CONVERGENCE OF STREAMLINE DIFFUSION METHODS FOR
THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM

MOHAMMAD ASADZADEH! AND PIOTR KOWALCZYK?2

ABSTRACT. We prove stability estimates and convergence rates for the stream-
line diffusion and discontinuous Galerkin finite element methods for discretiza-
tion of the multi-dimensional Vlasov—Poisson—Fokker—Planck system. Our
study is an extension of the results derived in [3] and [4]. Qualitative solution
properties such as existence, uniqueness and long time behaviour are based on
asymptotic studies in [10]. This note is the first part of our studies covering
the theoretical aspects and convergence analysis of the proposed methods. In
a complementary part, devoted to the numerical results, we shall show the
desired accuracy, high resolution and robustness of our approach through sim-
ulating some canonical examples.

1. INTRODUCTION

In this paper we study the approximate solution for the deterministic, multi-
dimensional Vlasov—Poisson—Fokker—Planck (VPFP) system using the streamline
diffusion and discontinuous Galerkin finite element methods. We prove stability
estimates and derive optimal convergence rates for the regularized VPFP system.
This extends the results in [3] and [4] for the multi-dimensional Vlasov—Poisson
and the Fokker—Planck equations, respectively.

The VPFP system arising in the kinetic description of a plasma of Coulomb
particles under the influence of a self—consistent internal field and an external force
can be formulated as follows. Given the initial distribution of particles fo(z,v) > 0,
in the phase-space variable (z,v) € RIxR¢, d = 1,2, 3, and the physical parameters
B > 0 and o > 0, find the distribution function f(z,v,t) for ¢ > 0, satisfying the
nonlinear system of evolution equations

(Oif +v- Vo f +divy[(E = Bv)f] = 0A, f, in R2? x (0, 00),
f(x,v,0) = fo(z,v), for (z,v) € R*,
0 T
1.1 _ d
(1.1) % E(z,t) = NEAEE *g p(z,1), for (z,t) € R* x (0, 00),
plz,t) = f(z,v,t)do, E =0E, and 6 = +1,
\ R4

where z € R? is the position, v € R? is the velocity, and t > 0 is the time,
V. = (0/011,0/0x2,- -+ ,0/0x4), Vy = (0/0v1,0/0va, -+ ,0/0vq), and - is the
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inner product in R?. The diffusion parameters 8 and ¢ are the viscosity and the
thermal diffusivity coefficients, respectively, which are related by o = BkT/m,
with x being the Boltzmann’s constant, 7" the temperature of the surrounding
medium and m the mass of a particle, (the physical parameter o is very small).
|S|¢71 ~ 1/wyq is the surface area of the unit disc in R?. Finally p(z, t) is the spatial
density and %, denotes the convolution in . E and p can be interpreted as the
electrical field, and charge, respectively.
The macroscopic force field E can also be assumed to be of the form

(1.2) E(z,1) = =V, (4(2) + 6(2,1)),

with 9(z) > 0 being an external potential force, and ¢(x,t) the internal potential
field.

For a gradient field, when E is divergence free and with no viscosity; i.e., for
B =0, the first equation in (1.1), would become

(13) 6tf+v-sz+E-va=0Avf7

which, with the rest of equations in (1.1), gives rise to the Vlasov—Fokker—Planck
system. If in addition ¢ = 0, then we obtain the classical Vlasov—Poisson equation
corresponding to a zero external force, i.e., ¥(x) = 0, and with an internal potential
field ¢(x,t) satisfying the Poisson equation

(1.4) Apd(x,t) = —0/ f(z,v,t)dv = —0p(x, 1),
R4

with the asymptotic boundary condition

L o(z,t) — 0, for d> 2, as |z| — oo,

(15) #(z,t) = O(log |z]),  for d=2, as |z — oo.
We shall concentrate on the following (modified) version of the VPFP equation
(1.6) Of +v-Vof =Vad-Vof =V - (Bvf +0Vif),
where ¢ is assumed to be the exact solution for the Poisson equation (1.4) given by
(L.7) ¢z, t) =0 | Gz —y)f(y,v',t)dyd’,

R2d

with G being the Green’s function associated with the fundamental solution of the
Laplace’s operator —A,,, viz;
_Wd
(1.8) G(z) =} |72’
wo log |z], for d=2,

for d> 2,

where 1/wg, as above, is the area of the unit sphere in R?. (The case d = 1, is given
as in the original system (1.1).)

