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ABSTRACT. Let D = G/K be an irreducible bounded symmetric domain in its
Harish-Chandra form in C? and let H, (D) the analytic continuation of weighted
Bergman spaces of holomorphic functions on D. We consider the d-tuple M =
(My,--- ,My) of multiplication operators by coordinate functions and study its
spectral properties. We prove that the operator M is bounded for all v in the
continuous Wallach set. We find a necessary condition on the parameter v for
which the domain D is a k-spectral set of the tuple M. In particular, in the case
where D is the unit ball in C¢, we find the values of v for which each multiplication
operator M is hyponormal or subnormal or the tuple M is subnormal.

1. INTRODUCTION

The spectral theory of single operators, in particular of operators on function
spaces, has been a highly developed subject. Among other important results is the von
Neumann inequality: if T is a contraction on a Hilbert space H, then ||f(T)|| < ||f]|co
for any polynomial f, where ||f||o is the maximum of the module of the polyno-
mial f on the unit circle. This result can also be reformulated as follows. Consider
the Hardy space H? on the unit disk and the multiplication operator M by the co-
ordinate function z. Then ||f(T7)|| < ||f(M)|| for any polynomial f. In his paper
[6] Arveson proved a version of the von Neumann inequality for a contractive tu-
ple of operators on a Hilbert space; see also [16] and [2]. He found a distinguished
tuple of operators on a function space on the unit ball of C¢, called the symmet-
ric Fock space, which dominates any other contractive tuple of commuting opera-
tors. More precisely, let #;(B?) be the Hilbert space of holomorphic functions on
B? with reproducing kernel (1 — (z,w))™! and let M = (M,,...,M,) be the cor-
responding multiplication operators on H;(B?) by coordinate functions z;. A tuple
T =(T1,...,T,;) of commuting operators on a Hilbert space H is called a contractive
tuple if | Tizy + -+ - + Tyxgl]® < ||za||* + -« - + ||z4]|* for all z4,...,24 € H. Arveson
proved that the operator norm ||f(7)|| for a polynomial f is dominated by the oper-
ator norm of f(M), |[f(T)|| < ||f(M)]||- Several other remarkable properties of the
Hilbert space H(B?) are also established [6]. Thus the operator tuple M on H,(B?)
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has some distinguished properties. In this paper we will study the spectral property
of a family of multiplication tuples on the holomorphic function spaces with the re-
producing kernel (1 — (z,w))™ on the unit ball, for 0 < v < co. We shall study also
similar problems on a general irreducible bounded symmetric domain. For a matrix
domain of type I those tuples have been studied earlier by Gagchi and Misra [7]. In
particular, we answer here some of their open problems.

2. PRELIMINARIES

In this section we recall some basic facts about bounded symmetric domains and
fix the notation. We will be very brief and refer for the necessary background to [12],
[13] and [17] and references therein.

Let D be an irreducible bounded symmetric domain, realized as the open unit ball
in a Jordan triple V of finite rank r. Let {z0u} = 1Q(z,u)v be the triple product
and Q(z,u) the polarization of the quadratic map @Q(z). (Our triple product differs
by a factor of § from that of [17].) Let G be the identity component of the group of
biholomorphic automorphisms of D, and let K be the isotropic subgroup of 0 € D.
Then D = G/K is a hermitian symmetric space. We normalize a K-invariant inner
product on V' and denote |v| the corresponding norm so that a minimal tripotent has
norm 1. It follows immediately by the Peirce decomposition for an element z € V
that if z € D then |z| < /r. We fix a frame {ej,es,...,e.} of minimal pairwise
orthogonal tripotents and let e =e; + --- +e,.

Let
V= Z Vi
0<i<j<r
be the joint Peirce decomposition of V with respect to the frame {eq,...,e,}. The
integers
(21) a:dimVij, b=dimVy, 0O0<i<j<r

are called the characteristic multiplicities, and they are independent of the decompo-
sition. The Peirce decomposition with respect to the maximal tripotent e is

V=Vi+Vi, withVi= Y Vi, ,Vi=> Wy
j=1

1<i<j<r
and

1
dlzdim%=§r(r—1)a+r, d ZdimV%:Tb, d=d1+d%.

