MULTIPLIERS OF SPHERICAL HARMONICS AND ENERGY OF
MEASURES ON THE SPHERE

KATHRYN E. HARE AND MARIA ROGINSKAYA

ABSTRACT. We consider the operator, f(A) for A the Laplacian, on spaces of
measures on the sphere in R%, show how to determine a family of approximating
kernels for this operator assuming certain technical conditions are satisfied, and
give estimates for the L2-norm of f(A)u in terms of the energy of the measure
1. We derive a formula, analogous to the classical formula relating the energy
of a measure on R? with its Fourier transform, comparing the energy of a
measure on the sphere with the size of its spherical harmonics. An application
is given to pluriharmonic measures.

1. INTRODUCTION

When A is the Laplacian on the unit sphere S¥~! in R? the action of an operator,
f(A), can be defined on various function spaces using the spectral theorem. We
consider the action of this operator on the space of measures. The operator acts
as a convolution operator, and in the case when f(t) — 0 when t — oo it is
natural to expect that the operator is well-behaved. As a result, there are standard
techniques which can often be used for studying the operator f(A) on smooth
function spaces. However, the operator is not, in general, well enough behaved
to apply these techniques to spaces of measures. Consequently, the study of the
action of f(A) on spaces of measures consists of the study of particular functions
f, with explicitly computed kernels of the convolution, and typically involves the
consideration of a family of kernels which approximate the kernel of convolution.

In section 2 of this article we begin with a function f which satisfies certain
conditions, and show how to calculate an explicit form of a kernel (or family of
approximating kernels) for the operator f(A) acting on measures on the unit sphere
in R? = R2". Conditions are given which ensure that f(A)u belongs to L2.

In section 3 we consider integral operators which arise from a Riesz potential
and prove that forall 0 <t <d—1,

du(z)du(y o~ 4
(L1) [.] LG LTI I T
Sd—l Sd—l —y

|z =yl Pt
where py, is the projection of the measure y on the spherical harmonics of degree k.
As the spherical harmonics are the analogue of the Fourier transform for measures
on the sphere this result is in the same spirit as the following classical relationship
between the Fourier transform of a measure on R? and its energy (see [8], [5]):
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(1.2 w= [ EEEE <o [l e ae

A similar formula is also known for measures on the torus ([6]). Because the size
of the t-energy of a measure, I;(u), is closely related to geometric properties of the
measure the classical relationship has proven to be very useful. For example, it
has been applied to study the Hausdorff dimension of projections and intersections,
distance sets, and the average rate of decay of the Fourier transform (c.f. [2], [7],
[11] and the references cited therein).

Formula (1.1) can easily be seen to be true if p is a sufficiently smooth function
(c.f. [9]). However, the arguments are more delicate if this is not the case. In
particular, if the measure has a singular component, then either side of (1.1) could
be infinite, and in this case the formula should be understood to mean that both
parts are simultaneously infinite.

The formula is applied to estimate the size of the coefficients of pluriharmonic
measures in section 4.

2. MULTIPLIERS ON SPHERICAL HARMONICS

In this section we assume d is an even integer and we set m = (d — 2)/2.

Consider the Laplacian A on S¢~1. This is a self-adjoint, negative operator whose
eigenvalues are given by Ay = —k(k +d — 2), for k € N, with the corresponding
eigenfunctions being the spherical harmonics of order k. If f is a complex-valued
function defined on the spectrum of A, then we can define the operator f(A) by
using the spectral theorem. We are interested in understanding when f(A) acts on
a space of measures, where by a measure we mean a finite, positive, Borel measure
supported on the unit sphere in R?, where d > 2.

A multiplier on the spherical harmonics has the property that it acts on the
spherical harmonics {Y;} by T'(Yy) = mY) for some sequence {my}. An example
of a multiplier is the integral operator,

()= [, K- nrwa

where k is a continuous function. The associated sequence of scalars {m} can
be found by the Funk-Hecke formula (c.f. [9], p.11). The operator f(A) is also a
multiplier on the spherical harmonics, with the scalars being given by {f(\x)}.

Given a sequence {my,} we define a function f on the spectrum of A by f(\) =
my. Assuming certain technical conditions are satisfied, we will describe a process
for determining a kernel, K(z,y), so that

@O = [ K y)dut).

