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Abstract

In this note we characterize the two-scale limits of the differential operators curl,
div and the time derivative. Analogously as for the gradients we obtain splittings

into global and local curls, divergences and time derivatives, respectively.



1 Introduction

The two-scale convergence method introduced by Nguetseng [10] and further developed
by Allaire [1] and many other thereafter has proved to be a very powerful and efficient
tool in the study of homogenization of partial differential equations. A crucial result is
the characterization of the two-scale limit of the gradient. In this note we review this
result and prove analogous results for the curl, div and time derivative operators.

Let us consider a bounded sequence {u.} in L?(f2), where  is a bounded open set in
R*, n > 1. By the weak sequential compactness in L?(2) there exists a subsequence, still

denoted {u.}, such that, as ¢ — 0,

[ u@pta)ds— [ u@ypta) da, ()
0 0
for all test functions ¢ € C§°(2) and we call u the weak limit of the sequence {u.}. In

general the convergence in (1) is not strong, i.e. we do not have
||ug — u”Lz(Q) — 0, (2)

with the only a priori information that {u.} is bounded in L?(Q2). Two typical reasons
for this are the presence of oscillations or concentrations in the sequence {u.}. None of
these features are captured in the limit process (1).

Inspired by the ad hok assumption that u. admits an asymptotic expansion
x x x
ue(z) = uo(z, E) + euy (z, g) + e2uy(, g) +o (3)
where all the u;’s in the power series are assumed to be periodic in the second argument
Nguetseng [10] extended the class of test functions to functions with two scales. In order to
capture oscillations he considered test functions ¢ = ¢(z,y) of the class Cg°(€2; Cpe,.(T™)),

where T™ is the unit torus in R". The subindex per stands for periodicity (with period

T™). The extension of ususal weak convergence to weak two-scale convergence reads

Definition 1 A sequence {u.} in L*(Q) is said to two-scale converge to a function ug =

ug(x,y) i L2(Q x T™) of

[ uaete, e [ [ wnlap)ota,n) dyds )



for all test functions ¢ € C§ (% C.(T™)).

per

In the sequel we will frequently use the notation
Ue — Ug.
The basic compactness result, due to Nguetseng [10], reads

Theorem 1 For every bounded sequence {u.} in L*(Q) there exist a subsequence and a
function ug such that

2
Ug Ug-

There are various generalizations of Theorem 1. The general versions in Holmbom [7],
see also Holmbom, Svanstedt and Wellander [8], do not assume any periodicity and imply
Theorem 1 as a special case. A fundamental result for applications to homogenization

problems is the characterization of two-scale limits of functions in H'(f):

Theorem 2 Assume that {u.} is a bounded sequence in H*(Q2). Then

2
Ue Ug-

and
Vu, 2 Vaug + Vyus.

Moreover, ug = uo(x) = u(x), where u is the weak limit in (1) and ux = ui(x,y) €

L2(Q; HY, (T™)).

per

Remark 1 From Theorem 2 it also follows, see [7] that

us_uoﬁ’
13

U1.
Remark 2 By taking the gradient of (3) and by employing the chain rule one obtains
Vug = 671VyU()($, g) =+ 60 (V,ﬂto(%, g) + Vyul(:v, g)) —+ ...,

These leading order terms are in agreement with the result of Theorem 2. Thus Theorem
2 justifies rigorously the existence of the first two terms in the expansion (3) and also the

fact that the leading order term in (8) contains no oscillations for H'-functions.



By introducing more scales in the test functions one can capture more hidden scales in
the sequence {u.}. We recall that a sequence {u.} in L?(2) is said to multiscale converge
to u = u(T, Y1, Yo, ..., Yn) in L2(Q x Y] x Yy x -+ x V) if

X
,—2,...,—)d$:

li e ;
im [ u.(z)p(z - g

e—0 Q

//// U(Ty 5 Y1, Y2, -+ Yn) (X5, Y1, Y2, - -+, Yn) dTdyrdys - - - dypn,
QJY; JY, n

for all admissible test functions ¢ € L?(2; C2.(V x Y x -+ x Vy,)).

per

X
9

Remark 3 In [2] Allaire and Briane prove compactness:

Let {u.} be a uniformly bounded sequence in L?(Q2). Then there exists a subsequence and
a function v = u(z,y1,Y2,---,Yn) 0 L*(Q x Yy x Y3 x -+ x V},) such that u. multiscale
converges to u.

