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Abstract

In the context of variational formulations of elliptic problems, we study
a three-dimensional generalized Poisson model with discontinuous diffu-
sion and non-homogeneous mixed Dirichlet-Neumann conditions at the
boundary and the interfaces between subdomains. An adaptive Galerkin
finite element method is proposed, based on a posteriori error estimates
proved in energy norm. As examples of elliptic problems involving inter-
faces, some electrostatic and magnetostatic cases are presented.
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1 Introduction

Many problems in science and engineering can be represented in the math-
ematical form of systems of functional equations with given boundary and/or
initial conditions. In most cases, such functional equations are partial or ordi-
nary differential equations, so that evolution models are formulated by initial
boundary value problems and stationary models by boundary value problems,
both linear and non-linear [15, 38]. Besides differential models, certain physi-
cal phenomena are mathematically described by difference, integral or integro-
differential equations. We here focus on differential modelling.

Thinking of the variety of phenomena modelled by ordinary and partial dif-
ferential equations, typical linear stationary problems are based on Poisson’s
equation, Helmhotz’s equation, equilibrium equations in elasticity, while non-
linear examples are given by the Eikonal equation, the p-Laplacian equation,
the minimal surface equation, and so on. As typical evolution problems, lin-
ear examples come from most diffusion-convection problems, the linear wave
equation, the Fokker-Planck equation, Schrodinger’s equation (with imaginary
coefficient), Maxwell’s equations, etc. Non-linear evolution problems are de-
fined, for instance, by general reaction-diffusion equations, conservation laws,
the Hamilton-Jacobi equation, Euler’s equations for inviscid flow, Navier-Stokes
equations for viscous flow, and many more. The above mentioned Helmhotz’s
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equation and Schrodinger’s equation are, moreover, typical examples of eigen-
value equations [18, 27, 34, 35, 42].

A crucial aspect in the formulation of a problem into a differential model, is
to guarantee “good” regularity hypotheses on the problem domain and the data,
so that the model (i) has a solution, (ii) the solution is unique, and, possibly,
(iii) the solution depends on data in a continuous way. The first two conditions
define what is called a well-posed problem. Besides, if also the third condition
is satisfied, the problem is said to be stable [35].

Actually, the question of existence and uniqueness of the solution of a certain
differential model is a non-trivial problem and only for a very limited number of
“simple” equations on ”simple” geometries the solution has been proved to exist
and, possibly, to be unique. A basic question arises: which level of regularity
is required, to call a certain function a solution for the problem under investi-
gation? By definition, given a differential problem of order k, we know that a
?classical” solution is required to be at least k times differentiable. Neverthe-
less, this demand of regularity gives raise to two fundamental problems. First,
in most cases, theorems ensuring existence and uniqueness of such regular solu-
tions are not known for the model under consideration. Second, such a strong
regularity may even not be necessary in practise, owing to the physical signif-
icance of the solution in the real problem associated to the model. To recover
real properties of the physics underlying a differential model, e.g. certain prop-
erties of discontinuity of electromagnetic fields or potentials in the transition
across different materials, or shock waves in fluid dynamics processes regulated
by conservation laws, we have to investigate a wider class of solutions, called
weak or generalized solutions [18]. Moreover, by demanding weaker regularity
requirements, it can be possible to prove more easily that a generalized solution
exists, in fact, and is unique.

This is the typical approach followed when a wvariational formulation of the
differential problem is introduced. In this case, the equation is transformed into
an integral relation in suitable form, in which the unknown solution appears
with a lower order of derivative, owing to some typical integral theorems. A
weak solution for the current model will be then defined as a function that sat-
isfies such integral relation for an appropriate set of “test” functions. Of course,
the definition is given in such a way that any possible classical solution of the
original problem is also (weak) solution of the corresponding variational formu-
lation. In many cases, it is then possible to prove existence and uniqueness of
the weak solution, resorting to arguments of Hilbert space theory, and introduc-
ing proper Sobolev spaces of functions with generalized derivatives “sufficiently”
regular up to a certain order [35].

After the theoretical question of existence and uniqueness of the solution, at
least in a weak sense, the interest is then to solve the problem. Since analyti-
cal solutions are very rarely obtainable, numerical methods take over analytical
ones from giving approximate, computable solutions. Thus, these computed so-
lutions will represent an approximation of the investigated physical properties
in the real problem under consideration.



We here point out the term approximation: no equations describe physical
reality exactly, namely the computed solution is subject to error. What we
call error is, actually, the sum of several independent contributions due to the
several phases of modelling, discretization and computation. Regarding this,
an interesting development in Computational Mathematics is to measure the
several contributions of the error, in order to estimate the accuracy of the nu-
merical solution and suggest criteria to improve it. Later on we will turn back
to this important aspect.

Typical numerical methods for the solution of differential models are finite
element, finite difference, spectral and boundary element methods [33]. Both the-
oretical and practical reasons arise in the choice of the appropriate numerical
technique, depending on the nature of the problem (e.g. the domain geom-
etry, possible a priori known properties of the solution, and so on), but also
on the available resources in terms of time and means. Sometimes, still now,
constraints of low computational time and cost can force to use simpler dis-
cretization schemes at low order (e.g. finite difference methods). Problems on
complex-shaped devices, or requiring high precision, however, address towards
more robust and accurate numerical methods. Among them, finite element
methods [28, 45] have recently become a standard computation tool.

The first finite element techniques were introduced by R. Courant in 1943,
developed in the successive years for structural analysis applications in aircraft
design (elasticity equations, plate equations, etc.). A solid mathematical back-
ground was developed in the 1960s for elliptic problems [13], then extended to
parabolic and hyperbolic problems later. From then on, with the coming of au-
tomatic computation, this method has had a wide diffusion in many engineering
applications: structural and solid state mechanics, fluid dynamics, nuclear engi-
neering, heat conduction, convection-diffusion processes, petroleum engineering,
reaction-diffusion processes, electromagnetism, wave propagation, integration
circuits, and so on. Concerning models in electromagnetism [12, 25], finite el-
ement methods are currently utilized for a vast amount of static, quasi-static
and time dependent problems, ranging from high frequency microwaves used in
mobile communication to low frequency occurring in power energy [26, 32, 41].

Broadly speaking, finite element methods originate from approximation of a
variational form in a discrete finite-dimensional subspace, in which the weak so-
lution is approximated by a linear combination of proper orthogonal basis func-
tions. Sets of basis functions are considered also in spectral methods but, in that
case, basis functions have a global definition over all the domain (typically, they
are orthogonal polynomials, trigonometric functions, etc.). Differently from the
latter, basis functions in finite element methods are assumed to be piecewise
defined polynomials, satisfying a local compact support property. In this case,
the basis functions are naturally associated to a discrete set of nodes defined
by a partition of the domain in small subregions (the so-called finite elements).
In one-dimensional problems, elements are intervals. Typical element shapes in
two dimensions are triangles and rectangles and, in three-dimensions, tetrahe-
dra and bricks. Mixed shapes could also be considered in different regions of the
domain. Besides, space-time elements could also be introduced, to solve initial
boundary value problems when variational forms are defined by simultaneous



integration in space and time.

