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0 Introduction

In the study of variational problems in applied mathematics the concept of variational
convergence called ['-convergence has come to be a very important tool. One reason is
its compactness properties for general classes of functionals and topologies. In addition
almost all other variational convergences follow as consequences of the I'-convergence. For
an introduction to the theory we refer to Dal Maso [5].

In this paper we study I'-convergence for a class of lower semicontinuous functionals

defined on the Orlicz-Sobolev class W!Lg(f2) defined below. There are many advantages



of such a development. The analysis in Orlicz-Sobolev spaces uses properties like convexity
and growth (Aj-property) in such a way that one can obtain variational solutions to larger
classes of nonlinear problems than in usual Sobolev spaces, see e.g. [8].

The paper is organized as follows: In Section 1 we give some preliminary results on
['-convergence and on Orlicz-Sobolev spaces. The main results are presented in Section
2. In particular we prove a I'-compactness result (Theorem 2.2) for functionals defined
on W'Lg(Q). The framework uses the localization method as presented in [5]. We
also compare I'-convergence and convergence of minima (Theorem 2.3 and Theorem 2.4).
Section 3 is devoted to the proof of Theorem 2.2 and contains in particular an Orlicz-
space version of the fundamental estimate. In Section 4, finally, we give some concluding

remarks.

1 Preliminary results

Let X be a topological space and let N (z) denote the set of all open neighborhoods of

r € X. Further, let {F},} be a sequence of functions from X into R.

Definition 1 The I'-lower and I'-upper limits of the sequence {Fj} are the functions
from X into R defined by

F'(z) =T — liminf Fj(z) = sup liminfinf F,(2)

h—o0 WEN (z) h—oo Z2EW

and

F"(z) =T — limsup Fy(z) = sup limsup inf Fj(z),

h—o0 weN(z) h—oo #E¥
respectively. If these two limits coincide, i.e. if there exists a unique function F' : X — R
such that
F=T- li}{gglth(x) =T — limsup Fy(x),

h—00

we say that the sequence {F}} I'-converges to F.



Remark 1 By the definition its obvious that {F},} I'-converges to F' if and only if

I' = limsup Fj, < F < T — liminf F},.

h—o0 h—o0

This means that I'-convergence and lower semicontinuity are closely related concepts. We

have the following sequential characterization of I'-convergence, see [5], Proposition 8.1:

Theorem 1.1 Let X be a separable metric space and let {Fy,} be a sequence of functionals
from X into R. Then

(i) for every x € X and for every sequence {xn} converging to x,

F'(z) < liminf F,(z3);

h—o00

(i) for every x € X there exists a sequence {xy} converging to x such that
F'(z) = liminf F ;
() = Tim inf F (2);
(iii) for every x € X and for every sequence {xy} converging to x,

F"(z) <limsup F,(z);

h—o0

(iv) for every x € X there exists a sequence {xp} converging to x such that

F"(z) = limsup Fy(xp).

h—o0

Consequently {Fy,} T'-converges to a function F' € X if and only if

(v) for every x € X and for every sequence {x,} converging to z,
F(z) < liminf Fj(zp,)
h—00

and

(vi) for every x € X there exists a sequence {x,} converging to x such that
F(z) = lim F,
(z) = lim Fj(zn)
Moreover, I'-convergence enjoys the following compactness property, see [5], Theorem 8.5:
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Theorem 1.2 Let X be a separable metric space. Then every sequence {Fy,} of function-

als from X into R has a I'-convergent subsequence.
We recall that a Young function A : [0,00) — [0, 00] is a function of the form

A = | ' a(x)ds

where the function a : [0,00) — [0, 00] is increasing, left continuous and not identically
zero and not identically infinity on the interval (0, co).

The Orlicz space L4(S2) is the set of measurable functions f on € such that || f||, o <

I =int {o>0: [ 4 (L) o<1

(the Luxemburg norm on L4(2))

00, where

A G-function G : R™ — [0, o0] is a function with the following properties:

i) G(0) =

if) limyg o0 G(ﬂﬁ) = 09, [:c € R™: |z| = (2 a;?)l/?} :

1=1q

iii) G is convex

(
(
(
(iv) G is symmetric i.e. G(—z) = G(z), € R™;
(v) the set G™'(00) = {z € R™; G(x) = oo} is separated from 0;
(

vi) G is lower semi-continuous.

