Pattern avoidance and overlap in strings

Marianne Månsson

April 12, 2001

Abstract

Consider a finite alphabet Ω and patterns which consist of characters from Ω . For a given pattern w, let $\operatorname{cor}(w)$ denote its autocorrelation, which can be seen as a measure of the amount of overlap in w. Letting $a_w(n)$ denote the number of strings over Ω of length n which do not contain w as a substring, the main result of this paper reads: If $\operatorname{cor}(w) > \operatorname{cor}(w')$ then $a_w(n) - a_{w'}(n) > (|\Omega| - 1)(a_w(n-1) - a_{w'}(n-1))$ for $n \geq N$, and the value of N is given. This result confirms a conjecture by Eriksson [2], which was previously proved to be true by Cakir, Chryssaphinou and Månsson [1], but then under the assumption that $|\Omega| \geq 3$.

1 Introduction and main result

Let Ω denote a finite alphabet of size $q \geq 2$, and call any finite sequence composed of characters from the alphabet Ω a string. For a given string $w = w_1 \cdots w_k$, $w_i \in \Omega$, which will be referred to as a pattern, let $a_w(n)$ denote the number of strings of length n, which do not contain w as a substring of consecutive characters. We say that these strings avoid w. In this paper we will consider how the structure of the pattern w affects $a_w(n)$.

Guibas and Odlyzko [3] introduced the notion of autocorrelation of a pattern w. If |w| = k, where |w| denotes the length of w, it is defined to be the binary sequence $b_k b_{k-1} \cdots b_1$, where $b_i = 1$ if $w_j = w_{k-i+j}$, $j = 1, \ldots, i$, i.e. if there is an overlap of size i. Sometimes it is convenient to view this sequence as a number in some base, and with some abuse of notation we let cor(w) denote both the sequence and its numerical value in, say, base 2. For example, if $\Omega = \{H, T\}$, and w = TTHTHTTHT, then cor(w) = 100001001, and if it is viewed as a binary number, then cor(w) = 529. Autocorrelation can be seen as a measure of the amount of overlap in w.

By means of generating functions, Guibas et al. [3] derived the following recurrence equation for $a_w(n)$, where the convention $a_w(0) = 1$ is used:

If |w| = k and $cor(w) = b_k b_{k-1} \dots b_1$, then, for $n \ge 0$,

$$a_w(n) = \sum_{i=1}^k b_i [q \, a_w(n+i-1) - a_w(n+i)]. \tag{1.1}$$

Furthermore, Guibas et al. [3] showed that asymptotically $a_w(n) \sim c_w \theta_w^n$, where $c_w, \theta_w > 0$ depend on the autocorrelation of w. Eriksson [2], who gave another, combinatorial, proof of (1.1), proved also that there exists an N such that $a_w(n) > a_{w'}(n)$, $n \geq N$, if and only if cor(w) > cor(w'). Furthermore, Eriksson [2] states the following conjecture concerning the value of N:

If cor(w) > cor(w'), then $a_w(n) > a_{w'}(n)$ from the first n where equality no longer holds.

Cakir, Chryssaphinou and Månsson [1] proved that Eriksson's conjecture is true, by giving a lower bound on $a_w(n) - a_{w'}(n)$; however only under the annoying assumption that $q \geq 3$:

If w and w' are patterns of length k with cor(w) > cor(w'), where $cor(w) = b_k \dots b_1$ and $cor(w') = b'_k \dots b'_1$, and $r = \max\{i : b_i \neq b'_i\}$, then

$$a_w(n) - a_{w'}(n) = \begin{cases} 0, & \text{if } n < 2k - r, \\ 1, & \text{if } n = 2k - r, \end{cases}$$
 (1.2)

and if $q \geq 3$, then for $n \geq 2k - r$,

$$a_w(n) - a_{w'}(n) > (q-2) \sum_{i=1}^{n-1} [a_w(i) - a_{w'}(i)].$$
 (1.3)

If the patterns are of different lengths, |w| = k and |w'| = j, j < k, then the formulae above hold with 2k - r replaced by j throughout.

