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Abstract

The problem of three-dimensional integration of the Biot-Savart law,
with its singularity O(|r — r’|~®) in the integrand function, is considered.
When the integration domain is a torus with rectangular cross section and
arbitrary azimuthal length, a modified semi-analytical Urankar’s method
is proposed, in which the Biot-Savart law is expressed in terms of ele-
mentary functions, Jacobian elliptic functions and complete/incomplete
elliptic integrals of the first, second and third kind. Analytical formulas
are presented in an adapted form with respect to the original expressions
from Urankar, and an optimized computation scheme is suggested, based
on a combination of modified Urankar’s formulas with one-dimensional nu-
merical integration, efficient for massive computation of the Biot-Savart
law on a large number of field points in arbitrary space positions.

Key words - 3D integration, elliptic integrals, Jacobian elliptic func-
tions, finite volume approximation, Biot-Savart law.

1 Introduction

As an important engineering application resorting to mathematical meth-
ods, we here consider the problem of large scale magnetic field computation,
which leads to the mathematical problem of three-dimensional analytical and
numerical integration on complex conductor geometries. The fundamental inte-
gral here considered is the Biot-Savart law, frequently used in electromagnetic
applications, defining the magnetic field generated in space by imposed currents.

Computation of electromagnetic fields requires a complex analysis and accu-
rate evaluation. In the design of electromagnetic devices and in the prediction of
electromagnetic phenomena, the analysis needs to be carried out with accurate
computation of source and induced electromagnetic fields, keeping into account
several aspects: the physical properties of the materials, the geometric shapes
and constraints, the boundary/interface conditions, the magnitude of involved
forces, the knowledge of source currents with determination of its critical limits,
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and electromagnetic induction phenomena.

Many electromagnetic problems require to compute the magnetic field due
to imposed currents as autonomous physical datum or as a “partial” informa-
tion embodied inside a differential model representing a specific electromagnetic
problem. In fact, mathematical models based on Maxwell’s equations, the fun-
damental differential equations governing all macroscopic electromagnetic phe-
nomena, can in fact lead to (possibly initial) boundary value problems where
the source magnetic field appears as a datum in the right hand side contribution
of the differential equations or as a quantity in implicit form in the interface
and boundary conditions (for instance, see [10]). In this case the source mag-
netic field needs to be estimated during the initial modelling phase preceding
the effective model solution.

The purpose of this work is to focus on Biot-Savart’s integral from a mathe-
matical and computational point of view, by suggesting some efficient analytical
and numerical methods to compute the magnetic field due to source currents.
Another integral expression that can be used is Ampere’s circuital law, in which
the field definition is given in implicit form. Here, Biot-Savart’s integral will
be mainly investigated, because of the explicit definition of the source magnetic
field, and due to the presence of a singularity of type O(Jr — r'|~®) in the inte-
grand function, which makes the integral interesting from a mathematical point
of view. The suggested integration methods keep into account the shape of the
conductor geometry. While for complex shaped conductor regions only numeri-
cal or semi-numerical integrations are possible, for coils geometries an analytical
approach can be used, expressed in terms of elementary functions, Jacobian el-
liptic functions and complete/incomplete elliptic integrals of the first, second
and third kind. The only numerical contribution in this procedure is given by
estimation of elliptic integrals, for which efficient algorithms already exist in
literature. This “semi-analytical” approach is the kernel of our work.

The report is organized as follows. Section 2 presents an overview of the
main integration methods that have been investigated in literature for the com-
putation of Ampere’s law and, especially, some numerical integration techniques
that can be applied to the Biot-Savart law. Section 3 discusses the case in which
the conductor is a coil with rectangular cross section, for which a semi-analytical
integration of the Biot-Savart law can be derived, what will be called the mod-
ified semi-analytical Urankar’s method. On this regard, notice that Urankar’s
method has been already investigated in literature: the purpose of this section
is rather to correct some wrong values reported in previous references, to spec-
ify values for limit field positions, not originally considered, and to improve the
efficiency of the method from a computational point of view, especially for a
massive computation on a large number of field points (as it is required, for
instance, in finite element computations). Section 4 introduces briefly some
ideas and suggestions for a computation algorithm based on the semi-analytical
procedure here presented, with notes on possible algorithms for the numerical
estimation of elliptic integrals.