Additionally we will assume that G is monotonically increasing in each variable sepa-
rately, that G and G* (the convex polar) satisfies Ay condition (this will guarantee that
the separability and reflexivity of function spaces defined below, see [9]). The vector
valued Orlicz-space Lg(€2) is defined as follows:

Let G be a G-function and let 2 be a domain in R", let uq, us, ..., u,, be real valued
measurable functions defined on 2 and let u = (uy, ug, ..., un) be a vector valued function.

Then, v is said to belong to Lg(Q) if there exists a A > 0 such that

/Q GOw(z)) < o



The space Lg(2) is equipped with a norm corresponding to the Luxemburg norm given

by
u
=1 : — < .
lullg. 1nf{0>0 /QG(9>d:v_1}

There should not be any ambiguity for the same notations L4(f2) and Lg(€2) used for
Young function and G-function,respectively.
For a G-function G, the complementary function G? is defined by
G* (u) =sup (u-v — G(v)),
;>0

where v - v = >0, u;v;.

Let G be a G-function of (n + 1) variables. The anisotropic Orlicz-Sobolev space,
denoted by W'Lg(f), is defined to be the space of weakly differentiable functions v for
which (u, Du) = (u, D1u, Dou, ..., Dyu) belongs to Lg(€2). A norm for the space W!Lg(Q2)
is given by

[[ull = [I(w, Du)llg g -
For further details regarding Orlicz-Sobolev spaces we refer to the monographs [1] and
[9]-
Given two functions A and B, the notation A << B means that for every A > 0

i AD
50 B(At)

Let us recall the following imbedding result (see [7]).

Theorem 1.3 Let Q) be a bounded domain in R™ with the cone property, let f be a
continuous non-negative function on [0,00) and let G be a G-function of (n+ 1) variables

on [0, 00) such that G% (0, f(s), f(s),...f(s)) < s. Furthermore, let A be a Young function
given by
1 i f=1(s)
-1 _*
AL (lt]) = n/o s

for some constant n > 0. If B is a Young function such that B << A, then W'Lg(Q) is

compactly imbedded in Lp(2).



2 The main results
Let the function G be defined as above and let us define Gy and B as

GO(gla g?a"'a fn) = G(Oa gl: 62:"'a é-n)

and

respectively, where we assume that B satisfies all the hypotheses of Theorem 1.3 above.

We have the following compactness result:

Theorem 2.1 Suppose that G satifies the Aqg-condition. Then every sequence of func-

tionals Fy, : Lp(Q) — R has a T'(Lp)-convergent subsequence.

Proof Since G satifies the Ay-condition, Lg(€2) is separable, see e.g. Kufner et. al. [9],

and thus the result follows from the compactness Theorem 1.2 above.

Let us now define the space M = M(c, §) of Caratheodory functions f : Q x R" —

[0, +00) satisfying the conditions:

(1) f(z,€) is convex in &.

(2) Go(&ry- -+, 6n) < f(@,8) < e(l+ Gol&rs-- -, &)

(3) G satisfies the Ay-condition with constant (3.

Let us also define the class F(M) of functionals F : Lg(Q2) x A(2) — [0,+00) given

by
F(u, A) = /A (&, Du(z))dx,



for f € M and A € A(Q)), where A(Q2) denotes the family of all open subsets of 2. We
extend in the usual way the functionals to +o0o on Lg(Q2) \ W!Lg(Q).

The main objective is now to establish a result which says that the ['-limit of a sequence

Fi(u, A) =/Afh(x,Du(ac))da:,

in F(M) has an integral representation

(2.1) Fy(u, A) :/Acp(:c,Du(x))dx,

where also ¢ € M.

The main result of this paper is the following compactness result:

Theorem 2.2 For every sequence {F,} in F(M) there erists a subsequence {Fj, } and
a functional Fy € F(M) such that Fy, (-, A) I'(Lg)-converges to Fy for every A € A(R).

Remark 2 Fj(u, ) is the restriction of a Borel measure to A(€2) and moreover, the local
property of the I-limit shows that in the integral representation (2.1) the function ¢ € M
is independent of A.

Remark 3 By the definition of I'-convergence it easily follows that
(i) Fy is lower semicontinuous.