The proof of (1.2) in Cakir et al. [1] is a simple use of (1.1), while the proof of (1.3) is more involved. The case where q=2 was left open except for some special cases. In the present paper, we show that the conjecture by Eriksson is, as expected, true also when q=2.

Theorem 1.1 If w and w' are patterns of length k with cor(w) > cor(w'), and $r = \max\{i : b_i \neq b'_i\}$, then for $n \geq 2k - r$

$$a_w(n) - a_{w'}(n) > (q-1)[a_w(n-1) - a_{w'}(n-1)].$$
 (1.4)

If the patterns are of different lengths, |w| = k and |w'| = j, j < k, then (1.4) holds for $n \ge j$.

Before proving this theorem, we need some results and observations on the avoidance of a pattern. An extensive list of references on results on the occurrence of patterns can be found in Régnier and Szpankowski [4].

2 Results on the avoidance of a pattern

Strings which are shorter than the pattern w can, of course, not include w as a substring. Also all strings of the same length as w, except the pattern itself, avoid w. Hence, if |w| = k then

$$a_w(n) = q^n, n = 1, \dots, k - 1, \quad \text{and} \quad a_w(k) = q^k - 1.$$
 (2.1)

The number of strings of length n for which w does not occur in the first n-1 positions is equal to $q a_w(n-1)$. These strings can be divided into two groups; those that end with w and those that do not end with w. The number of strings in the latter of these groups is $a_w(n)$. Thus $q a_w(n-1) - a_w(n)$ is the number of strings of length n ending with w, that is in positions n-k+1 to n, and avoiding w in its first n-1 positions. It is hence true that

$$q a_w(n-1) - a_w(n) \begin{cases} = 0, & \text{if } n \le k-1, \\ = 1, & \text{if } n = k, \\ > 0, & \text{if } n \ge k. \end{cases}$$
 (2.2)

Now, let us introduce the notation $h_w(n) = q a_w(n-1) - a_w(n)$. Then, by (2.2), $qh_w(n-1) - h_w(n) = 0$ for n < k, and $qh_w(k-1) - h_w(k) = -1$. Above we considered what happened when adding a character in the end of the strings which avoid w. We now repeat this arguing for the strings in which w occurs for the first

time at the very end, by considering what happens when a character is added in the beginning. For n>k, $h_w(n-1)>0$ and then $qh_w(n-1)$ can be interpreted as the number of strings of length n ending with w and avoiding w in positions $2,\ldots,n-1$. As above, these strings can be divided in two groups; those which start with w and those which do not start with w. The number of strings in the latter group is $h_w(n)$. Hence $qh_w(n-1)-h_w(n)$, n>k, is the number of strings of length n which both begin and end with w, but avoid w in all other places, which certainly is a non-negative number.

Using the convention that $b_0 = 1$, let

$$s = \max_{0 < j < k-1} \{ j : b_j = 1 \}.$$
 (2.3)

The shortest possible string of length > k, which both begins and ends with w is of length 2k - s, and there obviously only exists one such string. To summarize,

$$qh_{w}(n-1) - h_{w}(n) \begin{cases} = 0, & \text{if } n < k, \\ = -1, & \text{if } n = k, \\ = 0, & \text{if } k < n < 2k - s, \\ = 1, & \text{if } n = 2k - s, \\ \ge 0, & \text{if } n > 2k - s. \end{cases}$$
 (2.4)

Note that (2.4) can be verified formally by using (1.1)

In Cakir et al. [1], the proof of (1.3) was divided into the cases where $b_{k-1}=0$ and $b_{k-1}=1$. In the case where $b_{k-1}=1$, the proof relied on that if $b_{k-1}=1$ then $b_1=\ldots=b_k=1$; the implication follows since by the definition of b_{k-1} , $w_1=w_2,\,w_2=w_3,\,\ldots,\,w_{k-1}=w_k$, and hence $w_1=w_2=\cdots=w_k$. In the present paper the autocorrelation structure plays a larger role. What we use is the following observation, where $\lfloor \cdot \rfloor$ denotes the integer part:

if
$$b_j = 1$$
 for some $j \in \{0, 1, \dots, k-1\}$,
then $b_{k-(k-j)t} = 1$ for all $t \in \{1, \dots, \lfloor \frac{k}{k-j} \rfloor \}$, (2.5)

which follows by the definition of autocorrelation, as in the case where $b_{k-1} = 1$.