Bounds for the L?-norm of f(A)(u) will be given in terms of the t-energy of the
measure p, I;(u), which is defined as

0=[ [
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We formally define the kernel K by

z,y) = Zf(Ak)Z;(/k) (z) for z,y € S1
k=0

where Zék) (x) are the zonal harmonic functions. The zonal harmonics have a simple
expression in terms of the ultraspherical (or Gegenbauer) polynomials on [—1,1],
P/"™(t), namely

Z) () = calk) P (z - y)
for suitable constants cq(k) (see [12], IV.2). If we set a(k + 1) = f(Ax)cq(k), then
we can write K (z,y) = P(x - y) where

EZa (k+1)P(t), t € [-1,1].
k=0

It is well known that P/ (t) is the coefficient of 2* in the series expansion of the
function g;(z) = (1—2tz+22%)~™. This function is analyticon , = {z € C : |z| < r}
for any r < 1, consequently

1
PR =5 [ a2 s
a9,

2mi
where 91, is the boundary of ©,.. Our first result uses this fact to compute P(t).

Proposition 2.1. Suppose that Q(z) = Y e a(k)z* is analytic in a neighbourhood
of the unit disk and P(t) =Y =, a(k + 1)P/(t) for t € [-1,1]. Then

CUPO) = gy (ol = @+ VIZ ) Qi

m—1

o= = VI E) Qi)

Proof. If we let Q and Py denote the N’th partial sums of @) and P respectively,
then clearly
1

VO = 51 S

0 (2)Qn(; )dz

Let U be a neighbourhood of ¢y € [-1,1] and assume wy C Q. = {2 € C:1 <
|z| < 7'} is a neighbourhood of the arc {t +iv/1 — 2 : t € U} on which Q(1/z) is
analytic. Notice that for each N,

1

o= [ a2@n () —Pr()
i Joq, .

as 1’ — oo since the integral over the larger circle converges to zero.
Since the function g;(2)@Qn(1/z) is meromorphic in €, ,» with only two poles,
+iv/1 — ¢2, it is holomorphic in Q, . \wy provided ¢ € U, and therefore its integral
over the boundary of €, ,»\wy vanishes. Thus

-1

Pt =5 | aQnG)a:
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As Q(z) is analytic in a neighbourhood of the unit circle, its partial sums converge
uniformly for all z such that 1/z € dwy. Because g;(z) is uniformly bounded for
z € Qwy and t € U, we can pass to the limit in the integral, uniformly in ¢. Hence

1 /&uU gt(z)Q(%)dz as N — oo

Px(t) » P(t) = o

uniformly in ¢ € [-1,1].

For any fixed ¢ the integrand defining P has only two singularities inside the
domain wy, poles of order m at t + iv/1 — 2, hence the Residue theorem can be
applied to yield

P(t) = — (Res;y; i=(9:(2)Q(1/2)) + Res,_; i (9:(2)Q(1/2))) -
Evaluating this gives the desired result. i

Recall that for a measure u, the projection of p onto the space of spherical
harmonics of degree k is given by

e(a) = [ 2 @)duto)

The L? norm of py, can be computed as [ [ 7 (z)dp(z)dp(y) and the L2 norm of
pis given by 337 lllls-

Corollary 2.2. Suppose Q(z) = Y o, a(k)z* is analytic in a neighbourhood of
the unit disk. If f(Ar) = a(k + 1)/cq(k), then the operator f(A) is given by the

continuous kernel K(x,y) = Ef()\k)Zl(,k) (z), i.e., for any measure p on ST1 we
have [ K(z,y)du(y) = f(A)u. Moreover,

//K:c y)du(y)du(z Zf (k) ||,Uk||2

k=0
Proof. The arguments above imply that Ky(z,y) — K(z,y) uniformly in z,y €
S4-1, Since

N
/ Kn(@,y)duy) = 3 FOn)
k=0

and

N
//KN z,y)dp(y)du(z Zf (k) ||Hk||2,
k=0

the result follows. I

Theorem 2.3. Let d = 2m + 2 > 2 be an even integer and let 3 —d < s < 2.
Suppose Q(z) = Y ro; a(k)z* is analytic in a neighbourhood of the disk. If there is
a constant C1 such that for each j =0,1,....m —1

d7

77 9@ miiyize| < G10 —£2) 2 for t € [-1,1],

then there is a constant Cy depending only on d,s and Cy so that for any finite,
positive measure p on ST! we have

(nuoni sy,

k=1

) < Colgpa—3(p).
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Proof. Throughout the proof C' will denote a constant depending only on d, s and
C1, which may vary. We will continue to use the notation outlined above. In
particular, P(t) = Y a(k + 1)P[*(t) and K(z,y) = P(x -y). The key idea is to
examine the order of the singularities of P(t) at £1. For the duration of the proof
we will denote the poles of g; as zg = t +iv/1 — t2 and 2; = t—1iv/1 — 2. Note that
20| = |a1] = 1.

