kernel of D is then ch(z,w) P for some positive

constant ¢, where p is an integer called the genus of D.
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Let a > —1. We consider the weighted probability measure
dm, (z) = Coh(2)*dm(z)

on D. Here Cy, is a normalizing constant whose precise value will not concern us.

There is a unitary representation of G on L?(D,du,) given by the formula
(2.1) U f(2) = Fg) (27 (9€G)
where J; stands for the Jacobian of the transformation g and
(2.2) v=a+p
3. CAPELLI IDENTITY

In this section we will use the results of Faraut - Koranyi to prove the following
Capelli identity.

Let P be the space of all holomorphic polynomials on V. By a well known
result of Hua and Schmid, the space P under the action of K is decomposed into
irreducible subspaces P® of signatures m = miy; + - -+ + myy,, with my > --- >
my > 0.

Theorem 3.1. The operator A(z)!A(d)! acts on each K-space P™® as a scalar

A)'A@) f = a(m)f, feP=
with
@(m) = H(g(r —k)+1+my 1) = (=1)" kl:[l(—mk - g(r — k)
Proof. For any f € P2 C P,
= (z:w) —(ww) g
f(z) /p+ e f(w)e w
We act on this equality by A(z)!A(9)Y,
ARARAG)f = [ AR Aw)e®® f(w)e™ ) dw
p+
= [ AE'AW) Y K (z,w)f(w)e™ @) dw
pt m’

Now the map h(z) — A(z)!h(2) is, up to a constant, an intertwining maps from
Pm' onto P=' | thus

(3.1) A B@) Ky (2, 0) = C(m', ) Ky 11z, )
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for some positive constant C'(m’',!). Taking z = w = e and using Lemma 3.1 and
Theorem 3.4 in [5] we find
Ky (e, €)
Ky 1i(e, €)
do (n/T)mti1

(”/T)m’ Ay 41

=[G -k +1+m)
k=1

C(m',l) =

===

Thus

A(2)'Ad)' f = / > O, ) Ky 11(2,w) f(w)e™ @ duw
pt

= Clm — l,l)Km(z,w)f(w)e_(’”””)dw
p+
=Cm—1,0)f(2),
where in the second last equality we use the fact that f € P™ and Schur lemma.
Thus

r

a
q(m) =C(m —1,1) = kl:Il(i(lr — k) +1+my — 1)
This completes the proof. | |

Remark 3.2. Theorem A has previously proved by Dib [3] and [1]. See also [18].

Our proof above is essentially the same as that in [1].

Remark 3.3. Asis shown in [14], Proposition 1.2, the above formula is a reformu-
lation of the main result of [7], which essentially calculates the Laplace transform
of A™® by using the Gindikin Gamma function. Note that here we are still using a

different ordering. (Our +; is Sahi’s 2¢,,_; and r = n.)

4. LINE BUNDLE OVER THE TUBE DOMAIN

In this section we will use the Capelli identity to realize explicitly some relative
discrete series of L2-space of sections of line bundle over a tube domains.

The irreducible decomposition of the space L?(D,u,) has been given by Shi-
meno [15]. It is proved there that all the relative discrete series appearing in the
decomposition are holomorphic discrete series. We summarize the result there in
the following.

Fix a > —1 and let v be as in (2.2). We define

v

atl | _ voptl
(4.1) k= [& 2
2

if a is an odd integer
otherwise.

ufg+1]
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Here [t] stands for the integer part of ¢ € R. Denote

r
D,={m=3 m;v,0<m <---<m, <1}
j=1
For any such Shimeno proved in [15], Theorem 5.10, that a relative discrete series (if
any) in L?(D, u,) are equivalent to a holomorphic discrete series. We reformulate
this result in the following.
Theorem 4.1. (Shimeno [15]) For each m in D, there ezists a relative discrete
series Azm(D,V) appearing in L?(D,ps), and they are equivalent to holomorphic
discrete series of the form with highest weights (under certain ordering of the root
spaces of g*)
T
(n—)© ST gj;%’a meb

and A(nNt;) =0, A(iZ) = —v in case D = G/K is non-tube domain.

A

When m = (I,...,1) we write the relative discrete series A2 (D,v) by A}(D,v).
Our main result is the following, denoting by L2(D,v — 2I) the subspace of holo-

morphic functions, i.e. the standard module for these discrete series.

Theorem 4.2. With the notation (4.1) we have the operator
St: f(2) = h(z,2) T EAQ) (h(z,2) T £(2))
is an intertwining operator L2(D,v — 2l) onto A}(D,v) for 1 =0,1,...,k.

To prove the theorem we need the following intertwining property of the Cayley-
Capelli operator A(9), which was proved by Arazy [2], Theorem 6.4; see also [16],
Lemma 7.1 and [8].