A key tool in both Cakir et al. [1] and in the present paper is the recurrence equation for $a_w(n)$ given in (1.1), where $a_w(n)$ is expressed in terms of "future" values of $a_w(i)$, i.e. i > n. Here it is however more convenient to express $a_w(n)$ in terms of $a_w(i)$, i < n, as in the following equation, which follows directly from (1.1). For $n \ge k$,

$$a_w(n) = q a_w(n-1) - a_w(n-k) + \sum_{i=1}^{k-1} b_i [q a_w(n-k+i-1) - a_w(n-k+i)].$$
(2.6)

Note that it follows immediately from this recurrence equation and (2.1) that $a_w(n) = a_{w'}(n)$ for all n if cor(w) = cor(w').

In the sequel we use the convention that $h_w(n) = 0$, n = 0, -1, -2, ..., and to simplify the notation we drop the subscript in h_w , when there is no risk of confusion.

Lemma 2.1 Assume that w is a pattern of length k with autocorrelation $cor(w) = b_k b_{k-1} \dots b_1$, and let s be defined by (2.3). Then, for $n \ge 1$,

$$q a_w(n-1) - a_w(n) \ge \begin{cases} (q-1) \sum_{i=1}^{k-s} [q a_w(n-1-i) - a_w(n-i)], & \text{if } 0 < s < k, (2.7) \\ (q-1) \sum_{i=1}^{k-1} [q a_w(n-1-i) - a_w(n-i)], & \text{if } s = 0. \end{cases}$$

$$(2.8)$$

Proof. The proof is divided into six parts: (i) $n \le k$, (ii) k < n < 2k - s, (iii) n = 2k - s, (iv) 2k - s < n < 2k, $1 \le s \le k - 1$, (v) $n \ge 2k$, $1 \le s \le k - 1$, (vi) n > 2k, s = 0.

- (i) By (2.2), h(k)=1 and h(n)=0 for $1\leq n\leq k-1$, so the lemma is obviously true for $n\leq k$.
- (ii) Now we consider n such that k < n < 2k s, and hence we can assume that $0 \le s \le k 2$. For these n it follows by (2.4) that

$$h(n) = qh(n-1) = (q-1)h(n-1) + h(n-1).$$

Furthermore, if k < n-1, then h(n-1) = (q-1)h(n-2) + h(n-2), so that

$$h(n) = (q-1)(h(n-1) + h(n-2)) + h(n-2).$$

Repeating this arguing, and using that h(k) = 1, we get

$$h(n) = 1 + (q-1) \sum_{i=1}^{n-k} h(n-i).$$
 (2.9)

Since h(j) = 0 for j < k, the lemma is true for n < 2k - s.

(iii) By (2.4) and (2.9)

$$\begin{array}{rcl} h(2k-s) & = & qh(2k-s-1)-1 \\ & = & (q-1)h(2k-s-1)+h(2k-s-1)-1 \\ & = & (q-1)\sum_{i=1}^{k-s}h(2k-s-i), \end{array}$$

so the lemma holds also for n = 2k - s.

(iv) In this step we assume that s > 0, and consider n such that 2k - s < n < 2k. Fix n and make the induction hypothesis that (2.7) is true for all m < n. By (2.6), and since $b_i = 0$ for s < i < k, we get

$$h(n) = qa(n-1) - a(n)$$

$$= q \left(qa(n-2) - a(n-k-1) + \sum_{i=1}^{k-1} b_i [qa(n-k+i-2) - a(n-k+i-1)] \right)$$

$$- \left(qa(n-1) - a(n-k) + \sum_{i=1}^{k-1} b_i [qa(n-k+i-1) - a(n-k+i)] \right)$$

$$= qh(n-1) - h(n-k) + \sum_{i=1}^{s} b_i [qh(n-k+i-1) - h(n-k+i)]. \tag{2.10}$$

Recall from (2.4) that

$$q h(j-1) - h(j) \begin{cases} = 0, & \text{if } j < k, \\ = -1, & \text{if } j = k, \\ > 0, & \text{if } j > k, \end{cases}$$

and note that if i = 2k - n, then n - k + i = k and 0 < i < s, so that

$$\sum_{i=1}^{s} b_i [qh(n-k+i-1) - h(n-k+i)] \ge -b_{2k-n} \ge -1.$$
 (2.11)

