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Abstract

Consider a finite alphabet  and patterns which consist of characters from
Q. For a given pattern w, let cor(w) denote its autocorrelation, which can be
seen as a measure of the amount of overlap in w. Letting a.(n) denote the
number of strings over 2 of length n which do not contain w as a substring,
the main result of this paper reads: If cor(w) > cor(w') then a., (n) —a, (n) >
(19 = 1)(aw(n—1) — @y (n—1)) for n > N, and the value of N is given. This
result confirms a conjecture by Eriksson [2], which was previously proved to be
true by Cakir, Chryssaphinou and Mansson [1], but then under the assumption
that || > 3.

1 Introduction and main result

Let Q denote a finite alphabet of size ¢ > 2, and call any finite sequence composed of
characters from the alphabet Q a string. For a given string w = wy - - - wg, w; € Q,
which will be referred to as a pattern, let a,(n) denote the number of strings of
length n, which do not contain w as a substring of consecutive characters. We say
that these strings avoid w. In this paper we will consider how the structure of the
pattern w affects a,,(n).

Guibas and Odlyzko [3] introduced the notion of autocorrelation of a pattern
w. If lw| = k, where |w| denotes the length of w, it is defined to be the binary
sequence bpbr_1---b1, where b; = 1 if w; = wg—i45,5 = 1,...,4, i.e. if there is an
overlap of size i. Sometimes it is convenient to view this sequence as a number
in some base, and with some abuse of notation we let cor(w) denote both the
sequence and its numerical value in, say, base 2. For example, if Q@ = {H,T}, and
w = TTHTHTTHT, then cor(w) = 100001001, and if it is viewed as a binary
number, then cor(w) = 529. Autocorrelation can be seen as a measure of the
amount of overlap in w.

By means of generating functions, Guibas et al. [3] derived the following recur-
rence equation for a, (n), where the convention a,,(0) = 1 is used:

If |lw| = k and cor(w) = bgbg_1 ...b1, then, for n > 0,

k
aw(n) = Y bifgaw(n+i—1)—ay(n+i). (1.1)

i=1

Furthermore, Guibas et al. [3] showed that asymptotically a,(n) ~ c,0%, where
Cw,Bw > 0 depend on the autocorrelation of w. Eriksson [2], who gave another,
combinatorial, proof of (1.1), proved also that there exists an N such that a,(n) >
ay (n), n > N, if and only if cor(w) > cor(w'). Furthermore, Eriksson [2] states
the following conjecture concerning the value of N:

If cor(w) > cor(w'), then ay(n) > ay (n) from the first n where equality no
longer holds.



Cakir, Chryssaphinou and Ménsson [1] proved that Eriksson’s conjecture is true,
by giving a lower bound on a,(n) — ay(n); however only under the annoying
assumption that ¢ > 3:

If w and w' are patterns of length k with cor(w) > cor(w'), where cor(w) =
b ...b1 and cor(w') = b, ...b}, and r = max{i : b; # b}, then

R as

and if ¢ > 3, then forn > 2k —r,

o) s (n) > (4= 2) Y [00(i) ~ s 9] (13)

If the patterns are of different lengths, |lw| = k and |w'| = j, j < k, then the
formulae above hold with 2k — r replaced by j throughout.

The proof of (1.2) in Cakir et al. [1] is a simple use of (1.1), while the proof
of (1.3) is more involved. The case where ¢ = 2 was left open except for some
special cases. In the present paper, we show that the conjecture by Eriksson is, as
expected, true also when ¢ = 2.

Theorem 1.1 If w and w' are patterns of length k with cor(w) > cor(w'), and
r = max{i : b; # b}, then forn > 2k —r

ay(n) —ay () > (g—1)ay(n —1) —ay(n—1)]. (1.4)

If the patterns are of different lengths, lw| = k and |w'| = j, j < k, then (1.4) holds
forn>j.

Before proving this theorem, we need some results and observations on the avoidance
of a pattern. An extensive list of references on results on the occurrence of patterns
can be found in Régnier and Szpankowski [4].

2 Results on the avoidance of a pattern

Strings which are shorter than the pattern w can, of course, not include w as a
substring. Also all strings of the same length as w, except the pattern itself, avoid
w. Hence, if |w| = k then

awn) =q"n=1,...,k—1, and au(k)=¢"—1. (2.1)

The number of strings of length n for which w does not occur in the first n — 1
positions is equal to ga,(n — 1). These strings can be divided into two groups;
those that end with w and those that do not end with w. The number of strings
in the latter of these groups is a,(n). Thus qaw(n — 1) — ay(n) is the number of
strings of length n ending with w, that is in positions n — k 4+ 1 to n, and avoiding
w in its first n — 1 positions. It is hence true that

=0, ifn<k-1,
gay(n —1) — ay(n) =1, ifn=k, (2.2)
>0, ifn>k.