Depending on the sign of the parameter 8 the VPFP system describes two dif-
ferent physical situations. For § = 1, the system models a gas of charged particles
with an external potential 1, interacting through a mean electrostatic field —V ¢
generated by their spatial density p. The case § = —1 corresponds to a VPFP
system modelling particles under the effect of the gravitational potential 1.

In the stochastic approach the solution f for the VPFP system is interpreted
as a probability density function for the stochastic process (X (t),V(t)) € R? x R?
satisfying the Lagevin equations given by
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dX d
19 B=v, D= B -V + VR, w() = dW(),
where W (t) is a d-dimensional Wiener process, (see [20] for the details), and
(1.10) f(z,v,t)dzdv = fo(z,v)dzdv.
R2d R2d

The mathematical study of the VPFP system has been considered by several
authors in various settings. The deterministic approach is based on controlling
the behaviour of the trajectories, i.e., the solutions of the ordinary differential
equations underlying the Vlasov—Poisson equation, (see, e.g., [34], [18], and [14]),
whereas the stochastic approach is based on the diffusion, stochastic differential
equations studied, e.g., in [26], [28], and [30]. Here are some literature concerning
the properties of the analytic solution for the VPFP system: Asymptotic behaviour,
parabolic limit and stability properties have been carried out in, e.g., [8], [29], and
the references therein. Existence of local in time, classical, smooth solution is given
in, e.g., [33], and sufficient condition for the global existence of classical solution
in three-dimensions can be found in [31]. Existence and uniqueness of smooth
global in time solution for large class of initial data are given in [9] and [10] , where
the recent paper treats also regularity of the weak solution. Existence of global
measure solutions in the one—dimensional case, which uses relationship between
VPFP and the two—dimensional Euler equation with vortex sheet as initial data, is
studied in [35]. Large time behaviour and steady state are considered in [15]. In a
recent work [20], the time—discrete variational formulations are studied by certain
Kantorovich type functionals. Propagation of moments, in the Vlasov-Poisson
context, is studied in [25].

Finally some basic application aspects can be found in [6] for the diffusive asymp-
totic limit of the neutron transport equation, in [7] for the study of the radiative
transfer model problem, and in [17] where a compactness argument is used to study
a semiconductor model.

Compared to the analytical studies the numerical analysis of the VPFP system,
both in theory and implementations, is much less developed. In this setting the
Monte-Carlo simulations are explained in transport/diffusion context in [24]. In the
deterministic approaches the dominant part of numerical studies are using method
of characteristics, (similar to the analytic studies of the deterministic problem),
and are mostly the well known particle methods developed for the Vlasov—Poisson
equation in, e.g., [27], [16], and [13].

In this paper we focus on the deterministic approach and study the stability and
convergence of some finite element methods constructed for the problems of fluid
dynamics: incompressible Euler and Navier—Stokes equations, as well as conserva-
tions laws and convection—diffusion equations see, e.g., [23], [32], [22], [12], [11], and
[19]. More precisely this paper extends the results of the first author [3], and [4] in
Vlasov—Poisson and Fokker—Planck equations to the VPFP system.

We have considered the h—version of the streamline diffusion and discontinuous
Galerkin finite element methods for the VPFP system using piecewise polynomials
of degree k, in discretizing the phase-space-time domain Q7 := Q, x Q, x [0,T7,
where Q, C R?, d = 1,2,3 is a bounded simply connected spatial domain and the
support of fo C €, C R, Assuming a continuous Poisson solver, and sufficient
regularity of the exact solution, (f € H*¥t1(Q), the Sobolev space of L, integrable
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functions having all their partial derivatives of order k+1 in Lo, see [1]), we develop
stability estimates to guarantee the conservation of qualitative regularity features
of the solution and prove sharp error estimates of order O(h*+1/2).

An outline of this paper is as follows. In Section 2 we briefly review the existence,
uniqueness and stability of the solution for the continuous VPFP system (1.1).
Section 3 is devoted to the study of stability estimates and proof of the convergence
rates for the streamline diffusion approximation of the VPFP system and Section
4 is the discontinuous Galerkin counterpart of Section 3.