1
3
The integer

2dy + d1
p=——2=2+4a(r—1)+b
r

will be called the genus of D.
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For each fixed j let A; the determinant polynomial of the Jordan algebra A; :=
> 1<i<j Vij» and extend it to a polynomial on V' via the orthogonal projection onto
A;. A tuple m = (my,...,m,) of integers with my; > mg > --- > m, > 0 is called a
signature. For each signature m let

Am(z) = A1(z)™ ™ L A1 (2)™ AT (2)

be the associated conical polynomial, and let Py, = span{A,ok; k € K}. It is known
that the Py, are irreducible and mutually inequivalent under K, and that the space
P(V) of all holomorphic polynomials on V' admits the direct sum decomposition

(2.2) PV) =) aP=(V),

where the summation ranges over all signatures m.
Let us denote L = {l € K;l-e = e} the isotropic subgroup of K at e. Thus
S = K/L is the Shilov boundary of D. For each signature m let

(2.3) bonl(w) = /L Auw(lw)dl

be the associated spherical polynomial. It is known that ¢, is the only L-invariant
polynomial in P,, for which ¢,(e) = 1. See [14], [21] and [12].
Consider the Fock space F of entire functions on V' with the inner product

(905 = = [ 125G ().

The reproducing kernel of F is then e(*). Let Ky(z,w) be the reproducing kernel
of the space P®(V') with the Fock space norm. Then (2.2) implies that

el#w) = ZKE(Z, w).

The Bergman reproducing kernel of D with respect to the normalized Lebesgue
measure is h(z, w)™?, where h(z,w) is an irreducible sesqui-holomorphic polynomials
on Dx D so that h(z, z) = [[j_,(1—s;(2)?), where {s;(2)}}_, are the singular numbers
of z. For v > p — 1 consider the weighted Bergman space H,(D) of holomorphic
functions f on D so that

112 = e [ 1P 2 Pdm(e) < o,
D
where ¢, is a normalization constant so that the function 1 has norm 1. Its reproducing
kernel is h(z,w)™”. In terms of the decomposition (2.2) we have

(2.4) h(zw)™ =Y (V) mKm(z,w),

m
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where (), is the generalized Pochhammer symbol:

r r  mj

(¥)m = H(V__]—l HHV——]—I +1-1).

Jj=1 j=1l1=1
The reproducing kernel h(z,w)™" is positive definite and thus defines a Hilbert spaces
of holomorphic functions on D, for a large set of v. More precisely, h(z, w) " is positive
definite exactly when v is in the so-called Wallach set

W (D) = {0, g o g(r ~1)}u (g(r — 1), 00).

See [12] and references therein. For v > 2(r — 1), we still have
(2.5) M, (D) =) &PV

in the Hilbert space sense. The reproducing kernel of H,(D) is h(z,w)™", and the
group G acts isometrically on H,(D) by means of the projective representation

(2.6) (9)(N)(2) = (J(g™)(2)? flg7(2)).
Here and bellow J(g)(z) := Det(g'(2)) denotes the complex Jacobian of g € G at the
point z € D.

Fix an orthonormal basis {v;}_, of V. For any z € D let z; = (z,v;) be its
coordinates in the fixed basis {v;}. Thus z = 2?21 2;0;.

Lemma 2.1. With the above notation we have |z;| < \/r for all z € D.
Indeed |z;] = [(z,v;)| < |2||vj| < /7, since |v;| = 1.

We let M; be the multiplication operator on the Hilbert space H, (D) by the coor-
dinate function z;. Note that the tuple M = (Mj,..., My) is K-invariant, namely if
k € K and M' = (Mj, ..., M)}) is the tuple of multiplication operators by the coordi-
nate functions associated with the basis {w;}%_,, with w; = kv;, then M and M’ are
unitarily equivalent: M f = (M;(f o k)) o k=" for all j.

In order to study the operator tuple M we use the idea of Arveson and consider
the Hilbert space

d copies
N

H,(D)QV' =H,(D)RC* =H,(D) & --- & H,(D):

the space V' = C? is viewed here as the cotangent space of D, with the co-adjoint
action of K, (k-v")(w) = v'(k~w) for v’ € V' and w € V. Thus K acts on the tensor
space naturally by

E(f @) (2) = f(k2) @ k'v.
Let M : H,(D) ® V' — H,(D) be defined by

(2.7) M(f ®v)(z) = f(2)v'(2).
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Clearly, M intertwines the actions of K. We observe also that
o d
(2.8) MM* =" M;M;
j=1

and that M M* is K-invariant:
(2.9) MM*(fok)=(MM*f)ok
for all k € K and f € H,(D).

3. RANK ONE CASE: THE UNIT BALL IN C¢

We shall study bellow the contractivity, hyponormality and subnormality and k-
spectral property of the multiplication tuples. We consider now the rank one case,
namely the case where D is the open unit ball B¢ in C?. The ideas developed here
will be used latter to treat the higher rank cases. We recall first some definition; see
[6], [10].