To test practically the efficiency of the modified semi-analytical Urankar’s
scheme, in a future work some examples and numerical results will be presented



on significant test cases, for a comparison among several integration techniques
of the Biot-Savart law in terms of accuracy and computation time.

2 Numerical integration methods for Ampere’s
and Biot-Savart laws: an overview

The total magnetic field intensity can be considered as the sum of two differ-
ent contributions, one generated by imposed source currents and the other due
to induced magnetization of the background materials. The rigorous argument
is Helmhotz’s theorem, which asserts that the magnetic field intensity H can be
always partitioned as

H=H, +H,,, (1)

where H; is solenoidal (the magnetic field intensity due to prescribed currents),
while H,, is irrotational (the magnetic field intensity due to induced magneti-
zation). The source field H; can be computed by the Biot-Savart law. Consider
an open domain 2 C R%. Given a source current density J, defined on a region
Qs C Q, such law tells that for any point r € Q the resulting field Hy; = H,(r)
is given by

1 1 ,
HS—E/QSJSXV(W) dr (2)

where r' denotes each source point.

Another approach could be to define implicitly the source field by Ampere’s
circuital law. This one can be easily obtained in its integral form by applying
Stoke’s theorem to the static source relation V x H; = Jg, giving raise to

j{Hs-dé:/st-dS (3)

for any closed piecewise regular path v C , being S a piecewise regular surface
such that 0S8 = v [8].

The purpose in the present note is to investigate several numerical and an-
alytical methods that can be used to compute the magnetic field intensity H;
due to imposed currents, resorting to integration of Ampere’s circuital law (3)
or the Biot-Savart law (2).

On this regard, notice that a possible drawback in Ampere’s law is the im-
plicit form of H, definition. However, many methods have been investigated in
literature for a numerical estimation of (3). In some cases, the source magnetic
field has to be estimated as a modelling datum inside a more extended elec-
tromagnetic problem, e.g. a boundary value problem by potential formulation



in the frame of a finite element computation. In this case, a typical choice of
curves v and surfaces S is to use sequences of edges (trees) and faces (loops
of faces) of the elements used in the associated finite element mesh. This ’dis-
crete’ choice of curves through edge-trees derived from the finite element mesh
can then represent a successive advantage because information can be reused for
the computation of specific line integrals of H; obtained as data for the interface
and boundary conditions of Dirichlet type. A description of some techniques for
the numerical integration of Ampere’s circuital law, as well as the Biot-Savart
law, is contained in [14] and references quoted therein.

The present work rather focuses on Biot-Savart’s integral, giving an explicit
H, definition. Expression (2) can, equivalently, be written as

1 _ ol
H,(r) /Q J, x |r7r dr’, (4)

“ir r—r' |3

where Q) is the current carrying region, r and r’ are any field point and source
point, respectively.

Different methods for the computation of the Biot-Savart law have been de-
veloped by many authors. Some of them require assumptions and restrictions
on the shape of the conductors (e.g. coils, bars, etc. in which currents flow along
the direction of a specific curve). Among the numerical approaches, in the so-
called filament approximation the conductor is a coil whose cross-sectional area
is negligible, while in the sheet approximation, it is the thickness of the coil to
be negligible. These methods can then be applied to conductors having more
general shape by splitting them in finite filaments or finite sheets, and mixed
approaches can be used according to the local geometry. A more efficient and
faster semi-analytical approach to be used with coils, as suggested by Ciric in [9],
is the so-called surface-source approximation, based on formulas containing only
elementary functions, in which the coil is approximated by the union of straight
segments having rectangular or polygonal cross sections whose faces along the
current directions are trapezoidal. When coils have a big inner radius, the
method is faster and more accurate than the above mentioned techniques. On
the other hand, when coils have high curvature the segment decomposition has
to be chosen finer, with consequent increase of the computational cost and time.