2. THE CONTINUOUS PROBLEM

In this section we summerize some analytic properties such as existence, unique-
ness and stability for the solution of the continuous problem. Both local and global
in time as well as strong and weak solutions are quoted from the relevant literature.
The regularity assumptions on the initial data would guarantee the conservation of
mass, momentum and energy. We also present a continuous version of the VPFP
system which we have discretized in Sections 3 and 4. For further discussions on
these properties as well as entropy relations we refer the reader to [29] and the
references therein.

Because of the structural connections we start with the Vlasov—Fokker—Planck
(VFP) system and relate the solution properties for the linear Fokker—Planck, linear
transport, VFP, Vlasov—Poisson and VPFP system. To this end we present the VFP
system

6tf+11 vzf"—EV’Uf _UAUf = 07 f(m,v,O) = fo(.Z’,U),
(2.1)

X
E(.’L‘,t) = Cd/ %p(yat) dy: p(SL',t) = f(SL','U,t) dv.
ra |2 — | R4

We let o tend to zero in (2.1) and obtain formally the classical Vlasov—Poisson
equations

atf+vvwf+EV’Uf:03 f(QJ,U,O) :fo(l','l}),

(22) Emﬂ:@/
R

m_
|$_yy|dp(y’t)dya p(a:,t) = f(-'lT,U,t) dv.

d R4

In the sequel we denote by || ||, the usual norm in the Sobolev space W™ ()
with Q C R? (see [1]), and by || - ||, 1 < p < oo, the L, norm. D™u will denote
the m-th total derivative of u with respect to (z,v).

Problems (2.1) and (2.2) are studied by, e.g., Arsen’ev [2] and Degond [14]. We
summarize the solution properties obtained in [14] in the following two propositions:

Proposition 2.1 (existence, uniqueness and regularity). Assume that fo > 0,
23) foe W™ @), @ +P)(Ifol ++ D™ fol) € LED), 7>,

with m > 1. Then the VFP system (2.1) admits a positive, unique classical solution
in a time interval [0,T) with T = oo for d = 1,2 (global in time solution), and
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finite T =T(fo), if d =3 (local in time solution) satisfying
fe (o), wri@®h),  Eerg, (o1, wre®)),
(L+ o) 2 (£ + -+ D™ £)) € L. ([0,T), L= (),
V(D™ ) € Lo ([0,T), L*(®2)).

Here m = 1 would suffices for existence and uniqueness.

Now let us denote the solution of the Vlasov—Poisson equation (2.2) by (f, E)
and that of the VFP system (2.1) by (f?, E“), then we have for sufficiently regular
initial data fy, that (f7, E?) converges to (f, E) as 0 — 0. More specifically:

Proposition 2.2. Assume that the initial data fo is nonnegative and satisfies
(2.3), with m =2, i.e.,

(24) foe W@, (1+ Py (fol + Dol + 1D fol) € L2(®), 7> d.

Then for any finite time interval [0,T'] (T' < T for d = 3), the solution (f°,E?)
of the VFP system converges to the solution (f,E) of the Vlasov—Poisson equation
in the following sense

25) max (17 = Dlly + 11+ 227 = Pllow + (B = B)lc) = O(0).

[0,77]

The proofs for these results are based on a standard iterative approximation
scheme constructed to solve the following linear Fokker—Planck equation: given the

electric field E"(z,t) € Lgf;,c([o, ), Wl’w(]Rﬁ)), find fm+! satisfying

f"+1($,U,O) = fo(.’L’,'U),

and then compute the charge density p"t! and electrical field E™*! according to

p" i (z, 1) =/ [0, t)dv,  E"(z,t) = Cd/ m_ydp"“(y,t) dy.
Rd Rd |x - Z/|

Now proposition 2.3 below guarantees the existence of a unique solution f**+! to
the equation (2.6) satisfying the stability estimates:

@7 20, 1" @l < @I < Mol 15 Olle < Ml folloo-

Note that for o = 0, equation (2.6) becomes the classical linear transport equa-
tion, which can be solved, e.g., by means of characteristics, and the stability prop-
erties (2.7) are evident.