An area of increasing interest is given by adaptive finite element methods
[3, 4, 5, 14, 30, 31, 44]. Differently from classical techniques, in adaptive meth-
ods the improvement of the solution accuracy is reached by means of a local
refinement of the mesh, or a local increase of the polynomial order of the fi-
nite element solution, performed on a selection of mesh elements having large
error indicators. Such indicators are computed from suitable a posteriori error
estimates of the finite element solution obtained according to many different
criteria, and measured by known quantities, namely the numerical solution, the
mesh size and model data. An adaptive approach allows to reduce in a signifi-
cant way the computational cost and time of the finite element calculation on
the model.

As a typical differential model encountered in some engineering applications,
we here consider a boundary value problem based on a generalized Poisson model
with a discontinuous diffusion coefficient and non-homogeneous mixed Dirichlet
and Neumann boundary conditions. In addition, further conditions are assigned
at the interfaces between pairs of domain subregions. Notice that the problem
of interfaces between material domains has not been particularly investigated in
the literature. On the contrary, some engineering problems require to model the
behaviour of certain physical quantities in the transition across adjacent mate-
rials having different properties. A typical application, leading to generalized
Poisson’s equations with interface conditions, is encountered in electrostatic and
magnetostatic problems derived from Maxwell’s equations. Our purpose, here,
is to present an adaptive finite element analysis for this class of elliptic problems,
in the abstract setting of Sobolev spaces, with a posteriori error estimation of
the finite element solution.

The report is organized as follows. Section 2 defines the class of generalized
Poisson models with discontinuous diffusion and mixed boundary and interface
conditions of Dirichlet and Neumann type. As particular cases of the abstract
model, some applications are presented in Section 3, describing electrostatic and
magnetostatic problems derived from static Maxwell’s equations when scalar
potential formulations are used. The variational formulation of the model is
then discussed in Section 4, and existence and uniqueness of the weak solution
are proved by using the Lax-Milgram theorem. In Section 5, a Galerkin finite
element solution is proposed, considering a piecewise linear discretization on
tetrahedral mesh. Then, a formal error analysis follows. In Section 6, modelling
and computational errors are first discussed. Focusing on the computational
error due to the finite element solution, a priori and a posteriori approaches are
discussed. In Section 7, finally, a posteriori error estimates are proved in energy
norm, as quantitative indicators of local accuracy of the finite element solution
to be used for adaptivity refinement purposes.

A possible algorithm of adaptive mesh refinement, based on the a posteriori
error here introduced, will be discussed in [24], with a presentation of numerical
results on some test cases.



2 The model problem

We first introduce in its abstract framework the class of boundary value
problems studied in the present work.

Notation. In the sequel, the symbols R and N denote the set of real and natural
(0 included) numbers, respectively. C denotes a real positive constant, different
at each occurrence. For any domain € in the Euclidean space R™, the symbols
99, © and Q denote the boundary, the closure and the interior part of Q, re-
spectively.

Let Q1 C R? and Q3 C R? be two open, disjoint, bounded and connected
domains, Lebesgue measurable with Lipschitz continuous boundaries 9€; and
0Q. We assume they are adjacent, i.e. the set I'r = 9% N I is a non-
empty surface (called interface). Let us denote by Q = 4 U 2, the open global
domain. We here consider the following class of second order boundary-interface
value problems:

-V (aVu) =f in 0,

uy = us +d on I'y,

ai1Vuy -n; + asVus -ny =p on Iy, (1)
U = Up onT'p,

aVu-n=gq on I'y,

where 'p C I' and 'y C T are parts of the boundary I' = 91, such that
I'pul'y =T.

Problem (1) is a generalized Poisson model with non-homogeneous mixed
Dirichlet-Neumann boundary and interface conditions, in the unknown u =
u(z,y,2). n; and n denote the unit vectors normal to I'; and T' pointing to-
wards the exterior of the domains €2;, i = 1,2, and 2 respectively, while u; and «;
denote the values (or limit values) on I'r of the functions u and « from the sides
of each Q;, i = 1,2. The (real-valued) functions a = a(z,y,2) and f = f(=,y,2)
defined on Q, d = d(z,y,2) and p = p(z,y,2) on I'r, ¢ = q(z,y,2) on 'y and
u = up(z,y,2) on I'p are given data satisfying certain regularity properties.
For the following, we assume that the diffusion coefficient @ = a(z,y,2) is a
positive bounded function on 2, Lipschitz continuous over each (2;, so that the
linear Poisson operator Lu = —V - (aVu) in (1) is uniformly elliptic on Q. Fur-
ther, we assume that (1) has a unique solution.

Concerning this, our analysis will be continued in a variational sense: in
Section 4 it will be proved that a weak solution exists, in fact, and is unique.
In the next section we will present some applications of the general model (1)
to three-dimensional electro- and magnetostatic problems.



3 Applications in electromagnetism

We here focus on some engineering applications of the general problem intro-
duced in Section 2. Typical electromagnetic models, in fact, can be described
by boundary value problems (1), in which diffusion is discontinuous, piecewise
defined on parts of the domain, and where also interface conditions have to
be taken into account. Such electromagnetic models describe in static condi-
tions the behaviour of fields, and associated potential quantities, on materials
adjacent to each others and having different diffusion properties. In this case,
interface conditions have to be included to model known behaviours of these
fields and potentials in the transition between one medium and the other. For-
mally, the difference between electrostatic and magnetostatic models lies in the
analytical expression of the data f,d,p,q and up appearing in (1), and their
different physical significance related to electric or magnetic properties.

In the following, E denotes the electric field intensity, D the electric flux
density, H is the magnetic field intensity and B is the magnetic flux density.
These are the four electromagnetic fields related to each others by Maxwell’s
equations and constitutive relations. First, we observe that in stationary con-
ditions electric and magnetic properties in Maxwell’s equations decouple from
each others so that the field equations take the form of two independent partial
differential systems: the first one is expressed in terms of fields E, D, the second
one in terms of H, B. Electrostatic and magnetostatic problems can then be
studied separately, as described in the following. Throughout the document,
when omitted, it is always intended that all mentioned material regions are
open, bounded and connected sets, with boundaries and interfaces satisfying
the“good” properties of regularity specified in Section 2.

A survey of electromagnetic fields can be read in [12, 25]. Concerning math-
ematical modelling of electromagnetic problems derived from Maxwell’s equa-
tions, see [26, 32, 41], particularly focusing on finite element techniques.

3.1 Electrostatic models

Let © C R? be the region of interest with boundary surface I' = 99, com-
posed of dielectric materials, all linear, homogeneous and isotropic. The electric
permittivity € on € is then defined as a piecewise constant positive function, con-
stant on each material. Without any loss of generality, we can assume that the
domain Q is partitioned into two dielectric materials Q; and Q», i.e. © = Q,UQ,
with interface I'; = 901 NIN». In the more general case, if several materials are
contained in the regions ;, the analysis that follows has to be carried out for
each pair of adjacent materials. Besides, for the sake of simplicity, we consider
materials not permanently polarized, and assume that no surface charges are
imposed at the boundary and the interface.

