A note on two-scale limits of differential operators

Nils Svanstedt

Department of Mathematics

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

and

Niklas Wellander

Department of Mathematics

University of California

Santa Barbara, CA 93106

USA

Abstract

In this note we characterize the two-scale limits of the differential operators curl, div and the time derivative. Analogously as for the gradients we obtain splittings into global and local curls, divergences and time derivatives, respectively.

1 Introduction

The two-scale convergence method introduced by Nguetseng [10] and further developed by Allaire [1] and many other thereafter has proved to be a very powerful and efficient tool in the study of homogenization of partial differential equations. A crucial result is the characterization of the two-scale limit of the gradient. In this note we review this result and prove analogous results for the curl, div and time derivative operators.

Let us consider a bounded sequence $\{u_{\varepsilon}\}$ in $L^{2}(\Omega)$, where Ω is a bounded open set in \mathbb{R}^{n} , $n \geq 1$. By the weak sequential compactness in $L^{2}(\Omega)$ there exists a subsequence, still denoted $\{u_{\varepsilon}\}$, such that, as $\varepsilon \to 0$,

$$\int_{\Omega} u_{\varepsilon}(x)\varphi(x) dx \to \int_{\Omega} u(x)\varphi(x) dx, \tag{1}$$

for all test functions $\varphi \in C_0^{\infty}(\Omega)$ and we call u the weak limit of the sequence $\{u_{\varepsilon}\}$. In general the convergence in (1) is not strong, i.e. we do not have

$$||u_{\varepsilon} - u||_{L^{2}(\Omega)} \to 0, \tag{2}$$

with the only a priori information that $\{u_{\varepsilon}\}$ is bounded in $L^{2}(\Omega)$. Two typical reasons for this are the presence of oscillations or concentrations in the sequence $\{u_{\varepsilon}\}$. None of these features are captured in the limit process (1).

Inspired by the ad hok assumption that u_{ε} admits an asymptotic expansion

$$u_{\varepsilon}(x) = u_0(x, \frac{x}{\varepsilon}) + \varepsilon u_1(x, \frac{x}{\varepsilon}) + \varepsilon^2 u_2(x, \frac{x}{\varepsilon}) + \dots,$$
(3)

where all the u_i 's in the power series are assumed to be periodic in the second argument Nguetseng [10] extended the class of test functions to functions with two scales. In order to capture oscillations he considered test functions $\varphi = \varphi(x, y)$ of the class $C_0^{\infty}(\Omega; C_{per}^{\infty}(T^n))$, where T^n is the unit torus in \mathbb{R}^n . The subindex *per* stands for periodicity (with period T^n). The extension of ususal weak convergence to weak two-scale convergence reads

Definition 1 A sequence $\{u_{\varepsilon}\}$ in $L^{2}(\Omega)$ is said to two-scale converge to a function $u_{0} = u_{0}(x,y)$ in $L^{2}(\Omega \times T^{n})$ if

$$\int_{\Omega} u_{\varepsilon}(x)\varphi(x,\frac{x}{\varepsilon})\,dx \to \int_{\Omega} \int_{T^n} u_0(x,y)\varphi(x,y)\,dydx,\tag{4}$$

for all test functions $\varphi \in C_0^{\infty}(\Omega; C_{per}^{\infty}(T^n))$.

In the sequel we will frequently use the notation

$$u_{\varepsilon} \stackrel{2s}{\rightharpoonup} u_0.$$

The basic compactness result, due to Nguetseng [10], reads

Theorem 1 For every bounded sequence $\{u_{\varepsilon}\}$ in $L^{2}(\Omega)$ there exist a subsequence and a function u_{0} such that

$$u_{\varepsilon} \stackrel{2s}{\rightharpoonup} u_0.$$

There are various generalizations of Theorem 1. The general versions in Holmbom [7], see also Holmbom, Svanstedt and Wellander [8], do not assume any periodicity and imply Theorem 1 as a special case. A fundamental result for applications to homogenization problems is the characterization of two-scale limits of functions in $H^1(\Omega)$:

Theorem 2 Assume that $\{u_{\varepsilon}\}$ is a bounded sequence in $H^{1}(\Omega)$. Then

$$u_{\varepsilon} \stackrel{2s}{\rightharpoonup} u_0.$$

and

$$\nabla u_{\varepsilon} \stackrel{2s}{\rightharpoonup} \nabla_x u_0 + \nabla_y u_1.$$

Moreover, $u_0 = u_0(x) \equiv u(x)$, where u is the weak limit in (1) and $u_1 = u_1(x,y) \in L^2(\Omega; H^1_{per}(T^n))$.