To continue we return to the linear Fokker—Planck equation:

(28) ft+v-V$f+F-va—aAvf =g, f(.'l»',’U,O) = fo(l’,'U),

where
d

F(z,v,t) = (Fi(w,v,t)) ,

i=1
is a given vector field and fo(z,v) and g(z,v,t) are given functions. Existence,
uniqueness, stability and regularity properties of the solution for the equation (2.8)
are based on one—dimensional classical results by Baquendi and Grisvard [5] for the
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degenerate type equations. To invoke these results, recalling the definition of the
inverse norm H~1; (see [1]), we assume that

(2.9) fo€ La(®%),  geL([0,T] x R, HT'(RY)),

(2.10) FelLo(0,T)xR), ¥, F e Lo([0,T] x ),
and define the function space

F={fe (0T xR, H'®D)| fi+v-Vof € L(10,T) x R, H 1 (®D) }.
Proposition 2.3. (eristence and uniqueness) Assume that the conditions (2.9)
and (2.10) are fulfilled, then the equation (2.8) has a unique solution in the class
F. Further if f is any weak solution of (2.8), belonging to Lo ([O,T] X R2d), then
f also belongs to F and coincides with the unique classical solution above.
Proposition 2.4. (L., mazimum principle, and Ly stabilities) Assume that (2.9)

and (2.10) are fulfilled. Then, for the nonnegative data fo and g, the solution f of
the equation (2.8) provided by proposition 2.3 above is nonnegative and satisfies

(2.11) fo € Loo(R2) and g € Ll([O,T],LOO(de)) — fé€ L ([o,T] x RZd),

and

(2.12) 1 Ollso < I folloo + / 19(5)]loo ds.

Further, if in addition to (2.9) and (2.10), F is divergent free; i.e., V, - F = 0,
then the solution f of the equation (2.8) satisfies

(2.13) fo € Li(R%) and g€ L1<[0,T] x R2d) = fe Loo<[0,T],L1(1R2d))

and

(2.14) IF @1l < ll ol +/0 llg(s)ll1 ds.

So far we have developed the following;:

(i) The solution to VFP system (2.1) converges to that of Vlasov—Poisson equa-
tion (2.2) as ¢ — 0.

(ii) The problem of solving VFP system (2.1) is reduced to, iteratively, solving the
approximate linear Fokker—Planck equation (2.6), with an initially given field E™.
The corresponding continuous linear Fokker—Planck equation (2.8) has a unique
solution satisfying the stability estimates given in proposition 2.4.

(iii) The Fokker—Planck equation (2.8) converges to the linear transport equation
as o — 0.

The basic difference between the VFP (2.1) and VPFP system (1.1) is on the
difference in the definition of the vector field E, in the two system. Finally we quote
an existence and uniqueness result for the VPFP system (1.1) given by Bouchut
for the three-dimensional problem [9):

Proposition 2.5. For d =3, if fo > 0 satisfies the energy estimates

(2.15) fo € LiN Loo(RS),  3Im > 6 with // [v]™ fo(z,v) dzdv < oo,
RS
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then there exists a unique solution (f, E) to the system (1.1) satisfying
(2.16)  fe C([O,oo),Ll(R6)), sup [|E(t, )l < 00, VT > 0.
0<t<T

We point out that the Fokker—-Planck term, containing a diffusive part, has
smoothing effects on the solution of the system (1.1), see Bouchut [10], which
for instance can not be maintained for the Vlasov—Poisson equation lacking this
diffusive part. In other words: to show that the macroscopic density p(z,t) and the
force field E(z,t) are smooth functions of z, the particular structure in the Fokker—
Planck operator v -V, f — Bdiv,(vf) — oA, f, would play a central role. That is to
say that the Fokker—Planck operator, although degenerate, provides a smoothing
effect related to its hypoellipticity in the sense that it acts as a convolution operator
on the macroscopic quantities, thus it averages in v.

The VPFP system describing a variety of physical situations is subject to certain
modifications depending on the considered problem setting. The transport part,
Ouf + v - Vyf, is associated with various field functions E in the Vlasov term
div,[(E — Bv)f]; where for a given field E we obtain the linear VFP problem,
whereas the convolution in (1.1) would relate E to the spatial density p and lead
to the nonlinear VFP equation. In this context the system (1.1) is qualified to
be referred as the Vlasov-Poisson—Fokker—Planck system only if the function E
is replaced by relations of the form (1.2) and (1.4) corresponding to the Poisson
equation. The Fokker—Planck term on the right hand side can also been chosen in
different ways as well: e.g., with a Maxwellian type initial data fy, a Fokker—Planck
term of the form

2 ¢ 2 ¢
L(f) =V, (e_lv‘ /Zvv(elv‘ /2))7

is more suitable (see, e.g., [29]).