Definition 3.1. A bounded operator M on a Hilbert space H is called subnormal if
there exists a Hilbert space K and a normal operator N on K so that H C K, N has
H as its invariant subspace and its restriction of NV is M. M is called hyponormal if
[M* M| > 0. A tuple T = (T, ..., T,;) of commuting operators on a Hilbert space H
is called a contractive tuple if

| T2y + -+ -+ Tyzal|? < ||| + - - - + ||2al)?

for all z1,...,24 € H. A tuple T = (T3,...,T;) of commuting operators on a
Hilbert space H is called a subnormal tuple is there exists a tuple N = (Ny,..., Ny)
of commuting normal operators on a Hilbert space K D H, so that H is an invariant
subspace of N; and such that T; = leH for all j.

Let
A B .
G=5SU(Q,d) :={g= o D)€ GL(d+1,C);¢g* Jg=J and det(g) =1},

1 0
0 —1,
matrices, respectively. G acts on B? via fractional linear transformations

where J := ( ), and A,B,C,D are 1 x 1,1 xd, d x1 and d x d complex

gz = (Az+ B)(Cz+ D)™', where g = (é g) , z € BY,

K consists of linear transformation z — AzD™!, with det(A) det(D) = 1.
We present first an elementary observation about Mobius-invariant Hilbert spaces
on the unit disk B'. Let SU(1,1) be the Mobius group. It acts isometrically on
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H,(B) via (2.6), namely

@) = e o= (5 0).

The following result is a corollary of a more general result of Arazy and Fisher (see
e.g. [4]). We include an elementary proof for the sake of completeness.

Lemma 3.2. Let H be a Hilbert space of holomorphic functions on the unit disk
B!. Suppose that the space P = P(B') of polynomials is dense in H and that there
exists some v > 0 so that H s isometrically invariant under the group action m, of
SU(1,1). Then H = H,(B') in the sense that there exists a positive constant ¢ so

that || fllz = cll fllv-

This result extends to uniformly bounded actions of SU(1,1) by ,; the conclusion
is then that H = H,(B!) with equivalent norms. See [4].

Proof. By our assumption it is clear that the polynomials {z"} form an orthogonal
basis, since the subgroup of rotations in SU(1,1) acts on the one-dimensional sub-
spaces Cz™, n € N, with different characters. Next we calculate the norm of z".
For this purpose we calculate infinitesimal action of the Lie algebra g of the group

SU(1,1) on the subspace P. Take £ = (_01 _01) we see that

Wy(f)Zn — nznfl _ (1/ + n)zn+1;

so that P is invariant under the action 7, (&) so that, by the unitarity of m, (exp(t£)),
m,(€) is a skew-symmetric operator. Therefore

(m,(€)2", 2" ) = — (2", m, (£)2""1)
which reads
v +n)l2"HP = (n + 1)]]2"]]?

or
||Zn+1||2 _ n+ 1
|72 v4+n
By induction we get ,
np2 _ 2 _ 1.2
12°[]° = (y)n||1|| = cllz"l,.-
This proves our claim with ¢ = ||1|?. O

The following result is elementary and can be proved by direct calculation.

Lemma 3.3. The multiplication operator M, by z on H,(B") is bounded for all v >
0. The following condition are equivalent

(a): v>1;

(b): M, is a contraction;



MULTIPLICATION OPERATORS 7
(c): M, is a hypernormal;

(d): M, is a subnormal.

We consider first the subnormality and hyponormality of the multiplication op-
erators M; on H,(B%). We fix j = 1 and consider the operator M;. The element
e; = (1,0,...,0) is a minimal (and maximal) tripotents of V. The corresponding
Peirce decomposition relative to e; is then

V= V1 &) V%
where Vi = Ce; and V1 = {(0,29,...,24);2, € C,j =2,...,d} = C*. Thus
(31) P(V) = P() @ P(V3)

We recall further the embedding p of SU(1,1) x SU(d — 1) into G = Aut(B?) =
SU(1,d). If g3 € SU(1,1) is the M&bius transformation g;(z;) = 2=%, then g :=

l—z1a?