Remark 1 From Theorem 2 it also follows, see [7] that

$$\frac{u_{\varepsilon}-u_0}{\varepsilon} \stackrel{2s}{\rightharpoonup} u_1.$$

Remark 2 By taking the gradient of (3) and by employing the chain rule one obtains

$$\nabla u_{\varepsilon} = \varepsilon^{-1} \nabla_y u_0(x, \frac{x}{\varepsilon}) + \varepsilon^0 \left(\nabla_x u_0(x, \frac{x}{\varepsilon}) + \nabla_y u_1(x, \frac{x}{\varepsilon}) \right) + \dots$$

These leading order terms are in agreement with the result of Theorem 2. Thus Theorem 2 justifies rigorously the existence of the first two terms in the expansion (3) and also the fact that the leading order term in (3) contains no oscillations for H^1 -functions.

By introducing more scales in the test functions one can capture more hidden scales in the sequence $\{u_{\varepsilon}\}$. We recall that a sequence $\{u_{\varepsilon}\}$ in $L^{2}(\Omega)$ is said to multiscale converge to $u=u(x,y_{1},y_{2},\ldots,y_{n})$ in $L^{2}(\Omega\times Y_{1}\times Y_{2}\times\cdots\times Y_{n})$ if

$$\lim_{\varepsilon \to 0} \int_{\Omega} u_{\varepsilon}(x) \varphi(x, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^2}, \dots, \frac{x}{\varepsilon^n}) dx =$$

$$\int_{\Omega} \int_{Y_1} \int_{Y_2} \cdots \int_{Y_n} u(x, y_1, y_2, \dots, y_n) \varphi(x, y_1, y_2, \dots, y_n) dx dy_1 dy_2 \cdots dy_n,$$

for all admissible test functions $\varphi \in L^2(\Omega; C^{\infty}_{per}(Y_1 \times Y_2 \times \cdots \times Y_n)).$

Remark 3 In [2] Allaire and Briane prove compactness:

Let $\{u_{\varepsilon}\}$ be a uniformly bounded sequence in $L^{2}(\Omega)$. Then there exists a subsequence and a function $u = u(x, y_{1}, y_{2}, \ldots, y_{n})$ in $L^{2}(\Omega \times Y_{1} \times Y_{2} \times \cdots \times Y_{n})$ such that u_{ε} multiscale converges to u.

They also prove the multiscale analogue of Theorem 2:

Let $\{u_{\varepsilon}\}$ be a uniformly bounded sequence in $H^1(\Omega)$. Then there exist subsequences such that

$$u_{\varepsilon} \to u_0 = u_0(x)$$

and

$$\nabla u_{\varepsilon} \to \nabla_{x} u_{0}(x) + \nabla_{y_{1}} u_{1}(x, y_{1}) + \nabla_{y_{2}} u_{2}(x, y_{1}, y_{2}) + \ldots + \nabla_{y_{n}} u_{n}(x, y_{1}, y_{2}, \ldots, y_{n})$$

in the multiscale sense.

Remark 4 In [8] it is proved that

$$\frac{u_{\varepsilon} - u_0 - \varepsilon u_1 - \dots - \varepsilon^{n-1} u_{n-1}}{\varepsilon^n} \to u_n,$$

in the multiscale sense, c.f. Remark 1.

Remark 5 More recent work on multiscale convergence and reiterated homogenization for quasilinear elliptic problems can be found in Lions et. al [9] and for parabolic problems in Holmbom, Svanstedt and Wellander [8].