As known, electrostatic Maxwell’s equations are expressed in terms of E and
D, and take the form



VxE=0, (2)
V-D =p, ®3)

in the whole space, where p is the volume charge density. As no surface charges
are imposed, at the interface I'; between materials 2; and {25 transition condi-
tions for the fields E and D are expressed by

n X (El - Ez) = 0, (4)
n- (D1 - D2) = 0, (5)

where n is the unit vector normal to I'y whose direction can be arbitrarily
chosen, e.g. pointing from Qs to Q1, and E; (D;) denote the values (or limit
values) of E (D) on I'y from the side of Q;, for ¢ = 1,2. Conditions at the
boundary T have to be given by considering known the electromagnetic state of
any external medium. This means that fields are given by assignment of their
normal or tangential components on the several parts of I'. For instance, when
Q is surrounded by a perfectly conductor material, we have

nxE=0 onTlp, (6)
n-D=0 onTly, (M)

where I'p and T' iy are parts of I such that I' = T'pUI' ;. Besides, to describe the
macroscopic properties of each dielectric material, we consider the constitutive
relation

D =¢E. (8)

Under these premises, since the electric field intensity E is irrotational in
the whole simply connected space, from (2), a differentiable function V' can be
introduced, called scalar electric potential, such that

—VV =E. 9)

Using the constitutive relation (8) in (3) and substituting (9), we get the scalar
Poisson’s equation

—V-(eVV) =p, (10)

describing the behaviour in static conditions of the scalar electric potential inside

any dielectric medium, like ; and €2, in our case. To obtain interface conditions
in terms of V', we substitute (9) in (4) and get a Neumann-like condition

elv‘/l i 15 +€2V‘/2'n2 =0 on FI, (11)

where n; denote the unit vectors normal to I's pointing towards the exterior
of the corresponding domains ;, for ¢ = 1,2, and where V; and ¢; denote the
values (or limit values) of V' and € on I'; from the side of Q;, for i = 1,2. The
second interface condition is obtained by substituting relation (8) and definition
(9) in condition (5). We have

V(Vi —V3) xn=0 (12)



on I'y, hence
V(i = 12) -t =0, (13)

where t is the unit vector tangent to I';. Then, once fixed an arbitrary point
ro € I'y, we integrate over any piecewise regular path y[rg,r] C I's for any point
r € I'r, and get the following Dirichlet-like condition

Vi(r) = Va(r). (14)
In a similar way, boundary conditions are obtained from (6) and (7), leading
to classical Dirichlet and Neumann conditions on the parts I'p and I'y, respec-

tively.

Thus, considering all equations together, we obtain the following boundary
value problem

=V -(&VW) =p in Q,

=V - (VW) = po in Qy,

Vi=W on I'r, (15)
le‘/l -n; + GQV% "Iy = 0 on F[,

Vi=Vb, onT'p;, =12,

eVVi-n=0 onI'y;, =12,

where I'p ; = 'pNOQ; and 'y ; = TyNOQ, for i = 1,2. The unknown function
in (15) represents the potential V' on the global domain, originated from each
component potential V; on the material Q; with permittivity e;, for i = 1,2.
Source data of the problem are the volume charge densities p;, as well as values
Vb,i, for i = 1,2, describing assigned potentials on parts I'p ; of the boundary.

Model (15) is the simplest electrostatic problem leading to a generalized
Poisson’s equation, to be viewed inside the abstract class (1). In this case,
the electric permittivity describes the diffusion property of dielectric materials.
Here, no surface charges have been imposed at the interface between pairs of
materials, so that the transition between potentials at the interface occurs con-
tinuously, i.e. d =0 on 'y, using the notations of (1). Concerning the interface
condition of Neumann type, here we have p = 0, since no polarized materials
have been considered, as well as ¢ = 0, since no parts of I'y exist bounding such
type of materials.

However, a generalization to materials having permanent polarization P is
straightforward. In this case, a contribution V - P has to be included in the
right hand side of Poisson’s equations associated to any permanently polarized
material. Besides, terms P - n need to be added as right hand sides in the con-
ditions of Neumann type for any interface and boundary part in contact with
polarized materials, with n unit normal vector pointing away from them.

Once the electric potential V' has been computed from the solution of model
(15), and consequently the fields E and D become known, global quantities of
physical interest can be then estimated, for example the electric energy. Given



a material domain C C R3, the total electric energy stored in C due to E is
defined as

W:l/D-de:E/eEzdx. (16)
2 C 2 C

3.2 Magnetostatic models

The intention is now to investigate the behaviour of magnetic fields in static
conditions in a region of space containing prescribed currents. Let Q C R?
be the region of interest with boundary I, composed of materials that are soft
media, all linear, homogeneous and isotropic, so that the magnetic permeability
1 is a piecewise constant positive function, i.e. constant on each material. Let
us suppose that there exists a conductor domain Q; C (Q, also called source
region, where a current flows with density J;. Let us partition the domain in
two material regions Q; and Qs such that Qs contains Q; and 2y is simply
connected, and denote by I'y = 9Q; N9 the interface between them. Fach of
the domains ; can be composed of several materials.

In static conditions, Maxwell’s equations for the magnetic fields H and B
are given by

VxH=1], (17)

V-B =0, (18)

where J is the free current density, coincident with J, in static conditions. In
terms of the magnetic fields, the following conditions have then to be considered
at the interface I';y:

n X (Hl - H2) = 0, (19)
n- (Bl - B2) = 0, (20)

where n is the unit vector normal to I'y e.g. pointing from Q5 to ;. Analogously
to the electrostatic case, boundary conditions with a perfectly conductor exterior
medium, are given by

nxH=0 onTIp, (21)

n-B=0 onIy, (22)
where I'p CT,and 'y =T —T'p.

Two suitable scalar magnetic potentials can now be introduced in separate
parts of the domain. From Helmhotz’s theorem, in fact, we know that the
magnetic field intensity H can always be written in the form

H=H, +H, (23)

where H; is solenoidal and represents the magnetic field intensity due to the
imposed current Js, while H,, is irrotational and describes the magnetic field
intensity due to induced magnetization in materials. It is possible then to define
a scalar potential ¢, called reduced magnetic potential, such that



H=-Vy+H,. (24)

The field contribution Hy; = Hg(r) can be computed separately from Jg, by
using the Biot-Savart law

1 r—r ,

HS(I')ZE/QSJSXW dr7 (25)
where r is an arbitrary point in space (called field point) and r' is any point
in the source region Q, (called source point). As regards this, see [23, 40] for
a description of some numerical and analytical techniques for the integration
of the Biot-Savart law. Then, considering equation (18) and the constitutive
relation

B=uH (26)
for soft materials, we get the following magnetic Poisson’s equation

V- (uVep) =V - uH,. (27)

On simply connected domains not containing source regions g, like €2 in
our case, it is possible to introduce another definition of scalar potential. Since
V x H = 0 in such domains, a function ¢ can be introduced such that

H= -V, (28)

called total magnetic potential. Therefore, the governing equations in regions
like €y are given by

V- (uVg) =0. (29)

In a double potential formulation, the approach is to use both ¢ and ¢. In
our assumptions, for instance, the total potential ¢ is defined on the region Q;
with no source currents, while ¢ is defined on the remaining region Q2, which
is simply connected. For brevity, in the following €y will be also called the
total domain and 2y the reduced domain. According to this formulation, the
interface I'y is the surface separating regions with different potential definitions.
A possible advantage of this approach, differently from a complete formulation
in ¢, lies in the reduction of some cancellation errors that would occur in the
reduced domain while computing the total field H by means of (24), especially
for large permeabilities p.