p(g1) € G is given by
z1 — U 2

(3-2) 9(z1,2") = (

1—2za 1-— zﬂ)'
If g1(21) = €*®2,Vz, € B' then g := p(g,) is given by g(21, 2') = (e*921, €% 25, ..., €% 2,).
The elements of SU(d — 1) are embedded into SU(1,d) trivially: if D € SU(d — 1),
then p(D) € SU(1,d) is the mapping z = (21,2') — (21, Dz). It is easily checked
that p is a monomorphism, and hence we can view SU(1,1) x SU(d — 1) as a sub-
group of SU(1,d). We shall need bellow the elementary fact that the Jacobian of

g=(g1,D) € SU(1,1) x SU(d —1) is
Jg(2) = Jg (21)"" det(D), Vz e B

The polynomial space P(V% ) decomposes under the action of SU(d — 1) into irre-
ducible invariant subspaces as

P(Vi)=> P (Va),
s=0
where for each s € N PS(V%) is the space of homogeneous polynomials of degree s.
Consequently
(3.3) P(V) =) PVi)@P(V1).
5=0

This decomposition will be the main tool of our investigation of the properties of M;.
We let P3(V1) be P*(V1) equipped with the norm induced by H,(B¢), namely we
view a polynomial on V] also as a polynomial on V. The completion of (3.3) in the
space H,(B?) is identified in the following Proposition. Here H, ,(B!) ® P,f(V%) is
the Hilbert-space tensor product.
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Proposition 3.4. Let v > 0. The Hilbert space HV(Bd) 18 decomposed under the
isometric action m, (2.6) of SU(1,1) x SU(d — 1) into the direct sum

Ho(BY =3 Hyon(B) & PV

of irreducible subspaces. Moreover, each component H,,,(B') ® P:(V1) is a func-
tion module of H®(B'), and the decomposition is equivariant. Namely, if P, is the
orthogonal projection onto H,,s(B') ® P(V1), then

Py(mf) = mPy(f)
for any m € H*(B").

Proof. We first prove that H,s(B") ® P; (V1) are indeed subspaces of #,(B?). Con-
sider the closed linear subspace L, generated by the holomorphic functions F' €
H,(B?) of the form F(z) = f(z1)p(2'), where f(z;) are polynomials in z; and p €
P*(V1) are polynomial of 2. We prove that L, = H,s(BY) @ P;(V1). Clearly both
spaces have the span of the above polynomials F'(2) = f(z1)p(z') as their dense sub-
space, so we need only to identify the norm in L,. Fix any two polynomials f;(z;) and
fa(z1) of z1 and h;(2'), ha(2') € PS(V%) let F;(z) = f;(21)h;(z') € Ls and consider the
inner product (Fi, Fy),; it defines a SU(d — 1)-invariant quadratic form on ”P,f(V%),
which is an irreducible representation of SU(d —1). Thus by Schur’s lemma, we have

(3.4) (F1, F)y = (fiha, foha)y = Cy5(f1, f2) (R, ho),
where C,5(f1, f2) is independent of Ay, hy. We claim that

Cos(f1s f2) = (frs f2)vss

where the right hand side is the inner product in H,,,(B*). Indeed, fix hy = hy =
h # 0 and consider the subspace Ls(h) of Ls of the form F(z) = f(z1)h(z'). Take
elements g = (¢1,1) € SU(1,1) x SU(d — 1) € SU(1,d) as in (3.2). We have

m (97" F(2) = f(g120)p(2') (1 — ;10) 7"

Clearly Lg(h) is SU(1,1) x SU(d — 1)-invariant and the quadratic form C, ;(f1, f2)
defines an SU(1,1)-invariant norm on the subspace. Hence by Lemma 3.1 we see
that C,5(f1, f2) is a constant multiple of (f1, f2),+s; the constant is 1 by the formula
(3.4)). Thus

(F1, F2), = (f1 ® ha, fo ® hy).

Now the remaining claims are immediate consequences. U

As a corollary we find

Corollary 3.5. Let v > 0. Then each operator M;, j = 1,...,d is hyponormal or
subnormal if and only if v > 1.
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Indeed, in the above decomposition of H,(B%), all subspaces H,,s(B') ® Py (V1)
are invariant under M, and thus they are reducible invariant subspaces of M. M;
is hypernormal if and only if it is hypernormal on each subspace H,,(B') ® ’P,f(V% ).
The result then follows from Lemma 3.2.

Remark 3.6. Proposition 3.3 can also be proved by using the integral formula of the

invariant norm in M, (B?) given in [3]. If F € H,(B%) then

1 N
(F.F). = o5 / (R NP () F R a(2)

where [ is a positive integer such that v+[ > d, and du,,(z) is the probability measure
cyri(1—1z|%)" =4 dm(z). If F is a sum of the functions of the form f(z;)p(z), then
we can calculate the norm of F' be separation of variables. However this proof is not
so easy to generalize to higher rank domains; also the above proof is somewhat easier.