(ii) If H is continuous, then

Theorem 2.2 will be proven in the next section. We end this section by giving examples

of the relationship between I'-convergence and convergence of minima. Let Fj, and F



belong to F(M) and let H : Lg(f2) — R be a continuous functional with the property

that there exist some constants ¢ > 0 and b € R such that

(2.2) H(u) > ¢ /Q B(u(z))dz — b

for all u € Lg(2). Let us put

(2.3) my = uewilanG(Q) {Fr(u) + H(u)}
and
(2.4) m = ueWilanG(Q) {F(u) + H(u)}

Theorem 2.3 If {F} T'-converges to F in Lg()) then my, converges to m.
Proof We recall that for any topological vector space X it holds that

(2.5) min F(z) = lim(gg)f( Fy(z))

zeX

whenever {F},} is a X-equi-coercive sequence of functionals which I'(X)-converges to F
(see e.g. [5] Theorem 7.8). The minima in (3) and (4) can be taken over Lg(2) instead
of W'Lg(S2). Moreover, by Remark 3, {F, + H} ['-converges to {F + H} in Lg(Q). It
holds that

Fy,+H > kWU — ks

for some positive constants k; and ko, where

{ Jo G(u(z), Du(z))dz if u € W'Lg(Q)
U(u) = :
+00 otherwise

This follows from the fact that
Glu(x), Du(z)) = G(% (2u(z)) + % %
oty %G(? (u(z),0, ... 0)) + %G(? (0, Du(z)))
< B(G((u(x),0,...,0)) + G((0, Du(z))))

G increasing

< e(G((u(@), - u(2))) + Go(Du(z)))

0 + 5 (2Du(z))) <

N | —

0,
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Moreover, we observe that U(u) < 1if ||u]| < 1 (by the definition of the Luxenburg norm)
and that |ju|| < ¥(u) if 1 < ||u|| (use that by the definition of the Luxenburg norm and
by convexity 1 < ¥(%) < §7'¥(u) for all 1 < # < ||u]|). Thus, the set {u: ¥(u) <t} is
bounded in W'Lg(Q) for all t > 0. Moreover, by the imbedding result Theorem 1.3, it

holds that {u : ¥(u) <t} is compact in Lg(§2) which implies that the sequence {F}, + H}
is equi-coercive in Lg(f2). Consequently we obtain that m, — m by replacing X by

Lp(Q), F, by Fy,+ H and F by F + H in (5).

Theorem 2.4 Assume that all hypoteses are satisfied as in Theorem 2.3 except that 2 is
replaced by the assumption that there exists a bounded set K in W'Lg(Q) such that

inf AP+ H()} = inf {Fi() + Hw)

uerLG

for all h. Then, if {F,} T'-converges to F in Lg(S2) it holds that my, converges to m.

Proof We recall that for any topological vector space X it holds that

(2.6) min F(z) = lim(ggjf( Fy(z))

z€X

whenever {F} I'(X)-converges to F' and there exists a compact set K such that

inf {Fu(u)} = inf {Fi(u)

for all h (see [5] Theorem 7.4.). Minimizing over X = Lp(Q), and K = U and replacing
Fy by F, + H and F by = F'+ H in 6 we therefore obtain the desired result.

3 Some results related to Theorem 2.2 and its proof

The proof of Theorem 2.2 will be divided into a number of lemmas. Inspired by the
pedagogical presentation in Dal Maso [5] we will establish the result by using localization
and by proving that functionals F' € F (M) satisfies the fundamental estimate in Orlicz-

Sobolev spaces. A neccesary condition for the integral representation (2.1) is that Fy(u, -)



is a measure. For this purpose we introduce increasing set functions:

Definition A set function o : A(2) — [0, +o0] is called

(i) an increasing set function if o()) = 0 and o(A;) < o(4z) for A; C A,.

(ii) subadditive if
0(A1 U Ay) < 0(Ay) + 0(Ay),

for all Ay, Ay € A(Q).

(iii) superadditive if
0(A1 U AQ) 2 O'(Al) + O'(AQ),

for all A;, Ay € A(Q) with A; N Ay = 0.

(iv) inner regular if
o(A) =sup{o(B): B € A(R), B ccC A},
for all A € A(Q).

Lemma 3.1 Let 0 : A(2) — [0, +00] be an increasing set function. The following state-

ments are equivalent:

(1) o is is the restriction to A(2) of a Borel measure on 2;

(2) o is subadditive, superadditive and inner regular;

(8) the set function
v(E) =inf{o(A): A€ A(Q), EC A}

18 a Borel measure on €.
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Proof See e.g. [5], Theorem 14.23.