For more general geometries than coils the finite volume approximation is
suggested, based on subdivision of the domain into small elements (the so-called
finite volumes). On each volume domain a numerical integration scheme with a
proper order (typically, a Gauss-Legendre quadrature) is applied, and contribu-
tions from all the elements are then summed up. If the Biot-Savart law needs
to be computed in the context of magnetostatic boundary value problems to be
solved by finite element methods (see for instance [10]), the efficiency of this
finite volume approach can be tested by choosing as small volumes the elements
of the domain triangulation used for the finite element model. In such a case,
it is required that the current carrying regions are modelled by the mesh gener-
ator, i.e. the triangulation is constrained to the conductor boundary. Anyway,
although this method allows to compute the Biot-Savart law for any conductor



shape, a possible drawback is that it is quite time and memory consuming when
a large number of volumes is used to increase the accuracy of the computed H,
values. Besides, in the finite volume approximation as well as in all techniques
performed by numerical integration, a particular care is required when points r
in field regions approach points r’ in conductor regions, because of the singu-
larity 1/| r — ¢’ |* in the integrand function of (4).

In order to overcome these drawbacks of numerical integration techniques, an
alternative method is suggested by Urankar [15, 16, 17, 18, 19, 20, 21] based on
a sequence of analytical formulas, which are valid for various types of conductor
geometries. This method has been fairly investigated in literature: equivalent
expressions of Urankar’s formulas can be found, for instance, in [3, 11, 2]. Their
analytical expression is presented (and corrected) in the next section, for the
significant case of a coil conductor having a rectangular cross section.

3 Analytical integration of the Biot-Savart law
for coils with rectangular cross section

Current carrying regions in real electromagnetic devices have mainly the
shape of coils whose geometry may be made, in general, of finite circular arcs
and/or straight segments. The magnetic source field due to the current is then
obtained by summing up the partial fields generated by each part. For all the
basic coil geometries (circular filaments, cylinders, coils with rectangular or n-
sided polygonal cross sections) Urankar has given an analytical representation of
the source field H; in terms of elementary functions, Jacobian elliptic functions
and complete/incomplete elliptic integrals of the first, second and third kind.
Urankar’s results are here reported for a current carrying region having the
shape of torus with rectangular cross section, or an azimuthal restriction of it
[17], as they have been used in the magnetostatic models studied in [10]. For
implementation purposes, we also suggest a slightly modified semi-numerical
version of Urankar’s procedure in order to improve the computations when they
have to be done on a large number of field points lying in arbitrary position
with respect to the coil. Following an analogous procedure, similar formulas
can be derived also to compute the magnetic vector potential A and, moreover,
a generalization for coils having n-sided polygonal cross section can be obtained.
Details of this generalization are contained in [19].

Consider in (4) an azimuthal source current density Js, constant in magni-
tude, whose domain (2 is the circular torus with rectangular cross section given
by

Qs ={(r',¢',2"): Ri<r' <Ry, p1 <9 <o, Z1 <2'<Z} (5

being known the radii R; and Rs, the angles ¢; and 2, and the heights Z;
and Z, (see Figure 1). For the following let r' = (r', ¢, 2') denote the generic
source point, and r = (r, ¢, z) the generic field point. For physical reasons it is
always —7m < ¢ < 7 and, without any loss of generality, it is possible to assume



Figure 1: Circular coil with rectangular cross section

=21 < 1 < g < 27. Rewriting in cylindrical coordinates, after integration
over ' and 2’, the source magnetic field intensity H; can be written as

Ty = - . .
HS(Ta @, Z) = (H(R27 2 ZZ) - H(Rla 2 Z2) + H(R27 2 Zl) - H(R17 @, Zl))

4 ’
(6)
where the cylindrical components of H are given by
~ 192
H.(r,p,2) = / cos? (D(8) + rcosd sinh™ ' By (9)) d?
91
~ 92
Hy(r,p,2) = / sing (D(9) + rcos¥ sinh™' B (9)) do, (7)
91

~ 92
H,(r,p,2) = / (v sinh ™t 3, (9) — r cos¥sinh~* B5(9) — rsin® arctan B5(9)) dd
9

1

with the definitions

y=2 -z, O=¢' —p, Vi=p—p; fori=1,2,
B2(9) =r'> + 17 — 2rr' cos, D*(¥) =+* + B*(¥),
G*(W) =2 +r2sin?9,  Bi(¥) = (' —r cos¥)/G(Y), (8)
Be(¥) =v/B(),  B3(9) =(r' —r cos¥)/(r sindD(¥)).