To express boundary /interface conditions in terms of the two potentials ¢
and ¢, we use the constitutive relation (26) in (20), and substitute the definitions
(28) and (24) of ¢ and ¢ in (19) and (20). The first condition becomes

(12Vp — V@) -n=pH,-n onTy, (30)
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where n is the unit vector normal to I';, whose direction can be arbitrarily
chosen (e.g. pointing away from the reduced domain). Further, the second
interface condition becomes

[V(p—¢) —Hs] xn=0. (31)

Similarly to the electrostatic case, condition (31) can be now written in terms of
tangential components. We first assume that I'y is connected. Then, fixed arbi-
trarily a point rg € I'r, we integrate over any piecewise regular path y[rg,r] C T'r
for any point r € 'y, and get the second total/reduced interface condition

B(r) = o(r) — / "H,-dr  onTy, (32)

where it is assumed ¢(rg) = ¢(rg). Condition (32) describes a jump of discon-
tinuity at the interface between total and reduced potential values, due to the
source field. If T'y is disconnected, a condition like (32) has to be repeated on
each single connected component.

If the total domain is composed of more soft materials, the corresponding
interface conditions reduce to simpler homogeneous expressions. If 0y ; C ; is
a material adjacent to a material (1 5 C 4, we get

1 = ¢2, (33)
(B3 —,2)Vo-n=0, onTi,,
where 1o = 0011 N 0042, and ¢1 and ¢ are the values (or limit values) of
¢ on I'p from the sides of Qy,; and Q2 respectively. Analogous expressions

follow in case of interface conditions between two soft materials in the reduced
domain, by changing ¢ with ¢.

In a similar way, boundary conditions can be obtained. If the reduced domain

Q. intersects the boundary, there will a part I'yv 2 = 0€Q NI'x such that a non-
homogeneous Neumann condition holds, in the form

Ve-n=H;-n onIypy, (34)

when I'y s is non-empty. Besides, if 0I'ps = 0% N T'p is non-empty and
connected, we get the non-homogeneous Dirichlet condition

o(r) = / H,.dr, o(rs)=0, onTpy, (35)
ra

where ry € I'p 5 is a point fixed arbitrarily. If I'p » is disconnected, a condition
like (35) has to be given on each single connected component. Similarly, we
consider now the total domain ; when it intersects the boundary. Then, the
Neumann condition takes the form

Vé-n=0 onTI'n1, (36)

11



with I'y1 = 0 NIy, when it is non-empty. If I'p; = 00y NI'p is non-
empty and connected, we get a non-homogeneous constant Dirichlet condition.
In particular, when I'p; UT'r UT'p 5 is connected and condition (35) has been
imposed on I'p 2, for consistency we have to fix the condition

ro
o(r) = / H,-dr onTp;. (37)
ra
In the other cases, one may specify

¢(r) =¢(rg) onTp,, (38)
where rp is a point fixed arbitrarily in I'p 1, assuming for instance ¢(rg) = 0.

Finally, considering all equations and conditions together, we obtain the
following differential boundary value problem on Q:

( -V - (/LlV(ﬁ) =0 on Ql,
=V (p2Vep) = =V - (u2H,) on (s,
¢(r) = Lp(I‘) - f:;] Hs ) dl‘, (ﬁ(l‘o) = (p(rO) on FI;

) Ve -ng + paVy -ny = poHg - ny on Ty, (39)

(,25(1‘) = f:o H, -dr on FD,I;
p(r) = [, Hs-dr, ¢(ra) =0 onI'po,
Vo-n=0 on 'y 1,

( Vop-n=H;-n on I'y 2,

in the unknowns ¢ and ¢ on their respective domains ; and Qs, where rg € 'y
and rq € I'p o are fixed arbitrarily. In (39) H; represents the source magnetic
field intensity due to Js, computed by using the Biot-Savart law (25), as de-
scribed in [23].

Differently from the simpler electrostatic case, in which the potential V is
always continuous in the transition across the interface, model (39) presents a
jump d # 0 of discontinuity between ¢ and ¢, together with non-constant values
on I'p, owing to line integrals of Hy. Figure 1 shows a schematic 2D version of
the model domain. The topology is valid also to describe a possible 2D repre-
sentation of the domains in the electrostatic problem, when taking Q, = 0.

For the sake of simplicity, only soft materials have been considered here. If
permanent magnets exist, the contribution due to the coercive field H, has to
be included. Even when considering permanent magnets, however, the mag-
netostatic model has form (1). In such a case, a contribution V - yH, has to
be added to the right hand side of Poisson’s equations corresponding to per-
manent magnets. Boundary and interface conditions of Dirichlet type remain
unchanged, while boundary and interface conditions of Neumann type have to
include a contribution ¢H, -n at the right hand side, where n is the unit normal
vector whose direction is chosen using the same convention than in (30). This
corresponds to a further non-zero contribution to the jump p across the inter-
face, or to a non-zero value ¢ on the part of boundary intersecting permanent

12
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Figure 1: A two-dimensional projection of the model domain

magnet regions. See [24] for the complete formalization of the magnetostatic
problem with permanent magnets.

Once the potentials ¢ and ¢ have been computed from the solution of model
(39), and consequently the fields H and B are known, we can consider global
quantities of physical interest, like the magnetic energy. The definition is given
similarly to the electric energy. Given a material domain D C R2, assuming
that B is linearly related to H, the total magnetic energy stored in D due to H
is

W:l/B-de:l/uH2dx. (40)
2Jp 2 Jp

In the next section, we intend to present the variational formulation of the
general model (1), to be used for a finite element solution of the electrostatic
and magnetostatic cases here introduced.

4 Variational formulation

In the sequel, the following notations will be used. Given an open Lebesgue
measurable domain D C R® with Lipschitz continuous boundary 8D, for any
integer p =1,2,..., we denote by L,(D) the Lebesgue space of order p, i.e. the
Banach space of all equivalence classes of real or complex-valued functions u
Lebesgue integrable on D, in which the p-powers of |u| are Lebesgue integrable
on D. For each integer m = 0,1,2, ..., we denote by H™ (D) the Sobolev spaces
of order m, i.e. the Hilbert space of functions u € Lo(D) with distributional
derivatives D%u € Lo(D), for any multi-index a = (a1, az,...a,) € N* such
that |a|= Y1, @; <m. H*(D) is the most commonly used setting for varia-
tional formulations of second order problems. As subspaces, Hy (D) will denote
the space of functions u € H'(D) with zero trace on 8D and similarly, for any
surface T’ C 9D, the space Hj (D) will denote the set of functions u € H'(D)
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having zero trace on I'. Finally, we denote by H'/?(T') the Hilbert space of
real or complex-valued functions v defined almost everywhere on I' such that
there exist functions u € H'(D) with u [r= v (in the sense of trace). For any
normed or pre-Hilbert space V' here considered, when not otherwise specified,
we will denote canonical norms and inner products by || - ||y and (-,-)y, re-
spectively. See [36] for a survey of Lebesgue spaces and [18, 35] for a study of
Sobolev spaces and mathematical topics related to partial differential equations.

Let us consider the boundary value problem (1). Under weak conditions
of regularity for f,d,p,q and up, we derive a variational formulation of model
(1). Let us assume f € La(Q), p € La(T1), ¢ € La(Tn), d € HY?(I'7) and
up € HY?('p). We obtain then the weak form of (1) by using a formal
procedure similar to the one applied to the classical Poisson model with no
interfaces [33], considering both domains ©; and €. Thus, we multiply the
differential equation in (1) by an arbitrary v € Hor,(Q2) and integrate over
each Q;, ¢ = 1,2. Then, we apply Green’s theorem to the two integral equalities
and split the corresponding surface integrals over 9); in the several parts of
I'p, 'y and 'y defined by the relation

80; = (0 NTp) U (O NTx) U (O NTy), i=1,2. (41)

Finally, using Neumann conditions both at the interface and the boundary and
summing up the two equalities, we get the following weak form for problem (1):

(variational formulation) Find u = u(z,y,z) € L2(Q), where u |q,= u; €
HY(Q;) fori=1,2, such that

/aVu-Vvdx:/fv dx+/ qu d8+/ pv dS ‘V’UEHOIID(Q),
Q Q I'nv rr

(42)
and such that u=up on Tp and u; = uz + d on U1 (in the sense of trace).