2 Some vector notations

Let $v:\mathbb{R}^3\to\mathbb{R}^3$ be a vector field. We consider the curl and div of v defined as

$$\operatorname{curl} v = \nabla \times v = \left(\frac{\partial v_3}{\partial x_1} - \frac{\partial v_1}{\partial x_3}, \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1}, \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}\right)$$

and

$$\operatorname{div} v = \nabla \cdot v = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}.$$

We also define the following function spaces:

$$G := \{ v \in L^{2}(\Omega : \mathbb{R}^{3}) : v = \nabla \xi, \ \xi \in H^{1}(\Omega) \},$$

$$H_{curl} := \{ v \in L^{2}(\Omega : \mathbb{R}^{3}) : \operatorname{curl} v \in L^{2}(\Omega : \mathbb{R}^{3}) \},$$

$$H := \{ v \in H_{curl} : v = \nabla \times \psi, \ \psi \in H^{1}(\Omega) \}$$

and

$$H_{div} := \{ v \in L^2(\Omega : \mathbb{R}^3) : \operatorname{div} v \in L^2(\Omega) \}.$$

The spaces are H_{curl} and H_{div} are equipped with their graph norms, i.e.

$$||v||_{H_{curl}} = ||v||_{L^2(\Omega:\mathbb{R}^3)} + ||\nabla \times v||_{L^2(\Omega:\mathbb{R}^3)}$$

and

$$||v||_{H_{div}} = ||v||_{L^2(\Omega:\mathbb{R}^3)} + ||\operatorname{div} v||_{L^2(\Omega)}.$$

We recall some results on decomposition of the space L^2 . It goes back to Helmholtz [6] from 1870 that any smooth vector field $v : \mathbb{R}^3 \to \mathbb{R}^3$ can be decomposed as

$$v = \nabla \times \Psi + \nabla \Phi, \tag{5}$$

In fact by considering the vector Laplacian

$$\Delta \psi = \nabla (\operatorname{div} \psi) - \nabla \times (\nabla \times \psi)$$

the decomposition in (5) is valid with the choice

$$\Psi = \nabla \times \psi$$
 and $\Phi = \operatorname{div} \psi$.

for some vector potentials Ψ , $\psi: \mathbb{R}^3 \to \mathbb{R}^3$ and a scalar potential $\Phi: \mathbb{R}^3 \to \mathbb{R}$.

The following Hodge decompositions of L^2 holds, see e.g. Cessenat [4]:

Lemma 1

$$L^{2}(\Omega: \mathbb{R}^{3}) = \{ v \in H_{div} : \operatorname{div} v = 0 \} \oplus G.$$
(6)

$$L^{2}(\Omega: \mathbb{R}^{3}) = H \oplus \{ v \in H_{curl}: \nabla \times v = 0 \}.$$

$$(7)$$

For more results on decompositions we refer the reader to e.g. Galdi [5] and the references therein.

Remark 6 In the proof of Theorem 2 one uses the orthogonal decomposition (6) and below we will use the orthogonal decomposition (7) in the splitting of the curl in Theorem 3.

3 The Main Results

Theorem 3 Assume that $\{u_{\varepsilon}\}$ is a bounded sequence in H_{curl} . Then,

$$u_{\varepsilon} \stackrel{2s}{\rightharpoonup} u_0(x,y),$$

$$\nabla \times u_{\varepsilon} \stackrel{2s}{=} \nabla_x \times u_0(x, y) + \nabla_y \times u_1(x, y) \tag{8}$$

and

$$\nabla \times u_{\varepsilon} \rightharpoonup \nabla \times u(x) \tag{9}$$

weakly in $L^2(\Omega : \mathbb{R}^3)$ where

$$u(x) = \int_{T^n} u_0(x, y) \, dy, \tag{10}$$

i.e. the weak limit in $L^2(\Omega : \mathbb{R}^3)$ of the sequence $\{u_{\varepsilon}\}$. Moreover, $u_0(x,y)$ can be decomposed as

$$u_0(x,y) = u(x) + \nabla_y \Phi(x,y),$$

for some scalar potential $\Phi: \mathbb{R}^3 \to \mathbb{R}$.