Notice that in (7) terms do not become singular or indeterminate when ¢’ = (.
Let us substitute then a = (7 — 9)/2, and a; = (7 — 9;)/2. Considering in (7)
the presence of odd and even integrands, the source field can be rewritten in
the compact form



2
Hl(,"a @, Z) = Z(_l)i+1(6l‘ﬂ + 6lmsgn a’i) Hl(ra |ai |,Z), I= T, 9,2, (9)

i=1

with m =1 ifl = r,z and m # [ if | = ¢, where ;; denotes the Kronecker
symbol. The expression of functions H; is given in the following.

First, let us introduce the notation for the incomplete elliptic integrals of the
first, second and third kind, with argument 9, modulus k and characteristic n
(see [1, 6, 4, 5]). For any real k such that —1 < k < 1, they are defined as the
functions E(9, k), F (9, k) and II(9,n, k) respectively, such that

s
E(9,k) :/0 (1 — k2 sin? ¢)"/* do

v 1
Fio.k) = /0 (1 — k2 sin? ¢)1/2 “w (10

nonk) < [ 1
e /0 (1 — nsin®¢)(1 — k2 sin® ¢)1/2

do.

where E(k) = E(n/2,k), F(k) = F(n/2,k) and II(n,k) = II(w/2,n, k) are the
so-called complete elliptic integral of the first, second and third kind, having
argument 7/2 and modulus k. Notice that in the definition of the integrals E,
F and II a notation coherent with Abramowitz and Stegun [1] has been here
used, i.e. the sign for the parameter n in the integral II(9,n, k) is opposite to
the one used by Bulirsch [4, 5]. Let us then define snu, cnu and dnwu as the
three basic Jacobian elliptic functions [1, 12] with amplitude amu =|a| and
amu; =|a; |, modulus k being implicit, i.e. such that

snu = sin a, snu; = sin q;,
cnu = cosa, cnu; = Cos oy, (11)

dnu = (1—k?*sin?a)'/?, dnu; = (1 — k*sin? o;)'/2.

Under these premises, two cases have then to be distinguished. By the
initial assumption —27 < ¢’ < 2, it follows —7 < a,a; < 2w. First, let us
consider the case | ;| < 7/2, describing a field point whose azimuthal coordinate
lies internally to the azimuthal width of the coil arc. Evidently, if the coil
describes a complete angle 27 this condition is fulfilled for all field points. Then,
a double integration by parts of (7) is done when the argument is |a;|. After
some trigonometric transformations and rearrangement algebra, it is possible
to obtain a form that can be easily rewritten in terms of elliptic integrals and
Jacobian elliptic functions, the first ones resulting in fact to be defined in the
chosen range for |a; |. With regard to this, we introduce ¢ = y?+72,b=r+7',
a? = y2+b%, k? = 4rr' /a?, and the parameters ny = 2r/(r—c), ny = 2r/(r+c),
and nz = 4rr' /b%, together with the function



1+ k(2 - br)
n 2rp!

v(k)

’

and define 0; =|a;|. Then, terms ﬁl in (9) can be expressed as

H,(r,0;,2) = D.(6;) + r$(6;) — %r'[E(Hi,k) —v(k)F(6;,k)]
3
- — Z(—l)pQr(np)H(Oi,np, k) + 2rsnu; cnu; dnug;

fL,,(r, 0;,2) = D, (8;) + 2v3(6;) — ;—T dnwu;(b—2r sn? u;) (13)

3

- Z(_l)pQw (np)I(np)