In this model with interfaces, the solution u = u(z,y, 2) belongs to La(f)
but not to H'(Q), because of the presence of a non-zero jump function d on T’y
in the first interface condition of (1). Thus, as a natural setting for our weak
solution it makes sense to introduce the following piecewise Sobolev space

HY (Q1,0) = {w € La(Q) : w|g, € H(Q),i =1,2}. (43)

Denoting by w; = w |q,, for ¢ = 1,2, the component functions of any w €
H'(Q4,95), the definition

lw a0 =llwi 1@ + w2l H1(00) (44)

can be then chosen as a natural norm. Coherently, we introduce the subspace
Hjr,, (921,92) of functions w € H'(Q4,Qs) whose trace yw on T'p vanishes.
Similarly to spaces Hy(Q2) and Hj (), for each w € Hyp (21,92) it is easy
to prove that the definition
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lwllag, (@ on=llwillag, @)+ llwllmg, @) (45)

is another norm for Hg . (Q1,9Q2), together with the induced norm from (44),
where w; are the component functions of w on §;, i =1, 2.

In (42), differently from the solution u € H'(9;,Q5), the test functions

v belong to Hyr, () € H'(Q), so that their trace yv is well-defined in Ty
and I'. Similarly to models without any interface conditions, it can be shown
immediately that (42) is equivalent to the weak formulation of a model with
Dirichlet boundary conditions that are homogeneous on I'p and such that no
Jjumps exist at the interface T';. Regarding this, let us consider the substitution
u=1u+1up, (46)

where @ p is an extension of up on Q such that @ip € H'(Q,2) and the compo-

nent functions #p, on y and @p 2 on O satisfy the condition tp; = Up,2 +d
on T'7. Then, it results @ € Hy . (?2). Now we introduce the bilinear form

a(w,v) = / aVw-Vvdx  Vw,v € Hyp, (Q) (47)
Q

and, for a fixed function ¢ Lebesgue measurable on a Lipschitz continuous sur-
face S C 01, the following notation of linear functional

<o, v>s= / ovdS  YveHjp, (Q). (48)
s

Then, denoting by (-,-)o the usual Ls-scalar product on Q, from (42) we get
the following

(equivalent variational formulation) Find i € Hgy (Q) such that
a(i,v) = b(v) Vv € Hyr, (), (49)

where a is given by (47) and

b(v) = (f7 U)Q - (aVﬂDJ VU)Q+ <g,v>ry +<p,v>ry, (50)
with <gq,->r, and <p,->r, given by (48).
The advantage of this equivalent formulation is that now the sought weak so-
lution vanishes on I'p like the test functions v, and its component functions ;
satisfy the condition @, = 12 on I';. The non-zero value at the Dirichlet bound-
ary and the discontinuity at the interface have been transferred to a known

function 4p.

Good properties hold for @ and b. First, a is symmetric and continuous, i.e.

la(w, )< Cr llwlla, @lollm, @ YoveHr, @), (6
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as it follows from the Cauchy-Schwartz inequality, by taking C; =||«||L., (here,
equal to maxg ). Then, due to the uniform ellipticity, we have

a(0,0)> Ca llolidy, (@) Vo€ Hir, (@), (52)

with Cy = ming a (in such a case, it is said that a is coercive on Hg . (9Q)).
9
Besides, the linear operator b is continuous, i.e.

[b(v)|< Cs ||U||H3’FD @ Vve€Hyr, (), (53)

as it follows from the boundedness property of the functionals (f,v)q, <g¢,v >ry,
<p,v>r, and (aVip, Vv)q, using Cauchy-Schwartz and Poincaré’s inequal-
ities, with C3 > 0 depending on «, f, p, q, 4p, 1 and 2. Thus, from the
Lax-Milgram theorem [18, 33], there exists a unique weak solution for the vari-
ational problem (49), as well as (42).

To conclude, property (52) guarantees that a(v,v) > 0, for each v € H(}’FD Q)
(the property holds also in a larger space, like H(Q)). We can therefore intro-
duce the equivalent norm

lolleq = valoo) = ([

1/2
aVv - Vv dx) , (54)
Q

which will be used many times in the following, called energy norm.

5 Finite element discretization

For a finite element discretization of the variational form (42), let T}, = {7}
be a conformal 3D triangulation of €2, i.e. a partition of € in open triangular
subdomains 7 pairwise disjoint or having either a vertex, an edge or a face in
common, such that Q@ = |J7. Let us suppose that T}, is also constrained at
the interface I'y, i.e. each element is disjoint from I'; or has a vertex, an edge
or a face lying on it. The index h, called mesh size, measures the pointwise
size of the elements in the triangulation, and has to satisfy some regularity
properties. Typically, h is defined as the piecewise constant positive function
such that h|,= diam(7) for any element 7, i.e. it equals the longest edge of
7. Weaker assumptions for h can however be suggested. For instance, defining
h, = diam(r) for each 7 € T}, C. Johnson and K. Eriksson in [17] require that:

1) h € C1(Q), it is positive and there exists v > 0 such that
|Vh(x)|<v, Vze; (55)
2) there exists a constant ¢; > 0 such that

c1hd < /dx, V1 € Tp; (56)
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3) there exists a constant ¢ > 0 such that
cohy < h(x) < h;, Vrer, Vr €T (57)

By means of these conditions it is required to have a sufficiently “good” mesh,
that is: 1) sufficiently uniform with a not too large variation in size among the
elements, 2) with not too sharp angles in the elements, and 3) whose element
shapes are not too far from the equilateral one. In [9, 11] it is explained how the
quality of the element shapes in the triangulation can affect the convergence of
finite element solutions.

We can now turn to the discretization of (49), by using a continuous Galerkin
finite element method. Let V7 C Hj . () be the finite-dimensional space of
continuous functions piecewise defined on (2, vanishing on I'p, that are con-
tinuous polynomials of order r over each element in T}. Then, by definition,
the Galerkin finite element solution satisfies the variational form (49) for test
functions considered in this finite-dimensional space, i.e. the following problem:

(discrete variational formulation) Find @y € V;| such that
a(ﬂh,vh) = b(Uh) Yo, € V{, (58)
where a and b are defined by (47) and (50).

The discrete model Au = b is then derived in a similar manner to models
without interface. It is sufficient to impose the discrete condition (58) on test
functions vy, belonging to the same finite-dimensional basis in V; used for the
finite representation of the discrete solution. The basis functions are chosen so
that a local compact support property holds (e.g. in the piecewise linear case,
the well-known hat-functions can be used). Together with the interior sources
and the boundary conditions, in our case a contribution from the interface con-
ditions has to be included in the right hand side b. If a piecewise linear Galerkin
method is applied, for instance, the number of degrees of freedom for the linear
system is the number n of the interior and Neumann boundary nodes defined by
the triangulation T}, with interface nodes included (called free nodes). In the
definition of the discrete model, the interface condition u; = us + d is inserted
into the structure of the linear system, in order to compute directly the finite
element approximation wp of the solution w, instead of 4. In the unknown
vector u = (Uy,Us," - ,Un)?, the generic component u; = up(z;,ys, 2;) repre-
sents the value of the finite element solution uy at the i-th free node of Tj,. The
components of u on nodes belonging to I'y are associated either to the function
uy or to ug, by arbitrary convention, as the value of the other one is derived
immediately from the knowledge of the jump d.