Theorem 4.3. The Cayley-Capelli operator A(D) intertwines the action U=+ ~!
with U1, namely

n _ n
T 1 1‘+1

A)(Jg(2)) 7 fl92)) = (J4(2)) 7 (A(9)f)(g2)

for holomorphic functions f on D and g € G.

Note that since the operator A(9) is a holomorphic differential operator, thus
the above result holds for all C>°-functions f.

With this theorem we can establish the formal intertwining property of of Sj.

Corollary 4.4. The operator S; intertwines the action U”~2' with the action U

of G on C*°-functions on D.
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Proof. In order to exhibit the intertwining property of the multiplication by h(z, 2)¢,

we introduce the notation (see [11])

UV (g) : f(2) = F(g(2)(Jy(2))7 (Jy(2))» (9 €G)
Let T be the operator
T: f(Z) — f(z)h(zaz)n

Then by the transformation property of h(z, z) we know that 7' intertwines the ac-
tion U”* with U”~*?; see Lemma 5 in [11]. Now our operator S; = T (- ayAQ)T,_;_a.
The results follows by the above intertwining properties of the operator 7}, and that
of A(9) in Theorem 4.3. O

The operator S; can also be constructed geometrically via the covariant holomor-
phic differential operator; see [17] and [22] Indeed, consider the holomorphic line
bundle on D defined via the action U*~2!. Let V be the Hermitian connection com-
patible with the complex structure and D the holomorphic part, so that V = D +9.
The operator D maps the line bundle to its tensor product with the holomorphic
cotangent bundle; in another word, it maps functions to V' = p~-valued functions,
after trivializing the bundles. The power D™ the maps to the symmetric tensor
®"V' of V'. However there is a distinguished K-component in the symmetric ten-
sor, namely the one-dimensional representation with highest weight I(vyy + - -+ ;)
(disregarding the center action of K). Let P, the the orthogonal projection onto

the component. Then we have
PD" =S

for some non-zero constant ¢; see Lemma 4.3 in [17] and Lemma 3.2 in [22]. As
an intertwining operator from one line bundle to other, the operator S; maps in
particular the spherical functions for the line bundle U”~% to those for U, and
thus are the hypergeometric shift operators [6]. So our result gives a geometric
construction of some of the Opdam shift operators. It has not been known before
that there is a geometric interpretation of the shift operators [10].

We now prove our Theorem 4.2.

Proof. We have established the formal intertwining property of the operator S;. We
prove now that it maps into A?(D,v). Note that with the condition on ! implies
that the weighted space L2(D,v — 2I) is non-trivial. Take f € L2(D,v — 2I) to be

the constant function 1. We calculate its image, namely,

h(z,2)" T E A @) (h(z, 2)" 1 7)
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We consider first A(2)!A(8)!. We use the Faraut-Koranyi expansion [5] of the

reproducing kernel

I3

so that

(42)  AEAO) B2 =Y (v -1~ g))mA(z)’A(@)’Kg(%Z)-

With the notation in the proof of Theorem 3.1 we have
A(2)'A(0) Km(2,2) = C(m — 1,1) Km(2, 2)

which vanishes whenever m, < [. We write therefore m = m’ +1[ and each term in

the above summation is
(4.3)
d

(v =1= NmClm— 1, )Km(z,2) = (- (V—l—g)) 1 C(m', ) Ky 11 (2, w)

d -
=(-w-1- ;))Q’+1A(z)lA(w)le' (2,2),
by (3.1). However clearly,

(1= Dt = (== D)= 1= D)+ D,

the summation (4.2) is then

d d

(= = 1= Dty AR DR Y (— (0 = 1= =) + Do Kot (2, 2)

(4.4) m’

d — ol d

=(-(w-1- ;))(z,...,z)A(Z)IA(z)’h(z,Z) G

where we have used again the Faraut-Koranyi expansion. From this it follows that
)ty
r (l,,l) h(z, z)l‘

which is nonzero, and its L2(D, a)-norm is dominated by

/h aZde)

which is finite since « — 2] > —1, by our assumption on /. That is the function S; f is
in A7(D,v). Now both LZ(D,v — 2l) onto A?(D, v) are irreducible representations
of G (and of g*). Thus the operator S; is an unitary intertwining onto A?(D,v),

h(z,z) S A0 (h(z,2)" ) = (—(v =1 —

up to a non-zero constant. ([l

The above proof actually also implies

Corollary 4.5. The highest weight vector of A7(D,v) is

, g
(e, 2) D@ B2 = [[( = D = 26— 1) D)
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This result has also been proved previously in [4] by using tensor product argu-

ments.
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