Theorem 4 Assume that $\{u_{\varepsilon}\}$ is a bounded sequence in H_{div} . Then,

$$u_{\varepsilon} \stackrel{2s}{\rightharpoonup} u_0(x,y),$$

$$\operatorname{div} u_{\varepsilon} \stackrel{2s}{\rightharpoonup} \operatorname{div} u(x) + \operatorname{div}_{y} u_{1}(x, y) \tag{11}$$

and

$$\operatorname{div} u_{\varepsilon} \rightharpoonup \operatorname{div} u(x) \tag{12}$$

weakly in $L^2(\Omega)$ where

$$u(x) = \int_{T^n} u_0(x, y) \, dy, \tag{13}$$

i.e. the weak limit in $L^2(\Omega)$ of the sequence $\{u_{\varepsilon}\}$ and where the two-scale limit $u_0(x,y)$ of the sequence $\{u_{\varepsilon}\}$ is of the form

$$u_0(x,y) = u(x) + \nabla_y \times \Psi(x,y) + \nabla_y \xi(x,y),$$

for some vector potential $\Psi: \mathbb{R}^3 \to \mathbb{R}^3$ and smooth scalar function ξ which is harmonic in the variable y.

Theorem 5 Assume that $\{u_{\varepsilon}\}$ is a bounded sequence in $H^{1}(0,T)$. Then

$$d_t u_\varepsilon \stackrel{2s}{\rightharpoonup} d_t u_0 + d_\tau u_1, \tag{14}$$

where $u_0 = u_0(t)$ in $L^2(0,T)$ and $u_1 = u_1(t,\tau)$ in $L^2(0,T;H^1_{per}(0,T))$.

Remark 7 The results of Theorems 3, 4 and 5 can be generalized to the case of N scales. We refer to [12].

4 Proofs

Proof of Theorem 3 Since $u_{\varepsilon} \in H_{curl}$ we can apply Theorem 1 and conclude that there exists a vector field $\chi = \chi(x, y)$ such that

$$\nabla \times u_{\varepsilon}(x) \stackrel{2s}{\rightharpoonup} \chi(x,y).$$

If we choose test functions $\varphi \in C_0^\infty(\Omega: C_{per}^\infty(T^n: \mathbb{R}^3))$ such that $\nabla_y \times \varphi = 0$ we get

$$\int_{\Omega} \left(\nabla \times u_{\varepsilon}(x) \right) \cdot \varphi \left(x, \frac{x}{\varepsilon} \right) dx \to \int_{\Omega} \int_{T^n} \left(\nabla_x \times u_0(x, y) \right) \cdot \varphi(x, y) dy dx$$

by Stokes theorem and the compact support of φ . This means that

$$(\chi(x,y) - \nabla_x \times u_0(x,y)) \cdot \varphi(x,y) = 0$$

for all test functions $\varphi \in C_0^{\infty}(\Omega : C_{per}^{\infty}(T^n : \mathbb{R}^3))$ with $\nabla_y \times \varphi = 0$. According to Lemma 1 we conclude that there exists a function u_1 such that

$$\nabla_y \times u_1(x,y) = \chi(x,y) - \nabla_x \times u_0(x,y)$$

in $L^2(\Omega; L^2_{per}(T^n : \mathbb{R}^3))$. Finally, by taking the limit of

$$\varepsilon \int_{\Omega} (\nabla \times u_{\varepsilon}(x)) \cdot \varphi \left(x, \frac{x}{\varepsilon}\right) dx$$

we obtain, by using Stokes' theorem and the compact support of φ ,

$$0 = \int_{\Omega} \int_{T^n} (\nabla_y \times u_0(x, y)) \cdot \varphi(x, y) \, dy dx$$

This implies that

$$u_0(x, y) = \nabla_y \tilde{\Phi}(x, y),$$

for some scalar potential $\tilde{\Phi}(x, y)$. The weak convergence (9), which is proved in Wellander [13], says that

$$\int_{T^n} \chi(x, y) \, dy = \nabla \times u(x),$$

where,

$$u(x) = \int_{T^n} u_0(x, y) \, dy.$$

This means that we can express $u_0(x,y)$ as

$$u_0(x, y) = u(x) + \nabla_y \Phi(x, y),$$

 \Box .

for some scalar potential $\Phi: \mathbb{R}^3 \to \mathbb{R}$.