In our studies we assume that (z,v) €  := Q, xQ,, where Q, C R? is a bounded
simply connected spatial domain and 2, := R? and let Q7 := Q, x Q, x (0,T]. We
also assume that the initial data

(2.17) fo is compactly supported in Q, = R?.

With these assumptions we consider the VPFP problem of finding (f, ¢) satisfying
a VFP system of the form

Of+v-Vof =Vod-Vif =VN(Buf +0oVif), in Qr,
(218) f(.TL’,U,O) = fO("E:U): in QJ
f(z,v,t) =0, for (z,v,t) €T, x R? x (0,7,
associated with the Poisson equation
(219 -Adlet) = [ feudd, (@0 R x0T)= 0,
R4

where V¢ is uniformly bounded and

Ve — 0, as |z| = oo,
(2.20) _ d
Iy ={z €0, :n(z) -v <0}, for v € R?,
where n(z) is the outward unit normal to 99, at the point z € 9,. We assume
that fo satisfies (2.17) and all the conditions on propositions 2.1-2.5 are fulfilled.
Then as a consequence of our review of the theoretical approaches we have that the
system of equations (2.18)—(2.20) admits a sufficiently regular unique solution.
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We conclude this section by introducing the notation

_ _(9f of of  of _
Vf E (szavvf)_ (62317“.76(11',1761}1,“-761}(1)7 d_172737
G(f) = (Ua_VZ¢) = (Ula"'avda_%r"a_aa—i) = (G17"'7G2d)7

leading to the following useful observation:

d 2d
oG, oG,
(2.21) divG(f) = § L+ § L =0, d=1,2,3.
= Ori L Oviea

3. THE STREAMLINE DIFFUSION METHOD

The streamline diffusion (SD) method is a finite element method constructed for
convection dominated convection—diffusion problems which (i) is higher order ac-
curate and (il) has good stability properties. The (SD) method was introduced by
Hughes and Brooks [21] for the stationary problems. The mathematical analysis for
this method in two settings (streamline diffusion and discontinuous Galerkin) are
developed for ,e.g., two—dimensional incompressible Euler and Navier—Stokes equa-
tions by Johnson and Saranen [23], for multi-dimensional Vlasov—Poisson equation
by Asadzadeh [3], for hyperbolic conservations laws by Szepessy [32], and Jaffre’,
Johnson and Szepessy [22], for the two—dimensional Fermi and Fokker—Planck by
Asadzadeh in [4], for advection—diffusion problems by Brezzi, et al in [11], and [12],
and also recently, in adaptive setting, by Houston and Siili [19].

We start by introducing a finite element structure on Q, x €,. Let T} = {7}
and T? = {7, } denote finite element subdivisions of 2, and 2, = R?, with elements
7, and 7,, respectively. Then T}, = T¢ x T} = {7, X 7} = {7} will be a subdivision
of = Q, xQ, with elements 1 =7, x7,. Wealsolet 0 =tg <t; <---<tyy =T
be a partition of the time interval I = [0, 7] into subintervals I, = (ty, tmt1), m =
0,1,..., M —1. Moreover let Cp, be the corresponding subdivision of Q1 = Q2 x[0,T]
into elements K := 7 X I, with the mesh parameter h = diam K and P;(K) =
Py (7z) X Py(7y) X Pi(I,) the set of polynomials in z, v and t of degree at most
k on K. Furthermore for piecewise polynomials w; defined on the triangulation
C'y, = {K} with C'p, C Cp, and for D; being some differential operators, we use the
notation

(D1w17D2w2)Q’ = Z (Dlwl,DQUJQ)K, QI: U I{7
KeC'y KeC'y

where (-,-)g is the usual Lo(Q) scalar product and || - || is the corresponding
Ly(Q)—morm. To derive our stability and convergence estimates we shall need to
assume that the exact solution is in the Lq(Q)-based Sobolev space H*(()) with
the norm || - ||5,¢, where s is a positive integer.

We shall also need the following assumptions:

1. o is O(h) (or o = C,h for small constant C,) and § is O(1), where 0 < h <« 1
is a finite element mesh parameter introduced above.