We begin by calculating (2.1); the proof of this lemma is entirely elementary.
The notation m ;) denotes the product m(m +1)---(m+j —1).

Lemma 2.4. For N >0 and k > 1,

e (e-vmady) - 5 () v e - oyt = ().

=0 N7

& (51 ~ k) ,—k-n () L
i (00) = S
where aslk) are suitable coefficients and Q™ denotes the n’th derivative of Q.

Applying the residue formula (2.1) and the lemma (with N = m — 1) one can
see that P(t) is equal to

m—2 m—1—j . . i
-1 Y obj Y alt T DT (L) — ) =D
(k)=(0,1),(1,0) +bm_1(zk — 21) "™ IQ(L)

where b; = (mj_l)(—l)jm(j). Since |z, — 21| = 2v/1 — 12, the assumption on the
derivatives of () implies that for n <m —1 — j,

QW (/) —2) -] < o (Vime) "
C( ,—1 — t2)7(2m71+s) ‘

~(m+(s=1)/2)

IA

It follows that
P(t)] < C (1-#)

| [ K@ulau@iw <c [ [ ((Hx.yfg(”ﬁ)j‘f (;)))mﬂsw-
(

Thus

Since z,y are on the sphere, 2+ 2z -y = |z + y|2 . Hence [ [ |K(z,y)| is dominated

by
¢ [ [ (lo+ul™5m0 o =y dia)auty).
Define p(E) = p(E) + p(—E). As p > 0 it is clear that I;(u) < I;(u) for any
t. Using the relationship between energy and the Fourier transform (1.2) it is also
easy to see that 4I;(u) > I;(11). Hence the previous corollary implies

— a(k +1) 2
ZT(k) [l 2]l

< / / K (2,9)| dp(z)dpa(y) < Clogom1 (1),

k=0
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Remark 2.1. Using facts found in [12], IV.2. one can compute cq(k). It is well
known that ZF) (z) = apwy’,, where wq_y = 2n%/?|T(d/2) is the surface area of
S and ay, is the dimension of the space of spherical harmonics of degree k:
_(d+Ek=3)(d+2k—-2)
B (d—2)k!

fork>2,a0=1a; =d.

As P*(z - ©) = PJ*(1) is the coefficient of z* in the Taylor series expansion for
(1—2)?"? we have P/"(1) = (d+£_3). Thus

Z® (@) T(d)2)(d + 2k - 2)

= ~ k.
Pz o) (d — 2)2md/2

ca(k) =

Remark 2.2. If we take Q(2) = (1 —2%)" and d > n+ 3, then the theorem implies

"\ (n (_1)k 2
) (k) ol

k=1

< Cilg—3-n(p).

Next, we demonstrate how this approach may be modified to handle the situation
when the power series, Q(z) = 3" a(k)z*, is analytic only on the interior of the disk.
In this case some additional hypothesis is required; positivity of the scalars a(k) is
sufficient.

Corollary 2.5. Suppose Q(z) =Y ro, a(k)z* is analytic in the open unit disk and
a(k) >0 for all k. For R > 1 let Qr(2) = Q(z/R). If there is a constant Cy such
that for each j =0,1,....m—1and R>1

dZJ QR( Nz:t:tiﬂ S Cl(]. - t2)_(s+j)/2 fO'f‘ all t € [—]., ].],

then there is a constant Co, depending on d, s and C1, so that for any finite, positive
measure p on S we have

2 alk+1
(Iluo||§ +y % ||uk||§> < Colyrq—s(p).

k=1

Proof. As Qg is analytic in a neighbourhood of the disk, the coefficients a(k + 1)
are positive and c4(k) ~ k, the theorem yields

(k+1
(Iluolb + Z —) ||uk||§> < Colgya-s(p)

for some constant Cs. Letting R — 1 gives the desired result. |

This can be used to bound the L? norm of f(A)u in terms of the energy of the
measure y.