Owing to the uniform ellipticity of the form a(u,v), the stiffness matrix is
non-singular, symmetric, positive definite and, due to the local support property,
sparse. Therefore, the linear system is generally solved by iterative methods,
e.g. Krylov subspace methods. Suitable preconditioners B can be applied in
order to reduce from x(A) to k(BA) the condition number of the stiffness ma-
trix, which would otherwise grow as the mesh size becomes finer. In [10] X.
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Cai and K. Samuelsson suggest some methods, like additive Schwartz methods
and multigrid techniques, that can be used as possible preconditioners for the
stiffness matrix. Details involving implementation aspects of the discrete model
(58) will be described in [24].

6 Error analysis

Broadly speaking, differential models can be written in the general form
A(u) = g, where A is a differential operator, g represents data and w is the solu-
tion. In the representation of a physical problem by a computable mathematical
form we introduce, however, perturbations and approximations. Generally, the
operator A is modelled by A and the datum g is approximated by g. Therefore,
if u is the exact solution of the approximated model A(u) = g the difference
em = u — u represents what we can call the modelling error. Then, depending
on the discretization method and the computation algorithm, we also have to
take into consideration the computational error ec = u — U where U is the
approximated solution of A(z) = g. The total error is thus the sum of both the
modelling and computational errors:

e=u—U=@w—-u)+@+U)=em+ec. (59)

In this work, we intend to investigate the computational error, dominant
part of the error when the computational model A(4W) =7 is a “sufficiently”
good approximation of the exact model A(u) = g. Here, the approximated so-
lution U is intended to be the finite element solution u; of the variational form
(42), obtained by solving the discrete form (58). A future task for a global error
analysis will be then to investigate other error contributions. In our model,
which involves several steps of modelling and computation, the sources of “per-
turbation” arise in fact in modelling of data at more levels (computation of Hy,
discretization of H, - n for the Neumann conditions, quadrature of [H, - dr
for the Dirichlet conditions) as well as numerical computation (Galerkin finite
element discretization, linear system solution).

Consider now the finite element error
€e=1u—up, (60)

where u is the exact solution of a certain model and uy, is the finite element so-
lution. Error estimates of (60) provide a measure of the accuracy and stability
of the finite element solution. They can be given in two forms, as a priori and
a posteriori estimates.

A priori error estimates for (60) are expressed in terms of the exact solu-
tion, so that they can give information about regularity properties of the exact
solution and the order of convergence of the finite element method. Differently
from the former, a posteriori estimates are expressed in terms of data, mesh
size and finite element solution, i.e. they are defined by quantities that are all
computable. The latter turn out to be useful to suggest operative criteria to
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improve the solution accuracy by successive steps of finite element calculation
in a feed-back process resorting to known or previously computed information.
In this case, no a priori information of the exact solution are required.

In an adaptive finite element method, a posteriori error estimates are used
inside a computational procedure that constructs a finite element discretization
for a given problem according to two basic objectives [17]:

(a) the error of the approximate solution lies within a given tolerance;

(b) the finite element solution is obtained by a (nearly) minimal number of
degrees of freedom.

By condition (a) we require that the method is reliable, and by condition (b)
that it is also efficient.

The basic idea behind an adaptive finite element algorithm is the follow-
ing. If a global a posteriori error estimate is lower than a given tolerance, the
finite element solution is considered accurate (and the algorithm stops). Oth-
erwise, local error indicators are computed on mesh entities (elements, nodes,
or edges/faces) for a “local” improvement of the solution accuracy by refine-
ment/correction of selected entities on which the error indicator results large.
Regarding this, we can distinguish essentially three refinement approaches:

- h-refinement, decrease of the element size;

- p-refinement, increase of the order in the polynomial representation of the
solution;

- r-refinement, movement/correction of node positions.

Once the refinement procedure has been performed on the mesh, a successive
and more accurate finite element solution is then computed using the new defi-
nition of the degrees of freedom.

Many authors (I. Babuska, W.C. Rheimboldt, R.E. Bank, A. Weiser, O.C.
Zienkiewicz, C. Johnson, R. Verfurth, J.E. Flaherty, and some others) have stud-
ied adaptive finite element methods according to a posteriori error indicators
estimated by different criteria. See references [3, 4, 5, 14, 16, 17, 29, 30, 31, 44]
and, for a more complete list, the ones quoted in [14, 21, 44].

Among the ones above mentioned, the first a posteriori error estimator has
been suggested by Babuska and Bank in the 80’s. In that case the error was
computed from the solution of ”perturbed” local variational problems, where
residual quantities appeared as data for the error model. This idea has been
used recently for static electromagnetic models in [2, 19], and for eddy current
problems in [21]. Differently from Babuska’s, in Johnson’s approach error es-
timates are provided as upper bounds of the error in proper norms (|| e ||L,,
llellm,, |lelle, etc.), related to residual quantities occurring at the interior and
the boundary of the elements, up to proper constants. Basically these error
estimates are obtained by using the orthogonality properties of the Galerkin
method together with standard finite element interpolation estimates, and they
require an estimation of stability factors, which can be obtained by solving dual
problems associated to the initial one.
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According to these guidelines, in the next section we consider the abstract
framework presented in Section 4 and extend some arguments proposed in
[14, 17, 39] for classical Poisson problems, to prove some a posteriori estimates
of (60) for the finite element solution of model (39).

7 A posteriori error estimation

Under the hypotheses and notations introduced in Section 4, we have seen
that the model problem (1) can always be associated to a variational form
(49) with the bilinear form a and the linear functional b defined in (47) and
(50), which is equivalent to (42). Let therefore u be the exact solution of (42),
obtained from the solution @ of (49) and relation (46). Similarly, let uj be the
discrete solution, computed from the Galerkin finite element solution iy, of (58)
and the definition

up = Up + ’aD’h, (61)

where ip, is the projection of @p in the finite-dimensional space Vir, €

H'(Q4,95) of functions that are continuous on ; and )5, piecewise defined
polynomials of order r over each element in T}. As regards u and wy in the
original models, we use the same bilinear form a as defined in (47), and introduce
a functional g obtained from b in (50) such that

9() = (f,v)a+ <gv>ry + <pv>r,  WEH;,(Q).  (62)
By construction, we know that u satisfies (42), i.e.
a(u,v) =g(v) Vv e Hyp, (), (63)

together with the non-homogeneous Dirichlet conditions on I'p and T'y, and uy,
satisfies the discrete form

a(up,vp) = g(vp) Yo, € V). (64)
Under these premises, from (63) and (64) it follows:

Proposition. The finite element error (60) satisfies the “orthogonality”
property
ale,vp) =0 Yo, € V. (65)

In Q we now introduce the following residual
r=-=V-(aVu) — f, (66)

associated to the functional

<r,v>= a(up,v) — (f,v)o— <q,v>ry — <p,v>1,, (67)

20



for each v € Hy o, (). Then
Lemma. For allv € Hyp (Q), vy, € V}, it holds:

<r,v>= —a(e,v),
<r,vp>=0, (68)
<r,v>=<r,v —UpL>.