B.(r,65,2) = D2(6) + 243(6) — SovK*F(6:,b)

3

— — 3" (~1)PQ.(n,)I(B;, ny, k)
p=1
where
I(ny) = np/o e (14)

— 2’
1—-n,snu

whose analytical representation in terms of Jacobian elliptic functions is given
by

gt

K22 _1¢11 2dn )2
_12(k2—§)1/2 In I 5)1_6 sEZlu | ) é- < 07
I £>0, £= k2
I1(¢) = 1/2 — k224172 4p ]2 (15)
© 2(§Ek2)1/2 In [(E=X )1—§Jsr§2u doy £>0, £> k%
i/2

)
. 9¢l/24 k2 _g)1/2
ST arcsm%, £>0, £E<k?,

The other terms appearing in (13) are defined as follows. Defining §;(a) =
Bi(m — 2a) for 1 =1,2,3, we have

S(a) = / " sinh " B (a)doy (16)

0

Ircosda sinh_{ﬁl(a), l=r,9,z, (17)

%r sin4q sinh ™! 51 (a)
Di(a) =
rsin 2o sinh ™ By (a) + r cos 2a tan™! B3 ()



Qu(np) = dplr' — (=1)PcRi(np) + p3biyb(r" — T)np, 1=1,00,2,  (18)

with ¢ = p,if p=1,2, and

R
Ri(ny) =4 (=D +77),  I=r2 (19)
—2vcnp,

In the computations, since n; — —oo for field points having v = 0, i.e. z = 2/,
consider in (13) the limit values lim,_, ,» @,(n1(2)) = 0 and lim,_, ,» Q. (n1(2)) =
0.

Let us consider now the second case, when |a;|> 7/2, for which the above
elliptic integrals are not defined. The following integration domains are distin-
guished: 7/2 <|a;|< 7, 7 < a; < 37/2 and 37/2 < a; < 27. In the two first
ranges, we can define §; = m— |a; |, while in the last one 6; = 2 — a;, so that
again 0 <|0;|< 7/2. By splitting the domains and using symmetry properties
of the corresponding integrands, one easily gets

H,(|ai]) = Hy(16: ), (20)
(| ]) = 2H,(r/2) — sgnb; Hi(|6;]),  7/2 <|os|< 3m/2,
A Afy(7)2) — Hi(65), 31/2 < oy < 2,

forl =r,z.

Formulas (13) can be simplified in the axisymmetric case. When the coil has
the total azimuthal length 27 radians, the ¢-component of H vanishes, while
both its r- and z-components do not depend on the angle ¢. Therefore, choosing
arbitrarily the value of ¢, e.g. ¢ = 0, and thus a; = +7/2 for i = 1,2, and
considering that D,(w/2) = 0, equations (13) reduce to

Hy(r,m/2,2) = rS(r/2) - %r’[E(k) —v(k)F (k)] - 4}7 > (=1)PQr(np)T(ny, k)
Hy(r,m/2,2) =0 (21)

3
H.(r,m/2,2) = D.(1/2) + 2yS(nr/2) — Z—(nyk2F(k) . ST (=1)PQ.(np)T(ny, k)

being E(k), F(k) and II(n,, k) the complete elliptic integral of the first, second
and third kind with argument 7/2 and modulus %, and

D.(r/2) = —1r/2 sgny [1 +sgn(r’ —1)]. (22)



In case the field point is lying on the z axis, i.e. r = 0, the expression of the
source field is reduced to

H,.(0,7/2,2) = Hy(0,7/2,2) =0, H,(0,7/2,2) = |v|sinh"(r' /7). (23)

Regarding these last expressions, it has to be remarked that in (22) the term
sgn(£m/2) (miss-print) has been removed from (22c) in [17], while in (23) |v]|
has been corrected at place of y appearing in (23) of [17]. In the computations,
moreover, for field points having v = 0, i.e. z = 2/, consider the limit value
lim,,, H,(0,7/2,2) = 0.