Proof of Theorem 4 In order to prove (11) we first observe that since u_{ε} belongs to H_{div} we can apply Theorem 1 and conclude that there exists a function $\eta = \eta(x, y)$ such that

$$\operatorname{div} u_{\varepsilon}(x) \stackrel{2s}{\rightharpoonup} \eta(x,y)$$

Let us now define

$$f(x,y) = \eta(x,y) - \int_{T^n} \eta(x,y) \, dy$$

and consider the Poisson's equation

$$\begin{cases}
-\operatorname{div}_{y}(\nabla_{y}\phi(x,y)) = f(x,y) & \text{in } \Omega \times T^{n}, \\
\phi(x,\cdot) \in H^{1}_{per}(T^{n}), & x \in \Omega.
\end{cases}$$
(15)

According to the Fredholm alternative, see e.g. [11], (15) has a unique solution since

$$\int_{T^n} f(x, y) \, dy = 0.$$

We also have, see [13], that

$$\int_{T^n} \eta(x, y) \, dy = \operatorname{div} u(x)$$

where

$$u(x) = \int_{T^n} u_0(x, y) \, dy.$$

By defining

$$u_1(x,y) = \nabla_y \phi(x,y)$$

we therefore conclude that

$$\eta(x, y) = \operatorname{div} u(x) + \operatorname{div}_y u_1(x, y).$$

The decomposition of $u_0(x, y)$ follows by taking the limit of

$$\varepsilon \int_{\Omega} \operatorname{div} u_{\varepsilon}(x) \varphi\left(x, \frac{x}{\varepsilon}\right) dx.$$

We obtain

$$0 = \int_{\Omega} \int_{T^n} \operatorname{div}_y u_0(x, y) \varphi(x, y) \, dy dx$$

by Gauss' theorem and the compact support of φ . This means that

$$u_0(x, y) = \nabla_y \times \tilde{\Psi}(x, y) + \nabla_y \tilde{\xi}(x, y),$$

for some vector potential $\tilde{\Psi}(x,y)$ and smooth scalar potential $\tilde{\xi}$. If we combine this with the weak limit u(x) we conclude that we can express $u_0(x,y)$ as

$$u_0(x,y) = u(x) + \nabla_y \times \Psi(x,y) + \nabla_y \xi(x,y),$$

for some vector potential Ψ and smooth scalar function ξ which is harmonic in the variable y.

The arguments in the proof of Theorem 5 are analogous but much simpler and we omit them here.

Remark 8 The results of Theorem 4 and Theorem 5 are very useful in the homogenization of Maxwell systems, see [13]. Another important application is the homogenization of Navier-Stokes systems in the vector potential - vorticity formulation, see [3].

References

- [1] G. Allaire, *Homogenization and two-scale convergence*, SIAM Journal of Mathematical Analysis, Vol. 23, No.6, (1992), 1482-1518.
- [2] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Royal Soc. Edinburgh, Vol. 126, (1996), 297-342.
- [3] B. Birnir, P. Newton and N. Svanstedt, Two scale asymptotics, vorticity and turbulent transport, submitted.
- [4] M. Cessenat, Mathematical methods in electromagnetism, Series on Advances in mathematics for applied sciences, vol. 41, World Scientific, 1996.

- [5] G. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol I, Springer Tracts in Natural Philosophy, vol. 38, Springer Verlag, 1994.
- [6] H. Helmholtz, Ueber die Theorie der Elektrodynamik. Erste Abhandlung. Ueber die Bewegungsgleichungen der Elektricität fur Ruhende Leitenede Körper, J. Reine Ang. Math., 72, (1870), 57-129.
- [7] A. Holmbom, Some modes of convergence and their applications to optimal composites design, Thesis, Luleå University, 1996.
- [8] A. Holmbom, N. Svanstedt and N. Wellander Multiscale convergence and reiterated homogenization of parabolic problems, manuscript 2001.
- [9] J.-L. Lions, D. Lukkassen, L.-E. Persson and P. Wall. Reiterated homogenization of nonlinear monotone operators., Chin. Ann. Math., Ser. B, 22, 1, (2001), 1-12.
- [10] G. Nguetseng, A general Convergence Result For a Functional Related to the Theory of Homogenization, SIAM Journal of Mathematical Analysis, Vol. 20, No.3, (1989), 608-623.
- [11] L. Persson, L-E Persson, N. Svanstedt and J. Wyller, The homogenization method An introduction, Studentlitteratur Publ., 1993.
- [12] N. Svanstedt and N. Wellander, Further results on two-scale limits of differential operators, manuscript 2001.
- [13] N. Wellander, Homogenization of the Maxwell equations, Case 1: Linear Theory, Appl Math. 46, (2001), 29-51.