We will use the properties of increasing set functions to obtain the integral represen-

tation of the I'-limit F,. We begin with

Lemma 3.2 Let {F,} be a sequence of functionals in F(M). Suppose that for every
ue W'La(Q)

o'(A) =T(Lg) — limhianh(u, A)
and

o"(A) =T (Lp) — limsup Fj,(u, A)
h

define inner regular increasing set functions. Then there exists a subsequence { Fy, (u, A)}

which T'(Lg)-converges for all u € W'Lg(Q) and A € A(Q).

Proof Consider the countable family R of all finite unions of open rectangles of 2 with
rational vertices. For every fixed sequence {F},} we can use a diagonal procedure and
Theorem 2.1 to extract a subsequence {F}, (u, R)} which I'(Lpg)-converges for all R € R
and v € W'Lg(Q). Now, let A € A(Q) and u € W'Lg(Q). By hypothesis o/(A) and

0"(A) define inner regular increasing set functions. This gives
['(Lg) — liIr}Lianhk(u,A) =0'(A) =

=sup{o'(B): B e A(Q), BCC A}
=sup{c’(R): Re R(Q), R ccC A}
=sup{c”(R): R€ R(Q), Rcc A}
=sup{c”(B): B € A(Q), BccC A}
= 0"(4) = T(Lp) ~ limsup Fy, (u, 4).

We proceed by proving a fundamental estimate in L which will guarantee that the

[-limits define inner regular increasing set functions.

11



Definition We say that F' satisfies the Lg-fundamental estimate if for every A, A’ and B

in A(Q) with A’ CC A and a > 0 there exists M, > 0 such that for all u, v € W!'Lg(Q2)

there exists a cut-off function 1) between A’ and A such that

Fyu+ (1 —9)v,A"UB) < (1+ «)(F(u,A) + F(v,B)) + M, - B(u — v)dz + .
NB)\ A’

Remark 4 Let A, A’ € A(Q)) with A’ CC A. We say that ¢ is a cut-off function between

A’ and A if 1) is smooth with compact support in A, 0 <1 <1land ¥ =1on A

Lemma 3.3 The class F (M) satisfies the Lg-fundamental estimate uniformly.

Proof Let F € F(M) and let A, A" and B in A(Q2) with A’ CC A. Define
§ = dist(A4’, 0A)
and take 0 <n < dand 0 <r < —n. Let ¢ be a cut-off function between
{z € A: dist(z,A") <r} and {xr € A: dist(z, A") <r+n},
with |D1| < 2/n. Define the sets
B!'={z € B: r <dist(z,A") <r+n},

I, ={z € B:dist(z,A") >r+n}

and

L ={x e AUB :dist(z,A") <r}.

For u, v € W'Lg(R2) a repeated use of the convexity and the A,-property of G yield

F(yu+ (1 —¢)v, AU B)

12



- /AIUB F(z,Du+ (1 — ) Dv + (u — v) Dip)dz

= / f(z, Dv)dx +/ f(z, Du)dz +/ f(z,vDu+ (1 —¢)Dv + (u — v)Dy)dx
n I B

IN

F(u, A) + F(v, B) + c/Bn(1 + Go(WDu + (1 — ) Dv + (u — v)D))dz

IN

Flu, A)+ F(o,B)+c [ (1+ GO(Q(%(wDu +(1—)Dy)+ %(u _ 0)Dy)))dz

IN

Flu, A)+ F@.B)+e [ (1+ BGa(L(6Du+ (1~ 9)D)) + L(u— 0)DY)s

IN

By sl -9)
2

F(u,A) + F(v,B) + c/ 1+ —Go(Du) + Go(Dv)) + %Go((u —v)DY/|Dy|))dx

g Gollu =9I/ Do

IN

F(u, A) + F(v, B) + —/ (1 + Go(Du) + Go(Dv))dz +

cp" /
B —
2 JanB))\A (u—v)de

< F(u,A)+ F(v, B) + —/ (1 + Go(Du) + Go(Dv))dz +
where Kk =1 — . Now define
cp
)= /U (1+ Go(Du) + Go(Dv))dx.
By the structure conditions

W(ANB) < ?(m(/l A B) + F(u, A) + F(v, B)).