Proof. The first one follows immediately from the linearity of a, the second
one from (64) and the third one as a corollary, due to the linearity of <r,->.

Given the triangulation Ty, = {7}, let F be the set of faces of all elements
7 € Tp. In the following, for any face f € F between a tetrahedron 7';_ and

its adjacent 7, and any 1) € L2 (E U ;), we denote by ¢]T and 1 the limit
values of ¢ on f from the two sides of T]?L and 7 , respectively, and by [¢] s the
jump of ¥ across f in the direction of the unit vector n normal to f, defined by

¥} :tl_i)rgl+¢(x+tn), ¢; = lim (x—tn), Vx€f,

t—0—

[¥]; =4f —¢5- (69)

Now it is possible to demonstrate the following a posteriori error estimate for
(60):

Theorem 5.1. The energy norm of the Galerkin finite element error (60)
in the variational problem (42) satisfies the following property: there exists a

constant C > 0 for which

lelle.q < CIARI ), (70)

where h = h(z) and R = R(x) are the functions piecewise defined on each
element T such that

iL|T= hz, (71)
R|. =|=-V - (aVuy) — f| +h;7/*Meas(t)"1/2 S,

with h, = diam(7), and
Sr =l n-([aVun - 0] = p) [, 070r)) (72)
+ [ nelaVun -0l (|1, o\ @uryy) T 11 @Vur -0 =a ||, 6,004

where {n;}rem, is a family of positive real numbers chosen in such a way that
0<n, <1 forall T €Th, withn,, +n-; =1 if 7, and 7; are adjacent.

Proof. The demonstration is based on the elementwise decomposition of the
integrals defining a and g by the triangulation T}. First, we write
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<p,v>r;= Z / pUdS, (73)

define fer It
ar(u,v) = /aVu -Vvdx Vv € Hyp, (), (74)
and consider the set decomposition
or=@rNTp)u@rnTy)u@rnT)u@r\ T uUly)). (75)

Then, we have

<r,v>= Z (ar(un,v) = (f,v), = <qV>5,nry) — Z <P, U>ar,

TET, feF
= Z ((=V-(aVup) — f,v), + <adup/On — qv>4 1

7€TH

+ <adun/On,v>4.p) — D <PU>gar,

FEF

= Z ((=V-(aVup) = f,v); + <aVup -n—¢v>5.r,) (76)

7€TH

+ Z (<[avuh . Il]f _p7v>fﬁF1 + <[avuh ) n]f7v>f\(FUFI))

feF

= Z ((—V : (avuh) - f7 U)T + <avuh n— q7v>8‘rﬁl"N

TE€TH

+ <n-([aVup -n] = p),v>4 o, + <n-[aVup - n]7U>BT\(FUF1))7

where {n; },eT, is a set of weights chosen so that 0 < 5, < 1 for all 7 € T}, and
N7 +nr; = 1if 7; and 7; are adjacent. Considering now the third relation in
(68), the Cauchy-Schwartz inequality and the monotony property for integrals,
we obtain

<, o> < 3 (I1-V - @Vun) = £l lo = onllper)

TETH
+ laVup -0 = qll g, 00l = vnll L, 0r) (77)

+ [ ([aVup - n] = p) ||L2(87—ml“1)||v — Un ||L2(8‘r)

+ [[n-[eVup - 1] ”Lg(a‘r\(I‘UI‘I))”v — Un ||L2(ar))-
Two fundamental inequalities have then to be used on elements 7 and their

boundary. The first one is a local version of the trace inequality [18, 39]: given
a function w € H' () there exists a constant C, o > 0 such that

1w 2,000y < Cro(B7 2l w llpy(ry + B2 Vo llgyery)- (78)

The second one is a classical result from interpolation theory [14]: denoted by
2, the union of the closure of elements adjacent to any element 7, for any
function w € H*(2,) there exists a constant C,; > 0 for which
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| D™ (w — mpw) i,y < Cra ™ DWw (PRCRE (79)

for m = 0,1, I = 1,2, where mpw is the nodal interpolant of w at nodes of Q.,
with D®w = w and DMw = Vw. In particular, it follows

| v—mpo ||L2(7-) < Crah:|| Vo ||L2(QT)7 (80)

| V(v =7m10) ll1, ) < Crall VO ll 0.
hence
| v—mpv ||L2(3T) < Crp hi“ll Vv ||L2(Q,_)7 (81)

with Cr 2 = 2C;Cr1. We substitute the first inequality of (80) and (81) in
(77), and resume all the constants to obtain

|[<r,v>|< C(O)Z (hr|| =V-(aVup) = fllp, iyt h?(|1nrlaVuy ] |z, 0m\(rur )
TET

+ |- ([@Vup-n] — p) ||L2(81'OF1)+ laVup-n — (J||L2(amrN))) ||VU||L2(QT)7(82)

for a constant C(® > 0. Then, we consider the monotony property for the
integration domains 2. C 2, the upper bound

iaigmn<§:af)1/2, VYa; >0, i=1,2,...,n, (83)
i=1

i=1

which holds for some constants &,, > 0, as well as the bounds a? + b? < (a + b)2 <
2a2 4+ 2b? for all a, b > 0. After some rearrangement, by introduction of the
global notations (71) and (72), we get

(<r0>1< CORRIy 001 V0l (84)
for the constant C(") = /2 k,C(9. Then, we choose v = e and use the equality
|<r,e>|=lellz.q (85)

obtained from the first equation in (68). To conclude, we consider the equiva-
lence between norms [ e[|¢ o and || Vel|;,qy- In particular, from

cminl| Vel < llellzg (86)
we get the upper bound in Ly-norm
IVellLy@ < C 1R Ly, (87)

with C = C /a,pin. On the other hand, from
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amax”ve“iz(ﬂ) > ”6“2,9 (88)

relation (70) finally holds, by choosing C = CV)\ /aimaz/Cmin. Q.E.D.

The above estimation on 2 shows that the energy norm of the finite element
error depends on the residual at the interior of elements, in a proportional way
to the mesh size h,, as well as the residual at the inter-element jump of the

normal derivative of the solution, in a proportional way to hi/ 2

For the numerical computation of (70) two important aspects have to be
considered. The first one concerns the weights 7, appearing in the pairwise
contributions across element faces. Although an infinite number of values can
be assigned to them, it is convenient to define them in such a way that the
corresponding terms in the upper bound (70) become as small as possible. The
simplest choice is to take 7, = 1/2, i.e. to consider an equidistribution of the
error contribution due to jumps of the normal derivative. A better choice, how-
ever, is to define a different weight from element to element, taking into account
the geometry of the problem domain, the possible discontinuity of the diffusion
coefficient a across elements, as well as local behaviours of the finite element
solution (e.g. gradients, etc.). Regarding this, a possible non-uniform definition
of the weights 7, is suggested in the following Theorem 5.2.

The second (crucial) aspect is to provide an appropriate estimation of the
constants C' and C. The proof of Theorem 5.1 suggests how to compute them,
by their relation with the constants appearing in the trace and interpolation
inequalities (78) and (79). Nevertheless, such estimates would be too large. A
sharper estimation than (70) is rather obtained by separating the contributions
of the interior residuals and the jumps of the normal derivative across the ele-
ment faces with introduction of two different constants, instead of one, resorting
to few modifications in the previous demonstration.