Corollary 2.6. Suppose f is real-valued and set a(k + 1) = (f(Ar))?ca(k). If the
hypotheses of the previous corollary are satisfied with Q(z) = Y po, a(k)z®, then
for any measure p on S we have

oo

1FQ)ulls = D (FOR)* lelly < Calsra—s(n).

k=0
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Corollary 2.7. For any s € [0,2) and even integer d = 2m + 2 > 2 there is a
constant C = C(s,d) such that for all finite, positive measures p on S?~! we have

(uuoni +Y kT ||uk||§) < Cli_i_s(p).

k=1
Proof. Consider Q(z) = (1 — 2)*~2. The Taylor series coefficients of () are non-
negative and asymptotically equivalent to k'~*. Since |R — zk|2 > 1 —t the result
follows from Corollary 2.5. 1

Example 2.1. Suppose @) corresponds to the projection onto the harmonics of
order divisible by n and the dimension d = 4. In this case formula (2.1) reduces to

Plt) = — 2 (Qt - ivVI— ) — Q(t + VI~ 2)).

V1 -—1t2
Because f is real-valued, this further simplifies to P(t) = ﬁ Im(Q(t+iv1 — t2)).
Hence the associated family of approximating kernels is given by Kr(x,y) = Pr(z-
y) where
8 _ R™ + (n—1)2"
Pr(t) = ———=R"'I —_—
= () m24/1 — 12 m(z (R" — zm) )’

for z =t +ivV1 — 2.
3. ENERGY AND SPHERICAL HARMONICS

Corollary 2.7 is a partial generalization of the classical formula (1.2) relating
the energy of a measure on R? with its Fourier transform. In this section we use
properties of the heat kernel to obtain a more complete generalization. We no
longer require d to be an even integer.

Theorem 3.1. For each 0 < s < d— 1 there are constants a,b > 0 such that

(3.1) aly(u) < llpolly + D K~ ell3 < I (u)
k=1

for all finite, positive, Borel measures u supported on the unit sphere S~ with
d> 2.

Before beginning the proof we note that as the sphere is a compact manifold of
positive Ricci curvature, the heat kernel H is unique and has the form H (¢, z,y) =
o
> e’\’th?Sk) (z) where, as before, Z,Sk) (z) are the zonal harmonic functions of degree
k=0
k with pole at y and Ay, = —k(k + d — 2) are the eigenvalues of the Laplacian.

We will use the following well-known facts about heat kernels. Throughout this
section d(z,y) refers to the interior metric on the sphere, a metric equivalent to the
usual Euclidean metric.

Theorem 3.2. ([3], 5.5.1) The heat kernel H(t,z,y) is a strictly positive C*
function on (0,00) x S3~1 x §4-1,

Theorem 3.3. ([3], 5.5.6, 5.6.1) For all 0 < § < 1 there exist positive constants
C, ¢, depending only on d and d, such that

C(min{t,1})—(d—1)/2e—d(w,y)2/4(1_5)t < Hit.zy)
< C(min{t,1})~(=D/2g=d@y)*/40+0)t
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for allt >0 and z,y € ST1.

Proof. We begin by considering Ey(p) = [ H(t,z,y)du(z)du(y) for t > 0. It is

known ([12], p.144) that the function |Z3(,k)( )| is bounded by a polynomial in k,
uniformly in z and y. As et** decreases exponentially in k for every fixed ¢t > 0,
the series in spherical harmonics for H(t,z,y) converges uniformly in z, y. Thus

/Htmydp Zet’\’“uk

As |pg ()| is dominated by ||Z§k)(w)||oo||p||, similar arguments establish that

Ze“"// ZM (2)dp(y))du(z Zet*kllukllz

Taking 6 = 3, Theorem 3.3 gives the estimates
c(min{1,¢})~(@D/2e=d@v)*/2 < F(t g y) < C(min{1,t}) (4 1/2—dw)?/6t
Thus

c/ / (min{1, £})~@=D/2e =A™ 2t 4y () dp(y)
< S el <c / / (min{1,¢}) @1/ 2e= 40 /6t g (1) du(y),
k

for t > 0, where the constants ¢, C' depend only on d.
Next, multiply both sides of the inequalities by the positive function

t1+s/2 ift <1
¢(t) = { t—1+(s—d+1)/2 if ¢ Z 1

and integrate over ¢ in (0,00). As all integrands are positive, we can change the
order of integration to obtain

62 of [KEyd@iiw < > / (E)e™ a3
< C//Ke(w,y)du(w)du(y),
where
(33)  Kalz,y) = ?t—1+<8—d+1>/Qe—dwf/f‘tdt
!