We study now the tuple M and its relation to the operator M defined by (2.7).
Lemma 3.7. Let v > 0. Then

m
M M 7P
m=
where P, is the orthogonal proyectzon onto the space P™.

Proof. By Schur’s lemma the operator MM?* is a constant multiple of the 1dent1ty
operator on each polynomial space P™. To find the constant we compute MM* on
the function 2" € P™. Since M; are weighted shifts, we have M1 =0 and

I m
I vam =1

Miz{" = m > 1

Corollary 3.8. Let v > 0. Then
~ 1 v<i
IMM™]| = § ¥ :
1, v<l1.
Thus, the tuple M is contractive on H,(B%) if and only if v > 1.

In this paper [6] Arveson defined the notion of a null contractive tuple. Consider
the normal completely bounded map P on B(H,(B%): C(A) = Z?Zl M;AM;. M is
called null contractive if C*°(I) := limy_,o, C¥(1) = 0 in the strong operator topology.
Thus we have

Lemma 3.9. Ifv > 1 then

Z y+m_1 &k __p.

mk

In particular, C*®(I) = limy_,, C¥(I) = 0, and M is null contractive.
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Recall that a function module H of H>(BY) is called contractive if || fh]] < || f]lool| Pl
for all polynomial f and h € H; see [11].

Theorem 3.10. Let v > 1. Each operator M; is subnormal on H,(B%). If1 <v <d
then M = (M, ..., M,) is not a subnormal tuple and H,(B?) is not a contractive
module of H®(BY).

Proof. The first part follows immediately from Theorem 3.2. Note that by [7] B¢ is
the joint spectrum of M, so if M on H,,(B?) is subnormal then H,(B¢) is a contractive
module of H*°(B?). We need only prove that H,(B?) is not a contractive module of
H*(B%). Let 1,, be a Ryll-Wojtaszcyk polynomial in the space P™ of homogeneous
polynomials, so that by their construction,

[¥mlla = 1Ymlirzey =1, dmlleo < C;

see [20] and [9]. Note here that || - ||4 is the Hardy space norm. Consider the function

9= et(2)
m=0

with {¢,,} a sequence of complex numbers such that

o o
d
Slen <1, 3 el
m=0 m=0 m

The existence of such a sequence follows easily from the fact that sup % = oo and

the closed graph theorem. Thus f € H®(B?) and ||f|/cc < 1. Suppose v < d and
that H,(B?) is a contractive module of H*°(B¢). So that we have

(3:5) IAIZ = 1L < 1flle <1

However

I = Z 2O = Z| mPW’" ey,

[ESP
8|12
= | m‘Q
Z ||wm la

_ 2 (Dm _
= 7;) |Cm] m'
which contradicts (3.5). This completes the proof. O

When v = 1 this result is proved in [6], Corollary 1. Our proof here is somewhat
more conceptional by using the Ryll-Wojtaszcyk polynomials.
The proof above actually implies also the following result.



MULTIPLICATION OPERATORS 11

Corollary 3.11. Let v > 1. The unit ball B® (considered as the Taylor spectrum of
M = (Mi,...,M,)) is an k-spectral set of M, namely || f(M)| < ksup{|f(z)|;z €
B?} for some k > 0 and all polynomials f, if and only if v > d.

Thus, the e operator tuples M on the spaces H,(B%) (1 < v < d) provides a
natural family of commuting subnormal operators which do not form a subnormal
tuple. Earlier, Lubin [18] and Abrahames [1] provided other examples of weighted
shifts with the same property. We may well expect that the tuple M will provide

counterexamples to some other known problems.

4. BOUNDEDNESS PROPERTIES OF THE MULTIPLICATION OPERATORS

We will assume henceforth that D is an irreducible bounded symmetric domain of
rank 7 > 2 as introduced in Section 2. First we study the boundedness properties.

Theorem 4.1. The operators My, ..., My are bounded on H,(B?) if v > &(r —1).

We shall actually estimate the norm of the operator M, M; + ... MyM}, which is
diagonal under the Schmid decomposition (2.5), and find its eigenvalues. First we
recall a recurrence formula from [24]; see also [15], Proposition 5 (where a recurrence
formula for the Macdonald g-Jack symmetric polynomials is obtained).