Now, let us introduce the notation h,(n) = gay(n — 1) — ay,(n). Then, by
(2.2), ghyw(n — 1) — hyy(n) =0 for n < k, and ghy, (kK — 1) — hy(k) = —1. Above we
considered what happened when adding a character in the end of the strings which
avoid w. We now repeat this arguing for the strings in which w occurs for the first



time at the very end, by considering what happens when a character is added in
the beginning. For n > k, hy(n — 1) > 0 and then gh,(n — 1) can be interpreted
as the number of strings of length n ending with w and avoiding w in positions
2,...,n — 1. As above, these strings can be divided in two groups; those which
start with w and those which do not start with w. The number of strings in the
latter group is hy(n). Hence ghy (n — 1) — hy(n), n > k, is the number of strings of
length n which both begin and end with w, but avoid w in all other places, which
certainly is a non-negative number.
Using the convention that by = 1, let

s = OSI?Sa;z{—I{J 1b; =1} (2.3)
The shortest possible string of length > k, which both begins and ends with w is of
length 2k — s, and there obviously only exists one such string. To summarize,

=0, ifn <k,
=-1, ifn=xk,
ghy(n — 1) — hy(n) =0, itk<n<2k-—s, (2.4)

=1, if n =2k — s,
>0, if n > 2k —s.

Note that (2.4) can be verified formally by using (1.1).

In Cakir et al. [1], the proof of (1.3) was divided into the cases where by_1 =0
and bx—1 = 1. In the case where bx_1 = 1, the proof relied on that if by_; = 1
then by = ... = by = 1; the implication follows since by the definition of by_1,
wy = Wy, Ws = W3, ..., Wr_1 = Wk, and hence w; = wy = --- = wg. In the present
paper the autocorrelation structure plays a larger role. What we use is the following
observation, where |-| denotes the integer part:

if b; =1 for some j € {0,1,...,k—1},
then bk—(k—j)t =1forallte {]., cey L%J}, (25)

which follows by the definition of autocorrelation, as in the case where by_; = 1.
A key tool in both Cakir et al. [1] and in the present paper is the recurrence
equation for a,(n) given in (1.1), where a,(n) is expressed in terms of “future”
values of a, (i), i.e. # > n. Here it is however more convenient to express a,(n)
in terms of a, (i), i < n, as in the following equation, which follows directly from
(1.1). For n > k,
k—1
aw(n) = qap(n—1)—ayx(n—Fk) + Z bil[gaw(n —k +i—1) —ap(n —k+19)].
i=1

(2.6)

Note that it follows immediately from this recurrence equation and (2.1) that
ayw(n) = ay (n) for all n if cor(w) = cor(w').

In the sequel we use the convention that h,(n) =0, n =0,—1,-2,..., and to
simplify the notation we drop the subscript in h,,, when there is no risk of confusion.

Lemma 2.1 Assume that w is a pattern of length k with autocorrelation cor(w) =
brbg—1-..b1, and let s be defined by (2.3). Then, forn > 1,
k—s
(@=1)D [gaw(n —1—1i) — aw(n —i)], if 0 <s <k, (2.7)
i=1

gaw(n —1) —ay(n) > k—1

(@=1)D [gawn—1-i)—ay(n—1)], ifs=0.  (2.8)

i=1



Proof. The proof is divided into six parts: (i
(i) n=2k—s, (iv)2k—s<n<2k1<s<

(vi) n > 2k, s =0.

) n <
k—1

?

(i) By (2.2), h(k) = 1 and h(n) = 0for 1 < n < k — 1, so the lemma is obvi-
ously true for n < k.

(i) Now we consider n such that £ < n < 2k — s, and hence we can assume
that 0 < s < k — 2. For these n it follows by (2.4) that

h(n) = gh(n—1)=(¢—1)h(n—-1)+h(n—1).
Furthermore, if k <n — 1, then h(n — 1) = (g — 1)h(n — 2) + h(n — 2), so that
h(n) = (g—1)(h(n—=1)+ h(n—2))+ h(n —2).

Repeating this arguing, and using that h(k) = 1, we get

n—k

h(n) = 1+(g—1)Y_ h(n—1i). (2.9)

i=1

Since h(j) = 0 for j < k, the lemma is true for n < 2k — s.

(iii) By (2.4) and (2.9)

h(2k—s) = qh(2k—s-1)—1
= (g—-1h(2k-—s—1)+h(2k—s-1)-1
k—s
= (g1 h2k—s-i),

so the lemma holds also for n = 2k — s.