Moreover, for every N =1, 2,.

w(AN B) >Zu{x€B (5u<dlst(x A')<5 b-

k=1
Consequently, for every N =1, 2,... there exists k € {1,..., N} such that
k—1
pl{ € B 16"t < dist(r, A) < s < 2]@( (AN B) + Fu, A) + F(v, B)).
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Hence, for fixed o > 0, by chosing

1 cf3 cf3 ) k—1
>— —_ e = — = —
N > amax{ 5 m(AN B), 5 o and 7 J,

we obtain
c3*

Ma:—a
2

which depends only on A, A’, B, ¢ and 8 and can thus be chosen uniformly in the class

FM).

In the next two lemmas we apply the fundamental estimate to show that the I'-limits

satisfies the measure properties subadditivity and inner regularity.

Lemma 3.4 Let {F,} be a sequence in F(M) which satisfies the Lg-fundamental esti-

mate as h — oo. Then

F'(u, A"UB) < F'(u, A) + F"(u, B)
and

F"(u, A’UB) < F"(u, A) + F"(u, B),

for allu € WlLg(Q) and A, A’ and B in A(Q) with A’ CC A.

Proof By Theorem 1.1 there exists two sequences {uy,} and {v,} converging to u strongly
in Lg(§2) such that
F'(u,A) = limhianh(uh, A)
and
F"(u, B) = limsup F}, (v, B).
h

If we now apply the Lg-fundamental estimate as h — oo to the functions u, and v, with
fixed a > 0, there exist M, and h, such that for all A > h, there exists a sequence of

functions

wy, = Ypup + (1 — Yp)vp,
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where 1)y, are cut-off functions between A’ and A such that

Fiy(wp, A"U B) < (1+ a)(F(un, A) + F(va, B)) + Ma (AnB)A B(up, — vp) dz + «,
N !

Now wp, — w in Lg(Q2). Moreover, since convergence in Lg(2) implies B-mean conver-

gence, see e.g. Kufner et. al. [9], p. 157, it follows that

/ B(up — vp) dz — 0.
(ANB)\ A’
Consequently,
F'(u,A"UB) < limhianh(wh, A" U B)
<(1+ a)(lin}lianh(uh, A) + lin}Lianh(vh, B))+«
=1+ a)(F'(u, A) + F"'(v, B)) + .
Since a can be chosen arbitrarily the first inequality follows. The second inequality is

proved the same way.

The last lemma concerns inner regularity of the I'-limits.

Lemma 3.5 Let {F,}, F' and F" be defined as in Lemma 8.4. Let u € W'Lg(Q). If
F'(u,-) and F"(u,-) are increasing set functions and if
F"(u, A) < C / (1 + Go(Du))dz,
A
for all A € A(QY), then F'(u,-) and F"(u,-) are inner reqular and moreover F"(u,-) is

subadditive.

Proof Since {F},} satisfies the Lp-fundamental estimate the proof follows along the line

of Proposition 11.6 in [2], by taking Lemma 3.4 into account.

Proof of Theorem 2.2 We extend as above the functionals to +oc on Lg(Q) \ W' Lg(Q).
By Lemma 3.3 {F}} satisfies the Lp-fundamental estimate. Therefore, by Lemma 3.5,
the I'-lower and I'-upper limits define inner regular increasing set functions. Compactness
thus follows from Lemma 3.2 and the measure properties again follows from Lemma 3.5

if we take Lemma 3.1 into account.
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4 Some final comments and concluding remarks

Theorem 2.2 opens the possibility to find representations of the I'-limit for large classes

of interesting problems. In particular in the periodic case, i.e. when f} is of the form

fulz, &) = f(h2,£),

it is possible, with the obvious modifications, to apply classical homogenization methods
analogous to those presented in for instance Dal Maso [5]. Moreover, for the case when

fn is of the form

fh(‘rag) = f(x,hx, 2 hmx’g)’

one can mimic the reiterated homogenization techniques presented in [3] and obtain ho-
mogenization results. Similar compactness and homogenization results are clearly also
obtainable for corresponding nonlinear parabolic operators by combining the compact-
ness result in this paper with the G-convergence and multi-scale convergence methods
described in e.g. [4, 6, 10, 11, 12, 13]. These interesting questions will be discussed in a

forthcoming paper.
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