Moreover, h(n-k) = 0 if n < 2k, and it follows by (2.10), (2.11) and the induction hypothesis that

$$\begin{array}{lll} h(n) & \geq & qh(n-1)-1 \\ & = & (q-1)h(n-1)+h(n-1)-1 \\ & \geq & (q-1)[h(n-1)+\cdots+h(n-(k-s)-1)]-1 \\ & \geq & (q-1)[h(n-1)+\cdots+h(n-(k-s))], \end{array}$$

where the last inequality follows since $n - (k - s) - 1 \ge k$ and $h(n - (k - s) - 1) \ge h(k) = 1$ by the induction hypothesis.

(v) In the final step in the case s>0 we take $n\geq 2k$, and make the assumption that (2.7) is true for all m< n. In this case $qh(n-k+i-1)-h(n-k+i)\geq 0$, for all $i=1,\ldots,k-1$, and it follows from (2.10) that

$$h(n) = qh(n-1) - h(n-k) + \sum_{i=1}^{s} b_{i}[qh(n-k+i-1) - h(n-k+i)]$$

$$\geq qh(n-1) - h(n-k)$$

$$\geq (q-1)h(n-1) - h(n-k) + (q-1)\sum_{i=1}^{k-s} h(n-1-i)$$

$$\geq (q-1)\sum_{i=1}^{k-s} h(n-i),$$

where the last two inequalities follow by the induction hypothesis.

(vi) What remains to prove is the case where s = 0, and n > 2k. Fix n > 2k and assume that (2.8) holds for all m < n. Then, by (2.10),

$$\begin{array}{lcl} h(n) & = & qh(n-1)-h(n-k) \\ \\ & \geq & (q-1)h(n-1)-h(n-k)+(q-1)\sum_{i=1}^{k-1}h(n-1-i) \\ \\ & \geq & (q-1)\sum_{i=1}^{k-1}h(n-i). \end{array}$$

3 Proof of Theorem 1.1

To simplify the notation, we will in the sequel let

$$a(n) = a_w(n), \quad a'(n) = a_{w'}(n), \quad \Delta(n) = a_w(n) - a_{w'}(n),$$

$$h(n) = q a_w(n-1) - a_w(n)$$
 and $h'(n) = q a_{w'}(n-1) - a_{w'}(n)$,

when this is more convenient.

Assume first that |w| = |w'| = k. By (1.2) we have $\Delta(n) = 0$, n < 2k - r, and $\Delta(2k - r) = 1$. Hence the statement of the theorem is true for n = 2k - r.

Fix n > 2k - r and make the induction hypothesis that (1.4) is true for all m such that $2k - r \le m < n$. First we assume that 1 < r < k - 1. Using (2.6) and

that $b_i = b'_i$, i = r + 1, ..., k - 1, $b'_r = 0$ yields

$$\Delta(n) = q\Delta(n-1) - \Delta(n-k) + \sum_{i=r+1}^{k-1} b_i [q\Delta(n-k+i-1) - \Delta(n-k+i)] + \sum_{i=1}^{r} b_i h(n-k+i) - \sum_{i=1}^{r-1} b_i' h'(n-k+i).$$
(3.1)

Let s be the number defined in (2.3) pertaining to the word w, and set $\gamma = k - s$. Note that since $b_r = 1$, it is obvious that $s \geq r$, and that for some $t \in \{1, 2, ...\}$ either $r = k - \gamma t$, or $k - \gamma t > r > k - \gamma (t+1)$. In the first case $b_r = b_{r-\gamma} = b_{r-2\gamma} = \cdots = 1$, by (2.5), and, letting $R = k - \gamma (t+1)$, it follows in the latter case that $b_r = b_R = b_{R-\gamma} = b_{R-2\gamma} = \cdots = 1$. Let Γ denote the set $\{k - \gamma, k - 2\gamma, ...\} \cap \{1, 2, ..., r\} \cup \{r\}$. Then Γ includes only i for which $b_i = 1$. (There can be $i \notin \Gamma$ for which $b_i = 1$.) Using that $b_j h(j) \geq 0$ for all j, it follows that