They also prove the multiscale analogue of Theorem 2:

Let {u.} be a uniformly bounded sequence in H*(S)). Then there exist subsequences such

that

Ue — Ug = Ug ()
and
VU/E — VIU/O(‘T) + Vyl'UI1($, yl) + Vy2’U,2(£U, Y1, y2) +...+ Vynun(xa Y1,Y2,- -+, yn)7

in the multiscale sense.

Remark 4 In [8] it is proved that

Us — U —EUL — -+ — & Up_1

En
in the multiscale sense, c.f. Remark 1.
Remark 5 More recent work on multiscale convergence and reiterated homogenization for

quasilinear elliptic problems can be found in Lions et. al [9] and for parabolic problems in

Holmbom, Svanstedt and Wellander [8].



2 Some vector notations

Let v : R — R3 be a vector field. We consider the curl and div of v defined as

8’03 81}1 81}1 81)3 81)2 01)1

Or, Oxs Oz Ox, 01, OTo

curlv =V xv = (

and
81}1 8’02 61)3

8:51 + 8302 + 81‘3.

We also define the following function spaces:

divv=V . -v=

G:={velX(Q:R):v=VE &€ H(Q)},
Hewr :=4{v € LQ(Q : R3) ccurlv € LQ(Q : R3)},
H:={v€Hup:v=Vx9, e H(Q)}

and

Hyi = {v € L*(Q:R?) : divv € L*(Q)}.
The spaces are H,,; and Hg;, are equipped with their graph norms, i.e.
V]| 1, = V][ L22R2) + [V X ][ L2(0:m9)

and
[Vl g, = lVl[L2@me) + [|div o]l 2(0)-
We recall some results on decomposition of the space L2. It goes back to Helmholtz

[6] from 1870 that any smooth vector field v : R® — R?® can be decomposed as
v=VxU+VO, (5)
In fact by considering the vector Laplacian
Ay = V(divep) — V x (V x 1))
the decomposition in (5) is valid with the choice

U=V xy and ® = div.



for some vector potentials ¥, ¥ : R® — R® and a scalar potential ® : R® — R.

The following Hodge decompositions of L? holds, see e.g. Cessenat [4]:

Lemma 1

L*(Q:R) ={v € Hy, : divv=0}®G. (6)
LP*Q:R)=H®{v€ Hyp: Vxv=0}. (7)

For more results on decompositions we refer the reader to e.g. Galdi [5] and the references

therein.

Remark 6 In the proof of Theorem 2 one uses the orthogonal decomposition (6) and below

we will use the orthogonal decomposition (7) in the splitting of the curl in Theorem 8.

3 The Main Results

Theorem 3 Assume that {u.} is a bounded sequence in H.y. Then,

Ue &9\ U,()(SL', y),

V x u 2V, x ug(z,y) + Vy X ui(z,y) (8)
and
V X u.—V x u(zx) (9)
weakly in L*>(Q : R®) where
u(zr) = /n uo(z,y) dy, (10)

i.e. the weak limit in L*(2: R®) of the sequence {u.}. Moreover, uo(z,y) can be decom-
posed as

up(z,y) = u(z) + Vy@(2,v),

for some scalar potential ® : R® — R.