(iv) In this step we assume that s > 0, and consider n such that 2k — s < n < 2k.
Fix n and make the induction hypothesis that (2.7) is true for all m < n. By (2.6),
and since b; = 0 for s < i < k, we get

h(n) = gqa(n—

k-1
= q(qan—Q ) —a(n—k—1) +Zb [ga(n —k+i—2)—a(n—k+i—1)]

i=1

k-1
<qan—1 —a(n—k —}—Zbi[qa(n—k—}—i—1)—a(n—k+i)]>

i=1

)

= gh(n—1)—h(n— +Zb[qhn—k+z—1) h(n — k +1)]. (2.10)

i=1

Recall from (2.4) that

=0, if j <k,
gh(j —1) — h(j) =-1, ifj=k,
>0, if j >k,

and note that if i =2k —n, thenn —k+4i =%k and 0 < i < s, so that

ibi[qh(n—k‘—i—i—l) —h(n—k+1i)] > —boyp_pn>-1. (2.11)

=1



Moreover, h(n — k) = 0 if n < 2k, and it follows by (2.10), (2.11) and the induction
hypothesis that

h(n) > gqh(n—1)-1
= (g—1Dh(n—1)+h(n-1)-1
> (¢g-Dhn—1)+---+h(n—(k—s)—1)] -1
> (g—D[hn—1)+---+h(n—(k—s))],

where the last inequality follows since n — (k—s)—1>k and h(n— (k—s) —1) >
h(k) =1 by the induction hypothesis.

(v) In the final step in the case s > 0 we take n > 2k, and make the assump-

tion that (2.7) is true for all m < n. In this case gh(n—k+i—1)—h(n—k+14) > 0,
foralli=1,...,k—1, and it follows from (2.10) that

h(n) = qh(n—1)—h(n—k)+ibz’[qh(n—k+i—1)—h(”—k‘i'i)]

> gh(n—1)—h(n—k) -
k—s
> (q—l)h(n—l)—h(n—k)+(q—1)2h(n—1—i)
k—s
> (q—l)zh(n—i),

where the last two inequalities follow by the induction hypothesis.

(vi) What remains to prove is the case where s = 0, and n > 2k. Fix n > 2k
and assume that (2.8) holds for all m < n. Then, by (2.10),

h(n) = gh(n—1)—=h(n—k)
k—1
> (@-Dh(n—1)—h(n—k)+(g—1) D> h(n—1-4)

i=1

Y

k—1
(g—1) Zh(n —9).

3 Proof of Theorem 1.1

To simplify the notation, we will in the sequel let

a(n) = aw(n), a'(n) =aw(n), An)=aw(n)—aw(n),

h(n) =qaw(n—1) —ay(n) and A'(n) = qaw (n —1) — ay (n),

when this is more convenient.

Assume first that |w| = |w'| = k. By (1.2) we have A(n) =0, n < 2k —r, and
A(2k —r) = 1. Hence the statement of the theorem is true for n = 2k — r.

Fix n > 2k — r and make the induction hypothesis that (1.4) is true for all m
such that 2k — r < m < n. First we assume that 1 < r < k — 1. Using (2.6) and



that b; = b}, i =r+1,...,k — 1, b, = 0 yields

k—1
A(n) = ¢A(n—1)—An—k)+ > bilgA(n—k+i—1)—A(n —k+1)]
i=r+1
+ibih(n—k+z’)—Tib;-h'(n—k+i). (3.1)

Let s be the number defined in (2.3) pertaining to the word w, and set v = k — s.
Note that since b, = 1, it is obvious that s > r, and that for some ¢t € {1,2,...}
either r = k—~t, or k—~t > r > k—~(t+1). In the first case b, = b,y = byr_2y =
--- =1, by (2.5), and, letting R = k — v(t + 1), it follows in the latter case that
b, = bg = br—y = bp—2y = --- = 1. Let I" denote the set {k — v,k —2v,...} N
{1,2,...,7} U {r}. Then T includes only ¢ for which b; = 1. (There can be i ¢ T
for which b; = 1.) Using that b;h(j) > 0 for all j, it follows that

D bih(n—k+i) > > h(n—k+i). (3.2)
i=1 iel
Furthermore s > r > 1, so by Lemma 2.1
v
h(n—k+1) > (q—l)Zh(n—k—Fi—j),
j=1

for all 4. If the elements of ' are ordered by size, the smallest element and the
distance between two consecutive elements are at most v, and we get

Zh(n—k+i) > (q—l)ih(n—k+i).