Lemma 4.2. The following recurrence formula holds

51(2)6m(2) = D em(mm + %) B, 2)

j=1

where
) = [ o 20 2R
- oy mj—mk—i—%(k—j) ’

with the convention that cm(j) = 0 if m + y; is not a signature.

The first part of the next result is proved in Lemma 3.1 in [12], which together
with the uniqueness of ¢,,(z) implies the second part, and the third part follows from
[22], Lemma 2.6. Denote d,, the dimension of P2(V') and d,,(V}) for the dimension
of P2(17).

Lemma 4.3. The following recurrence formula holds

1
Km 3 =T 12 ?Pm
=l €) = g, =)
and
s (Dm
(4.1) Pl 7y = i

m
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In fact the polynomial ¢m(2), forz = 2z +z1 € V1®V%, is independent of the variables
21 € V% and thus we have

(4.2) 16mllFv) = 6mllFw) =

The dimension dy,(V1) is given by

H m; —mg + §(k —j) Blm; —my, §(k—j—1)+1)

dw(V1) = ¢k — ) B(mj —my, 5(k —j+1))

1<j<k<r

where B is the ordinary Beta-function.
Recall that the notation M was defined in (2.7).

Proposition 4.4. The operator MM* acts on H,(B?) as a diagonal operator under
the decomposition (2.5). Namely, for every signature m,

where

: Sr—j)+m mj—m+51—j—1)+1
44 2 J J
(4.4) m(m ;y %3—1)+m]—1H m; —my + 5(1 = j)

ifm#0=(0,...,0), and 7(0) = 0.

Proof. That MM* is a diagonal operator follows immediately from Schur’s lemma
and (2.9). To find the eigenvalue corresponding to the signature m we note that

(4.5) 7(m) f(w) = (MM* f, K,(2)) = (f, MM*K,(2))

and
MM*K. ZMM* )=szij(z,w)=(z,w)K(z,w)

By the Faraut-Koranyi expansion (2.4) we have

(4.6) (z,w)K(z,w) = Z(V)m(z, W) Km(z, w).

m

Clearly
(z, w) K, Zﬂm Ky (2,w)

for some constants fSm(7;). To find these constants we let w = e. Using Lemma 4.3,
the above formula reads

1 1
7n¢’71 72 Z ﬂm ¢m+7j (Za U))

||¢m||f(v2 ||¢m+'y] ||.7—'(V2
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Comparing this with Lemma 4.2 we find

N e R
(4.7) Pm(d) = - —5— cm(d):
| @l 7y

Continuing with (4.6), we have

<Z,U)>K(Z w Z Zﬂm m+7 )
= Z (Z Bm—; (j)(’/)m—%) Km(2,w).

Substituting this into (4.5) we find that, since f € P™(V) and (v)mKm(z,w) is the

reproducing kernel of the space P2(V),
T(m)f(w) = (f, (-, w) Ku(-))

_ ((L S () enny (j)) (f, W) mEm(- )

V)m j=1

Namely

s) ) = Y- s, )

The coefficient 3y, ,,(m) can be found via (4.7) and Lemma 4.3,

Jj=1

() m_w(mc |
ﬁm—w (.7) - (dr_z) dm(‘/Z) m-—y; (.7)
- dm—r; (V)

= E(r—j)+ mj>cm_7j ()

2 dm(V2)

= (5= 3) +mem o, () [ |

= G —)+m) [[==

I#j

which then implies our result in view of (4.8). O

Proof of Theorem 4.1. We proof that the operator M M* is bounded. This implies
that M and M, are bounded. Since |M M*|| = sup,,7(m) it suffices to estimate the
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numbers 7(m). We claim first that

, =i g =
(4.9) Hmj—ml+%(l—]—1)+1 ) Lo
' - mj—ml-l—ﬁ(l—j) - . '
I#] 2 21 >3

Indeed the left hand side can be written as

H mg—m;+5(j —1+1)—1 H m;—my+ 5l —j—1)+1

my —myj + 5(j — 1) my —my +5(j = 1)

1<i<j j<i<r

where all the factors are nonnegative. If ¢ = 1 each term in the first product is
dominated by 1, and each term in the second product by 2, thus the whole product
by 2"77; if @ > 3 the same is true with the majorant being 2 and respectively 1;
when a = 2 all the terms are 1. This proved our claim. Finally, observe that when
v>g(r—1)

(4.10)

Summing the two inequalities (4.9) and (4.10) we obtain

2+l a=1
T(m) < ¢ 2r a=2.
22" —1) a>3

O

5. RYLL-WOJTASZCYK POLYNOMIALS AND FUNCTION MODULE PROPERTIES OF
THE MULTIPLICATION OPERATORS

In this section we construct polynomials in certain space P™(V') whose Hardy space
norm are bounded from below and which are uniformly bounded; we refer the reader
again to [20], [9] and references therein for the significance of those polynomials in
the study of function theory on the unit ball of C¢.