$$\sum_{i=1}^{r} b_i h(n-k+i) \geq \sum_{i \in \Gamma} h(n-k+i). \tag{3.2}$$

Furthermore $s \ge r > 1$, so by Lemma 2.1

$$h(n-k+i) \ge (q-1) \sum_{i=1}^{\gamma} h(n-k+i-j),$$

for all i. If the elements of Γ are ordered by size, the smallest element and the distance between two consecutive elements are at most γ , and we get

$$\sum_{i \in \Gamma} h(n - k + i) \ge (q - 1) \sum_{i=1}^{r-1} h(n - k + i).$$

This inequality, together with (3.2) and $b'_i h'(j) \leq h'(j)$, yields

$$\sum_{i=1}^{r} b_i h(n-k+i) - \sum_{i=1}^{r-1} b_i' h'(n-k+i)$$

$$\geq \sum_{i=1}^{r-1} h(n-k+i) - \sum_{i=1}^{r-1} h'(n-k+i)$$

$$= \sum_{i=1}^{r-1} [q\Delta(n-k+i-1) - \Delta(n-k+i)]. \tag{3.3}$$

Now

$$\Delta(j) + b_i[q\Delta(j-1) - \Delta(j)] = \begin{cases} \Delta(j), & \text{if } b_i = 0, \\ q\Delta(j-1), & \text{if } b_i = 1, \end{cases}$$

and by the induction hypothesis $\Delta(j) \geq (q-1)\Delta(j-1)$, for j < n, so that

$$\Delta(j) + b_i[q\Delta(j-1) - \Delta(j)] \ge (q-1)\Delta(j-1), \tag{3.4}$$

with strict inequalities for $j \geq 2k - r$. Use (3.4) repeatedly for j = n - 1 down to j = n - k + r + 1 to get

$$\Delta(n-1) + \sum_{i=r+1}^{k-1} b_i [q\Delta(n-k+i-1) - \Delta(n-k+i)] > (q-1)\Delta(n-k+r),$$
(3.5)

which together with (3.3) inserted in (3.1) yields

$$\Delta(n) > (q-1)\Delta(n-1) - \Delta(n-k)$$

$$+\Delta(n-k+r) + \sum_{i=1}^{r-1} [q\Delta(n-k+i-1) - \Delta(n-k+i)].$$
 (3.6)

Since $\Delta(n-k+r) \geq \Delta(n-k+r-1)$ by another use of the induction hypothesis, and by using (3.4) for j=n-k+r-1 down to n-k+1, we get from (3.6)

$$\Delta(n) > (q-1)\Delta(n-1) - \Delta(n-k) + (q-1)\Delta(n-k)$$

 $\geq (q-1)\Delta(n-1),$

and the theorem is proved when 1 < r < k - 1.

If r = k - 1, then $b_1 = \cdots = b_k = 1$ by (2.5), so that

$$\Delta(n) = q\Delta(n-1) - \Delta(n-k) + h(n-1) + \sum_{i=1}^{k-2} [h(n-k+i) - b_i'h'(n-k+i)]$$

$$\geq q\Delta(n-1) - \Delta(n-k) + h(n-1) + \sum_{i=1}^{k-2} [q\Delta(n-k+i-1) - \Delta(n-k+i)].$$

Since h(n-1) > 0, by (2.2), the inequality in (3.6) holds true also when r = k - 1, and the result follows as before.

If r = 1, the last sum in (3.1) vanishes, and we get

$$\Delta(n) = q\Delta(n-1) - \Delta(n-k) + \sum_{i=2}^{k-1} b_i [q\Delta(n-k+i-1) - \Delta(n-k+i)] + h(n-k+1).$$

Using (3.5), that $h(n-k+1) \geq 0$, and the induction hypothesis yields

$$\begin{array}{lll} \Delta(n) & > & (q-1)\Delta(n-1) - \Delta(n-k) + (q-1)\Delta(n-k+1) \\ & \geq & (q-1)\Delta(n-1), \end{array}$$

which completes the proof in the case where w and w' are of equal length.