A
= AU, g)) T

_ (d(ﬂ?, y)? )(s—d+1)/2 /Oo plH(s—d+1)/2 =1/ g
0

d—1-s

2 )’

for A =2,6.
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Suppose k # 0. We have
o 1 0o
/¢(t)6t/\k di = /t—l-l—s/2et)\;c dt + /'t—l-l—(s—d-i—l)/Qet/\;c dt
0 0 1
[k

)
|)\k|_s/2/7'_1+8/26_Td7'+/t_1+(s_d+1)/2€t>‘kdt.
0 1

The second term in the final sum is clearly bounded by |Ax|~te**. As the function
f(x) = z7'*3/2¢=% decreases when z > s/2—1and |\;| > d—1 > s/2— 1 it follows
that

)
/t—1+(s—d+1)/2et)\kdt < el—d(d_ 1)—1+s/2|/\k|7s/2‘
1

1

Since the first integral dominates [ 77'+%/2e~7dr > 2e~'s™!, the first term in the
0

sum satisfies

(A
M7 2e s < 7 [ e < T
0
When k£ = 0, then

-1-5

i 2 2
/zp(t)dt: S
0

Combined with (3.2) and (3.3), these results imply that for 0 < s < d —1 we
have

d—s—1
2@/ (%) To—1—s()

1 1 , 1
- - - A —s/2 2
(8 + d—l—s) llollz + - DIl 13

k=1
d—s—1
celd—s—v/2p (T) Ti1_o(p),

where the constants ¢, C' > 0 depend only on the dimension d. Since |\;| ~ k? we
obtain the desired formula. I

IN

IN

Remark 3.1. 1. We thank Prof. L. Colzani for suggesting this approach which
improved upon a previous version of this paper. Colzani has also communicated
to us that another proof of Theorem 3.1 can be given by using the Poisson kernel,
(1 —7?)|rx — y|_d, rather than the heat kernel, and that this would give explicit
constants. We prefer to give the heat kernel approach as it readily generalizes to
other manifolds.

2. Another alternative is to consider the kernels |x — By|=t and let 3 — 1. S.
Eilertsen has communicated to us that for 0 < <1

1 0 \
//mdu(w)du(y)zkz_ock(ﬂ)llukllz
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where as B — 1 the coefficients c(B) tend to

_ L(t/2+k)  T(d/2T@d-t-1)
cr = wd—lr(d +k—1—t/2)T(t/2)[((d—1)/2))

(Here wq_1 is the surface area of ST™1.) If t > d — 2, then ci(B) increases to cy,
oo

hence one can obtain the precise result Ij(u) = Y cil|lpxl|3. Ift < d—2 one can
k=0

only conclude that I;(1) > > cx|lpr||? -
k=0

4. THE SIZE OF PLURIHARMONIC MEASURES

We identify R?" with C* and consider the set of positive functions which are
pluriharmonic in the unit ball. The Taylor series around the origin of such a
function can be presented as cg + Zlalzl Ca?® + coz®. Its boundary value on the
sphere is a finite measure called a pluriharmonic measure.

4.1. Size of coefficients. We have the following estimate on the size of the coef-
ficients of pluriharmonic functions.

Proposition 4.1. For any integer n > 2 there is a constant C' such that if f(z) =
co + Z\a\>1 CaZ® + o 2% is a positive, pluriharmonic function defined on the unit
ball in C* and 0 < e < 1, then

(o]

|
S [ ¥ ek <o <o
k=1

1o

Proof. As remarked in [1], if g is any pluriharmonic measure, then p(B(a,r)) <
Cnr®" 2 p(S*~1) for all a € >, r > 0. Tt is shown in [5], p. 65 that this implies

Ions_c(p) < (Cn(2n — 2" + 1) (S 1)

for every € > 0.
When g is the boundary value of f, then u; = Z|a\:k Caz® + cuz® when k > 1,
and therefore (see [10], p.16)

(n—l)'a' 2 _n a' 2
leelly = > (72|Ca| ~ETT Y el

_ ! !
e 1+ |al)! = lo!

Also, u(S2"~1) = £(0) = co because f is harmonic in the ball. Now apply Theorem
3.1 (or Corollary 2.7) with s =2n —e — 2. I

4.2. Hausdorff dimension. The Hausdorff dimension of a measure y is defined
as

dimpg p = inf{dimg E : u(E) > 0}.

It is known that if I;(u) < oo, then dimpg p > t (c.f. [5]).

In [4] an example is constructed of a singular, pluriharmonic, probability measure
p on the sphere in C* with spherical harmonics satisfying ||ux|l, < ck='/2 for
k > 1. Tt is an easy consequence of formula (3.1) that such a measure has Hausdorff
dimension 2n — 1, the maximum possible.
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