Proposition 5.1. Let m = (21,2l,...,2l). Consider the identity map J from P® C
C(S) into P=(V) C L?(S). Then

1
1711 > 5 v/me ™

We use now the idea of Rudin (see [20], Appendix IT). Consider the projection Py,
from C(S) onto P™=(V)

Pt () = () [ Kz, (w)dr(w)
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Lemma 5.2. Let m = (21,...,2l). The projection Py from C(S) onto P=(V) (with
the norm in C(S)) satisfies
[Pl < €™,

where b is the Peirce multiplicity (2.1).
Proof. By the K-invariance of the kernel Ky, i.e. Kn(kz, kw) = Km(z,w), it is clear
that the norm of P, is given by
d
I1Pall = D [ (o))

and that this integral is independent of z € S. Take z = e, the maximal tripotent.
By Lemma 3.1 and Theorem 3.4 in [12] we have

(D inEon0,€) = (3 en o Gun(10) = dibino0).

SOM
Thus, recalling (2.3), we obtain
(5.1 Pl = i / (1)l do(w) < i [ [Am(i)]do().
Let now m = (2, . =2l with 1= (I,...,[), then

[ 18m(w)idrte / Arwldotw) = [ Aw) Pdotu) = [Aw)];

The computation of this integral (for any 1) can be performed by using the results of
Faraut-Koranyi [12] and Upmeier [22]. Indeed Corollary 3.5 in [12] gives

NI
A w)llF (D
where || - ||s stands for the norm in L2(S) and || - ||+ the norm in the the Fock space;

the norm ||A;(w)||# of Aj(w) is the same as that of the its restriction on the tube
domain D NV; of D (see Lemma 2.5 and Lemma 2.6 in [22], or [13]), from which we
get

8yl = (2,
Thus ()
Al = st

Furthermore, the dimension d,, for m = 21 is, by _Lemma 2.7 [22],
[ (L +b0+ 50 - 1)
[l 1+ 50 = 1)
Therefore the inequality (5.1) becomes
[ (A +0+ 50 — Da (&), 11[ (G -1 +b+1)

Mo+ 2G - (5, - o=+

which is further dominated by e™. O

dm =

|| Pea| <

Jj=1
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Lemma 5.3. Let {p;,j =1,...,dm} be an orthonormal basis of P2(V') in the space
L?(S). Then we have

dm
Do) =dm, 2€S
j=1

1
Indeed, {p;/(%$)m?,j = 1,...,dm} is an orthonormal basis of P™ in the Fischer
inner product. Hence, for every z € S

3 1) = i = (Dmm(2:2) = (D2 = .

M omll%
We remark that in the case where D = B% Lemma 5.3 is established in Lemma, 1 of

[20], Appendix II.
The next lemma is Lemma 2 of [20], Appendix II.

Lemma 5.4. Let B" be the (Hilbert) open unit ball in C*, and consider on its bound-

e

be the dimension of the space P¥(B™) of homogeneous polynomials of degree k on B".

ary OB" the normalized n — 1 dimensional volume measure do(§). Let N = (

Then the operator
Tf(z)=N [ [f(&){z8"da(6)

projects C(OB™) onto P*(B?) (with th:Bnorm induced from C(0B")), and
17 = T(n+ k(1 + %)

F(1+k)I(n+3)
If T' is any other projection of C(0B™) onto P*(B"), then ||T"|| > ||T|-

Note that when £ = 1, the above norm is

-

which is what we are going to use.

With the above lemmas the proof of Proposition 5.1 can now be carried over by
almost the same method in [20]; we give a sketch here and refer the reader to the
above reference for details.

Proof of Proposition 5.1. We apply Lemma 5.4 with n = dp,. Let {p;(2),7 =1,...n}
be as in Lemma 5.3 and let ®(2) = (p1(2),...,pu(2)). Thus ® maps S into y/n OB™.