What remains of the proof is to show the result corresponding to (1.4) in case of different lengths of the patterns; |w| = k and |w'| = j < k. As usual the proof proceeds with induction, and the basic step follows by (2.1): a(n) = a'(n) for n < j, and for n = j we have $a(j) = q^j$, while $a'(j) = q^j - 1$. Hence

$$1=\Delta(j)>(q-1)\Delta(j-1)=0.$$

Fix n > j and assume that (1.4) is true for all m such that $j \le m < n$. First we consider the case where |w| = k, |w'| = k - 1, $cor(w) = 1 \underbrace{00 \dots 00}_{j = 1}$ and cor(w') = 1

$$\underbrace{11...11}_{k-1}$$
. Since $b'_1 = \cdots = b'_{k-1} = 1$,

$$a'(n) = (q-1)\sum_{i=0}^{k-2} a'(n-k+1+i),$$

by (2.6). Hence

$$a'(n) - a'(n-1) = (q-1) a'(n-1) - (q-1) a'(n-k),$$

and

$$a'(n) = q a'(n-1) - (q-1) a'(n-k).$$
 (3.7)

Furthermore $b_1 = \cdots = b_{k-1} = 0$, so that by (2.6)

$$a(n) = q a(n-1) - a(n-k).$$
 (3.8)

Using (3.7), (3.8), the induction hypothesis and that $a'(n-k) \geq 0$ yields

$$\Delta(n) = (q-1)\Delta(n-1) + \Delta(n-1) - \Delta(n-k) + (q-2)a'(n-k)$$
> $(q-1)\Delta(n-1)$. (3.9)

In the case where w and w' have arbitrary autocorrelations, and |w| = k and |w'| = j < k, we choose patterns v_i and v'_i , $i = 1, \dots, k - j$ with autocorrelations $cor(v_i) = 1\underbrace{00...00}_{k-i}$ and $cor(v_i') = \underbrace{11...11}_{k-i}$. Note that such patterns always exist. Then a(n) - a'(n) can be written as a telescoping sum as

$$a(n) - a'(n) = a(n) - a_{v_1}(n) + \sum_{i=1}^{k-j} [a_{v_i}(n) - a_{v'_i}(n)] + \sum_{i=1}^{k-j-1} [a_{v'_i}(n) - a_{v_{i+1}}(n)] + a_{v'_{k-j}}(n) - a'(n).$$

By (3.9)

$$a_{v_i}(n) - a_{v'_i}(n) > (q-1)[a_{v_i}(n-1) - a_{v'_i}(n-1)],$$

 $i=1,\ldots,k-j$. Furthermore w and v_1 are of the same lengths, which holds also for v'_i and v_{i+1} , $i=1,\ldots,k-j-1$, and for v'_{k-j} and w'_i , so the other summands are handled by the first part of this theorem, and we finally get

$$\begin{split} a(n) - a'(n) &> (q-1) \left\{ a(n-1) - a_{v_1}(n-1) + \sum_{i=1}^{k-j} [a_{v_i}(n-1) - a_{v_i'}(n-1)] \right. \\ &+ \sum_{i=1}^{k-j-1} [a_{v_i'}(n-1) - a_{v_{i+1}}(n-1)] + a_{v_{k-j}'}(n-1) - a'(n-1) \right\} \\ &= (q-1)[a(n-1) - a'(n-1)]. \end{split}$$

References

- [1] Cakir, I., Chryssaphinou, O. and Månsson, M. (1999). On a conjecture by Eriksson concerning overlap in strings. Comb., Prob. and Comp. 8, 429-440.
- [2] Eriksson, K. (1997). Autocorrelation and the enumeration of strings avoiding a fixed string. Comb., Prob. and Comp. 6, 45–48.
- [3] Guibas, L. J. and Odlyzko, A. M. (1981). String overlaps, pattern matching and nontransitive games. J. Comb. Theory Ser. A 30, 183–200.
- [4] Régnier, M. and Szpankowski, W. (1998). On pattern frequency occurrences in a Markovian sequence. Algorithmica 22, 631–649.