Taking into account these two practical difficulties, a finer error estimation
is then suggested by modification of the global general upper bound (70), as
follows.

Theorem 5.2. The energy norm of the Galerkin finite element error (60)

in the variational problem (42) satisfies the following property: there exist two
constants C1 > 0 and Cy > 0 for which
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2
lelzg=Na"? V(u—un)ll,q (89)
2
<> (Gilla2h(=V - (@Vun) = )llp0r)

TET
+ Oy Z ||(a++a_)_1/2h}/2[aVuh n]f||L "
fe(@r\(I'ury))
2

+ Y et +an)h (aVun -0l =),

fe(ornTr'y)
2

+ > e R eVun =gl ),

fe@rnr'y)

where h; and hy denote the element and face sizes, defined by h, = diam(7)
and hy = diam(f) for each face f in 7, for 7 € Ty, and where o and o~
denote the limit values of o at each face f of T from its interior and exterior
respectively, according to notation (69).

Proof. The demonstration is similar to the one of Theorem 5.1. The funda-
mental difference consists in the specification of the weights 7, and in a different
definition of the constant factors. Again, we compute < r,v >. In the last right
hand side of equation (76) we can divide and multiply by a'/? the addends

referred to 7 and 07 NT y, and multiply and divide by hy ? the addends referred
to NIy, 0rNT'; and 87\ (T'UTr). Then, we define the weights 7, introduced
in Theorem 5.1 so that

at

aF +a- %0)

777'|f:

for each face f of element 7. If we split in two factors the contributions of 7,
by the substitution

nr =nyvat, (91)

with 9*|, = Vot /(at + a7), equation (77) takes the modified form
TIf

<ro>l< 3 (10220 = o) gy e 2=V @Vu) = 1) g0
TETH
+ 1m0 = wn) lyom (a1 (@Vun -0 = @) | pyrary)  (92)

+ ||mh1/2([0<VUh n| - )||L2(amr,) + ||nTh1/2[aVuh ‘n]||L2(ar\(FuFr))))-
From (80) and (81) we obtain the inequalities

I 051/2(’11 — TRY) ||L2(T) < ér,1h7|| Vo ||L2(Q-r)’ (93)
I al/ZhT_l/z(v — TRY) ||L2(8T) < éT’2|| Vv ”LZ(QT)’

~ 1/2 A 1/2 . . P
where Cr 1 = C’T,lam/ax,T and Cr o = C’T,Qam/ax,ﬁ With @max,r maximum diffusion
value on 7. We now consider the upper bound
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vat < 1
at+a- " Vot +a~’

(94)

and split the boundary contributions on each element along the single faces. If
we denote by hy = diam(f) the size of each face f, for any tetrahedron 7 € Ty,
there exists a constant k, > 0 depending on the geometry of the tetrahedron
such that h, < k hy for any face f of 7. Thus, summarizing all elemental
constants C’T,l and k, in a global 6’1, as well as C’T,z and kK, in a 6'2, we obtain

<ro>[ < 3 (Crlla™2he (=Y - (@Vun) = f)llpyer) (95)
TETH
+C( Y @ +a) T h  aVun - nls ] )
Ffe(or\(T'ury))
+ > et +a) M h* @V -nls =PI, o)
fe(ornr'y)
—1/2p1/2 -
+f€(62;F )|| (@20 (@Vun-n=q)ll,, ) IVellL0,),

as a modification of (82). Again, we choose v = e, apply equality (85) and
consider bounds (86) and (88). Taking here ||e[|Z ¢ instead of ||e||¢,o and using
inequality (83), we finally obtain estimation (89) for suitable constants C; > 0
and C5 > 0 related to C? and C? respectively. Q.E.D.

Giving a more detailed information than the general bound (70), estimation
(89) shows that the elemental contribution of the error due to the interior resid-
ual is inversely proportional to a'/? and proportional to the element size, while
the local contributions on the element boundary take into account the discon-
tinuity of diffusion across the faces, inversely proportional to (a® + a_)l/ % and
proportional to the square root of the face sizes.

In the particular case without any interfaces, (89) coincides with the error
estimate introduced by X. Cai and K. Samuelsson in [10]. This estimate could
be considered as error indicator in a mesh refinement procedure for an adaptive
Galerkin finite element solution, since a numerical estimation of the constants
C: and C, has already been derived in [10] both in the 2D and 3D case. These
estimates result in fact sharper than the large constants obtained from the trace
and interpolation inequalities. The suggested values are C; = 0.1, C2 = 0.15
for triangles and C; = 0.07, Cy = 0.55 for tetrahedra. An algorithm of adaptive
h-refinement will described in detail in [24], based on the a posteriori error in
energy norm (89).

To conclude, alternative approaches of a posteriori error estimation could be
proposed, depending on which quantity is considered for measuring the error
on it. Here, we have focused mainly on the pure error of the potential, in order
to evaluate directly the accuracy of the Galerkin finite element solution of the
discrete form (58) associated to model (1). An alternative criterion could be to
estimate the error on the “energy” defined by
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£ = / Vaul? dx — / Vunl? dx (96)
D
or, better in our case with diffusion coefficients a = € or a = p, by

o = / a |Vul? dx — /a [Vun|® dx, (97)
D

for certain domains D C R3 contained in Q or Q;, i = 1,2, related to physical
materials of the model. In the electrostratic problem (15), as well as in the
magnetostatic problem (39), in fact, the latter definition is related to a physi-
cal quantity, i.e. the electric or magnetic energy, respectively (16) or (40), by
means of definition (9), or (24) and (28). This approach seems efficient for
models derived from field formulations, as it has been shown in [6, 8] for 3D
magnetostatic cases. As concerns scalar potential formulations, the new defi-
nition of error seems appropriate for domains where only total potentials are
introduced, like in all electrostatic models, or in magnetostatic models having
permanent magnets but not source currents. In the last case, the error £, does
not coincide completely with the effective error of the magnetic energy because
of a double potential formulation that has recourse necessarily to a reduced po-
tential ¢ in a part of the domain containing currents. In this magnetostatic case
with imposed currents, in fact, also the contribution of the source field H; has
to be taken into account in the estimation of the magnetic energy.

8 Conclusions

In the present work, a three-dimensional generalized Poisson model with
discontinuous diffusion has been studied, considering mixed non-homogeneous
boundary and interface conditions of Dirichlet and Neumann type. Interface
conditions have been included to simulate the behaviour of physical properties
in the transition across adjacent materials having different diffusion properties.
A typical application of this class of models is encountered in electrostatic and
magnetostatic problems derived from Maxwell’s equations by introducing scalar
potential definitions.

The variational formulation of the model has been discussed, and existence
and uniqueness of the weak solution have been proved by the Lax-Milgram the-
orem. A piecewise linear Galerkin finite element solution on tetrahedral mesh
has been then proposed. A posteriori error estimates in energy norm have been
derived, to provide criteria for an adaptive strategy of mesh refinement in or-
der to increase the solution accuracy. Such estimates take into account error
contributions at the interior of each element, due to the residual of the finite
element solution, together with contributions at the element boundary, due to
inter-element jumps in the normal derivative of the finite element solution.

Work [24] will present numerical results after implementation of the adaptive

finite element solution and a posteriori error estimation here suggested, with ap-
plication to some stationary electromagnetic problems.
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