Define
®(2)

NZD
Thus ||Q|| = v/n. The restriction of @ to P*(B") C C(0B™) is an isometric mapping
onto P2(D) C L*(S), and thus Q! defines an isometric operator from P2(D) C

Q:C(0B") = C(S), F(z)=vnF(—2), z€S.
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L*(S) onto PL(B%) C C(S), and considered as an operator between the spaces
|Q~!|| = 1. Introduce now the operator

Y = Q' TPyQ : C(B™) & ¢(S) X pm(D) % Pm(D) L PL(B™) c C(9B™).
Clearly Y is a projection and Lemma 5.4 for £ = 1 implies that
SV < |V
On the other hand
VI < 1Q7 - N1 1Pl - QI < €™/l ]

Combining the two inequality proves our result. 0
As an application we get

Corollary 5.5. For every m = 21 = 2(l,...,1), I > 0, there exists polynomials
W, € P2(V) such that

1 —r
Willzegs) <1, Willags) = IWill2 > 5v/me ™.
We will call the {W;}°, RW-polynomials; see again [20].

Proposition 5.6. The closed domain D as the Taylor spectrum of M = (M, ..., M,)
is a k-spectral set of M on H,(D) only if v > .

Proof. Suppose, to get a contradiction, that §(j — 1) < v < g and that D is a
k-spectral set of M. For each m = 21 = 2(I,...,1) let W, be the corresponding

RW-polynomial. Consider the polynomials

Iz =S amiz)

where {¢;} is a sequence such that

(5:3) Yolal=1, Y lalit =
=1 =1
Th
us )
|fn(2)| < Z|Cl| <1, z€eD
=1

by the construction of the RW-polynomials W;. By our assumption
/v (S)Lly < ksup [fn(2)IlIL]]l, = ksup[fn(2)] < &
eD z€D

z
Consider the left hand side. The polynomials W, are pairwise orthogonal, since they
are in different polynomials spaces, thus

FAGHEESY WEK:
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By Stirling’s formula we have

(g)Ql ~ l(i—u)r
(V)1

Thus the left hand side is unbounded, and we obtain a contradiction. O

6. SUBNORMALITY PROPERTIES OF d-TUPLE (My,---, M)

We study now the joint subnormality property of the tuple M. We set

a, . d a .
Vj —P—1—§(J—1) = ;+§(7“—.7)-
Let 0;D be the j-th boundary orbit of D. The topological boundary (in the Euclidean

space V') 0D is a union of G-orbits 0,D, i.e.
J
0D = U_,0;D, where 0;D =G -uj, wu;= Zei.
i=1

Theorem 6.1. The tuple M = (M, ..., M,) is subnormal precisely when v is in the
set

{vi,..,v,} U (p—1,00)

The result can be proved by using the results in [19] and by almost the same
techniques as developed in [7], so we will be very brief. The next result is proved in
[19], Theorem 5.2.6 in the context of unbounded realization of D = G/ K; see also [5].

Theorem 6.2. For each j = 1,...,r there exists a probability measure du; on 0;D
so that H, (D) for v = v; can be identified as a subspace of L*(0; D, du;); the measure
dp; 18 quasi-invariant, that is

v
dpi(92) = | Jy(2)["7 dpj(2), 2 € 9;D.
We prove now Theorem 6.1.

Proof. If v > p—1 then clearly the multiplication by coordinate functions on L{D, dy,)
is a normal extension of M, thus M is subnormal. If v is one of the v; then the result
follows by the Theorem 6.2. Suppose now that M is subnormal on H,(D). Lemma
5.1 in [7] implies that there exists a probability measure do on an orbit of G in D
such that

do(g2) = |Jy(2)[*r dp(2)
for an appropriate semi-invariant measure p on this G-orbit. Precisely, If the orbit is
D, then ¢ must be the measure dyu, = c,h(z,2)""Pdm(z), which is a finite measure

if and only if v > p — 1. If the orbit if one of the 9;D, 7 = 1,...,r, then o is
proportional to the measure y; on 0;D; see [8], Chapter 7, §2.6, Corollary 1, or [23],
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Theorem 5.9. Let F'(z) be as in [7] the proportionality function. If v # v;, then (see
[7]) for any v € 0;D

[Jo(u)[ =1, g€Gy
where G, is the stabilizer of uin G. Takeu = u; = 327_ e;. Let a € V;(e)NA, where A
is the point set of the quadratic map Q(e) : V — V; see [17]. Then g = exp(&,) € G,
see [17], Theorem 9.1.5. However

J,(u) = h(tanh a, tanh a)* h(tanh a, u) 7,

see Proposition 9.8, loc. cit.. Clearly J,(u) is not unimodular for all a € Vi(e) N A,
and is actually unbounded. This finishes the proof. O
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