4 Computational aspects

Except for the integral $(a) in (16), the formulas presented in Section 3
have all been expressed in terms of elementary functions, Jacobian elliptic func-
tions and elliptic integrals. Since the Jacobian elliptic functions can be reduced
to trigonometric functions by (11), also the expression for the integral I(n,) is
known analytically in (15).

Many efficient algorithms exist for the computation of the elliptic integrals
of the first, second kind and third kind. Classic approaches, well known from
literature, are the Landen transformation for incomplete integrals of first kind,
the Bartky transformation for integrals of the second kind and Bulirsch’s exten-
sion to integrals of the third kind [6, 4, 5]. Another more recent method is the
unified Carlson’s algorithm valid for all the three integrals, as it is suggested in
[13]. An advantage of Carlson’s procedure is that the cancellation errors occur-
ring in the previous methods are reduced in a significant way.

Moreover, these formulas have the advantage to be valid on all field points
with much greater accuracy than any of the integration methods suggested in
Section 2, especially on the critic field regions close to the source regions. For
implementation purposes, a particular care has rather to be used in the choice
of the algorithm for the computation of the elliptic integrals. A straightforward
application of Carlson’s algorithm, for instance, even if it is more precise than
other methods, turns out to be not defined for special points, corresponding
to the limit positions (called critic curves) z = Z; and r = R;, or z = Z; and
r =r}, wherer} = R;/(4R;—1), i = 1,2, for which some of the R, R4, Rs, R;
functions introduced in Carlson’s procedure are not defined [7].

In order to overcome these drawbacks, a semi-numerical modification of
Urankar’s integrals can be performed for an optimized algorithm when field
points (r,p,z) are in these limit positions, consisting of numerical quadrature
of the one-dimensional integrals (7) in relative azimuthal coordinate. Elsewhere,
the analytical approach can be used, e.g. resorting to Carlson’s procedure for the
computation of elliptic integrals. In a future work we intend to discuss some nu-
merical results after implementation of the integration schemes here introduced.
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5 Conclusions and future work

The present work deals with the problem of three-dimensional integration of
the Biot-Savart law, for the computation of the magnetostatic field generated in
space by imposed currents. The subject can be inserted in the frame of typical
problems of solution/computation of volume integrals with a complex shaped
integration domain or presenting singularities in the integrand function.

Numerical finite volume schemes can be used when the integration domain,
i.e. the current carrying region, is complex shaped, e.g. a composite inte-
gration based on Gauss-Legendre quadrature on tetrahedral conductor subdo-
mains. When the domain is a torus with rectangular cross section and arbitrary
azimuthal length, like in the typical case of coils, the Biot-Savart law leads to
analytical expressions that can be written in terms of elementary functions, Ja-
cobian elliptic functions and complete/incomplete elliptic integrals of the first,
second and third kind. For computation purposes, a mixed computation scheme
is suggested by combining such analytical expressions with one-dimensional nu-
merical integration, depending on field point positions inside and outside current
carrying regions. This approach seems to be efficient for problems requiring mas-
sive computation on a large number of field points, as it occurs in finite element
computations of associated magnetostatic boundary value problems.

A future work intends to present numerical results on significant test cases,
for a comparison among several integration methods of the Biot-Savart law here
considered, i.e (a) the modified semi-analytical Urankar’s method, (b) numer-
ical integration of one-dimensional integrals in relative azimuthal coordinate
(e.g. by composite trapezoidal rule), and (c) finite volume approximation with
composite three-dimensional Gauss-Legendre quadrature. For a more complete
analysis, another interesting task could be to test the efficiency of the modified
semi-analytical approach in comparison with a famous method used for coils,
Ciric’s surface-source approximation. Concerning finite volume integration tech-
niques, a modified “weighted” Gaussian quadrature could be used for the local
integration on each subdomain, instead of the classic Gauss-Legendre quadra-
ture. Weights should be chosen in a proper way to handle the O(|r — r' |~3)
singularity in the integrand function of the Biot-Savart law. Tetrahedra or other
subdomain shapes could be tested, choosing them properly adapted to the ge-
ometry of the overall conductor domain.
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