Theorem 4 Assume that {u.} is a bounded sequence in Hg;,. Then,

2
Ue =2 UO(‘,L', y),

divu, 2 divu(z) + divy uq(z,y) (11)

and

div u.—div u(x) (12)

weakly in L*(Q) where
u(e) = [ wola.v)dy, (13)

i.e. the weak limit in L?(Q) of the sequence {u.} and where the two-scale limit uo(z,y) of

the sequence {u.} is of the form
ug(z,y) = u(z) + Vy x ¥(z,y) + V,&(z,y),

for some wvector potential ¥ : R* — R® and smooth scalar function & which is harmonic

in the variable y.
Theorem 5 Assume that {u.} is a bounded sequence in H'(0,T). Then

d; u, 2 dy up + d; uq, (14)
where uy = uy(t) in L*(0,T) and vy = uy(¢,7) in L*(0,T; H.,.(0,T)).

per

Remark 7 The results of Theorems 3, 4 and 5 can be generalized to the case of N scales.

We refer to [12].

4 Proofs

Proof of Theorem 8 Since u, € H,,,; we can apply Theorem 1 and conclude that there

exists a vector field x = x(z,y) such that

V x uc(z) 2 x(z,y).



If we choose test functions ¢ € C§°(Q2: C,(T™ : R?)) such that V,, x ¢ =0 we get

per

[ sutan-e (0 2) doos [ [ (92 uoa0) - ola.g) dyda

by Stokes theorem and the compact support of ¢. This means that

(x(z,y) = Vo X ug(z,9)) - p(z,y) =0

for all test functions ¢ € C§°(Q2 : C.(T™ : R?)) with V,, x ¢ = 0. According to Lemma

per

1 we conclude that there exists a function u; such that

vy X Ul(may) = X(xay) - vx X U()(Q?,il/)

in L2(Q; L2, (T™ : R?)). Finally, by taking the limit of

per

E/Q (V X u(z)) - (x, g) dx

we obtain, by using Stokes’ theorem and the compact support of ¢,

0= // (Vy X ug(z,y)) - ¢ (z,y) dydz
Q n
This implies that
uo(z,y) = Vyfi(ac,y),

for some scalar potential ®(z,y). The weak convergence (9), which is proved in Wellander

[13], says that
/ x(z,y)dy =V x u(x),
where,

u(z) = /n uo(z, y) dy.

This means that we can express ug(x,y) as
UO(xay) = U(.’L‘) + qu)(.T, y)a

for some scalar potential ® : R* — R. a.



Proof of Theorem 4 In order to prove (11) we first observe that since u. belongs to
Hgy;,, we can apply Theorem 1 and conclude that there exists a function n = n(z, y) such
that

div u.(z) 2 n(z,y)

Let us now define

f(zy) = n(z,y) - / n(z,y) dy

n

and consider the Poisson’s equation

—divy(Vyo(z,y)) = f(z,y) in QxT",

o(z,-) € Hy, (T"), = €. (15)

According to the Fredholm alternative, see e.g. [11], (15) has a unique solution since

f(z,y)dy = 0.

T
We also have, see [13], that
/T n(z,y) dy = div u(z)
where
u(e) = [ wolw.v)dy.
By defining
ui(z,y) = Vyo(z,y)

we therefore conclude that
n(z,y) = divu(z) + divyu(z, y).
The decomposition of ug(z,y) follows by taking the limit of

5/Qdivus(x)g0 (x,§> dx.

We obtain

0:// divy uo(z, y)¢(z, y) dyde
QJrn



by Gauss’ theorem and the compact support of ¢. This means that

Uo(xay) = vy X ﬁl(x,y) + Vyg(:v,y),

for some vector potential \il(x, y) and smooth scalar potential 5 . If we combine this with

the weak limit u(z) we conclude that we can express uy(z,y) as
uo(z,y) = u(z) + Vy x U(z,y) + Vy&(z,y),
for some vector potential ¥ and smooth scalar function ¢ which is harmonic in the vari-

able y. O

The arguments in the proof of Theorem 5 are analogous but much simpler and we omit

them here.

Remark 8 The results of Theorem 4 and Theorem & are very useful in the homogeniza-
tion of Mazwell systems, see [13]. Another important application is the homogenization

of Navier-Stokes systems in the vector potential - vorticity formulation, see [3].
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