This inequality, together with (3.2) and b’h'(j) < h'(j), yields
T r—1
D bih(n —k+1d) = > bih'(n—k+1)
i=1 i=1

r—1 r—1
> > h(n—k+i)= Y h(n—k+i)
=1 i=1

= i[qA(n—kﬂ'— 1) — A(n —k +14)]. (3.3)
Now
siciesi-n-s00 = {1, 121

and by the induction hypothesis A(j) > (¢ — 1)A(j — 1), for j < n, so that

AQG)+bilgAG-1) - AG] =2 (@—-1DAG-1), (34)
with strict inequalities for j > 2k — r. Use (3.4) repeatedly for 5 = n — 1 down to
j=n—k+r+1toget

k—1
An—1)+ > blgA(n—k+i—1)—An—k+i)] > (¢—DA®n—k+r),
i=r+1

(3.5)



which together with (3.3) inserted in (3.1) yields

A(n) > (g—1)An—-1) - A(n —k)
r—1
+AMm—k+71)+ > [gA(n—k+i—1)—A(n -k +1)]. (3.6)
i=1
Since A(n — k+7) > A(n — k +r — 1) by another use of the induction hypothesis,
and by using (3.4) for j =n—k+r—1down ton — k + 1, we get from (3.6)

A(n) (g—1DANn-1)—An—-k)+(g-—1)An-k)

>
> (¢-DAMm-1),

and the theorem is proved when 1 < r < k — 1.
Ifr=%k—1, then by =--- =bp =1 by (2.5), so that

k—2
Am) = qA(n—1)—A(n—k)+hn—1)+ [h(n—k+i) — bl (n — k +1i)]
i=1
k—2
> qA(n—l)—A(n—k)+h(n—1)+Z[qA(n—k+i—1)—A(n—k—l—i)].
=1
Since h(n — 1) > 0, by (2.2), the inequality in (3.6) holds true also when r = k — 1,
and the result follows as before.
If r = 1, the last sum in (3.1) vanishes, and we get

k—1
A(n) = gA(n—1)—A(n—k) +Zb,~[qA(n—k+i— 1) — A(n—k+1)]

+h(n—k+1).
Using (3.5), that h(n — k + 1) > 0, and the induction hypothesis yields

A(n) (—-DAMn-1)—An—k)+ (g—1)An—-k+1)

>
> (q_ 1)A(7’L— 1)7
which completes the proof in the case where w and w' are of equal length.
What remains of the proof is to show the result corresponding to (1.4) in case
of different lengths of the patterns; |w| = k and |w'| = j < k. As usual the proof

proceeds with induction, and the basic step follows by (2.1): a(n) = a'(n) for n < j,
and for n = j we have a(j) = ¢/, while a’(j) = ¢/ — 1. Hence

1=A%) > (= DAG —1) =0.

Fix n > j and assume that (1.4) is true for all m such that j < m < n. First we
consider the case where |w| = k, |w'| = k — 1, cor(w) = 100...00 and cor(w') =

k-1
11...11. Since b} =---=1bj,_, =1,

k-1
ad(n) = (¢-1)p dn-k+1+0),

by (2.6). Hence

a'(n)—d'(n—1)=(¢-1a'(n-1)—(¢—1)ad'(n-k),



and

a(n) = qad'(n—-1)—(¢g—1)d' (n—k). (3.7)
Furthermore by = --- = b1 = 0, so that by (2.6)
a(n) = gqa(n—1)—a(n—k). (3.8)

Using (3.7), (3.8), the induction hypothesis and that a'(n — k) > 0 yields

An) = (¢—=DAMn-1)+An—-1)—-An—-k) +(qg—2)a'(n—k)
> (g—1A(n-1). (3.9)
In the case where w and w' have arbitrary autocorrelations, and |w| = k and
|w'| = j < k, we choose patterns v; and v}, i = 1,...,k — j with autocorrelations
cor(v;) = 100...00 and cor(v}) = 11...11. Note that such patterns always exist.
— ——
k—i k—i

Then a(n) — a/(n) can be written as a telescoping sum as

()]

k—j
a(n) —d'(n) = a(n)—ay(n)+ Z[avi (n) —ay

k—j—1
+ Z [ay; () — av,,, (n)] + ay;,_ (n) —a'(n).

By (3.9)

ay; (n) — ay(n) > (g — Dlay,(n — 1) — ay (n —1)],
i =1,...,k — j. Furthermore w and v; are of the same lengths, which holds also
for v; and viy1, 4 =1,...,k —j — 1, and for vj_; and w', so the other summands

are handled by the first part of this theorem, and we finally get
k—j
a(n) —a'(n) > (g—1) {a(n — 1) —ay(n—1)+ ) [ay(n—1) —ay(n-1)]
i=1

k—j—1
+Z[av£(n —1) =y, (n— D] +ay,_(n—-1)—a'(n— 1)}

= (¢—Da(n —1) —d'(n - 1)].
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