2. Despite the diffusive nature of the right-hand side of (2.18), since fo has
compact support in €, = R? we have, for sufficiently large v, that f(z,v,t) =
0. Thus the analysis can be carried out on a bounded domain Q? with all
SD-test functions vanishing on Q.
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In this section we study the SD-method for the VPFP system given by (2.18)—
(2.20), with the trial functions being continuous in the z and v variables. We shall
use the following notation: for £ =0,1,..., let

l@:{geﬁyghefﬂﬂxfﬂhm VK:TaneQ}

be the finite element space where
M-1
Ho =[] Hi(Sm)s Sm=QxIn, m=0,1,....,M—1.
m=0

and
H(}:{gGH1 :gEOon@Qﬁ}.
Further, for convenience, we write

(£ 9m=95m>  Ngllm = (9,93,
and
< fr9>m= (FCsotm)s (9C, - tm))as  |9lm =< 9,9 >3 -
Also we present the jump
[9] = 9+ — 9-,
where

g+ = lim g(z,v,t+ s), for (z,v) € ntQ, x Q" tel,
s—0+

g+ = lim g(z +sv,v,t+35), for (z,v) € I, x O, tel,
s—0+

and the boundary integrals

< fr 94 >r-= /r— frg4 (G"-n)dv, <[+ 9+ >r,—n=/ < f+,9+ >r- dv,

L
and
< f+:9+ >r; = / < f+,9+ >r- dv,
I
with G" := G(f") defined above (see also (3.1)) and
r—:{mﬂoerzamwxnm:awn<o}

where n = (n,,n,) with n, and n, being outward unit normals to 9, and 9Q",
respectively. Finally in the sequel  := Q, x Q" and C denotes the general constant
independent of the involved parameters on estimations, unless otherwise it is clear

from the context or explicitly specified.

Now we are ready to study the stability of the SD-scheme, viz:
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3.1. Stability. The discrete variational formulation for problem (2.18) reads as
follows:

find f* € V3, such that form =0,1,... ,M — 1 and for all g € V,

(fl+ GUMV I = V(Bufh), g+ h(ge + G(f")VY)), +0(Vuf", Vug)  +

3.1
1) —ho (A f", 9: + G(F")Vg), + (f1,94),, = (Fr94) 0= = (F2h 940,

We use the discrete version of (2.21):
(3.2) div G(f") =

and, for a given appropriate function f, define the trilinear form B by

B(G(f); f.9) =(fe + G())Vf.9+ h(ge + G(f")Vg)) o, +

+ o(V £:¥09) o, —ho(Auf g0+ G(f")Vg) g, +
—1

+ Z ([f]s94)m + {f+:94)0 — <f+;g+)r1—
m=1

and the bilinear form K by
K(f,9) = (V(Bvf), g+ h(ge + G(f")V9)) o,

Note that both B and K depend implicitly on f* (hence also on h) through the
term G(f"). Moreover we define the linear form L as

L(g) = (fo,91)o-

Using this notation we can formulate the problem (3.1) in the following concise
form:

find f* € Vi, such that
(3-3) B(G(f"); f*,9) — K(f",9) = L(g) Vg € Vi

We shall derive our stability and convergence estimates for (3.3) in a triple norm
defined by

M-1
201|Vegllpy, + l9lis + 1915 + D 19I5, + 2hllge + G(FM) VI, +

m=1
+/ ¢*|G"-n|dvds|.
o0 x1I

llgll* =

DN | =

Lemma 3.1. We have that

1
VgeHo  B(G(f");9:.9) > 5llgll*-
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Proof. Using the definition of B we have the identity
M-1
B(G(fh)agag) :(gtag)QT + Z ([g]ag-i-)m + <g+ag+)0 +
m=1

(3.4) +(GU") - Ve,9) o, = (9+:94)p- +
- hU(Avgagt + G(fh)Vg)QT +

+0(Vuglle, + hllge + G(F")Vylla,-
Integration by parts gives that

N | =

M—-1 M-—1
33 (000)g, + X (oharhu+ eodo =3 loie +1ok+ X o]

Using Green’s formula and (3.2) we have also

(G(") V9, 9)o—(94>94)r- =
17 )
(3.6) :5/399 (Gh.n)d,,_/_g (G"-n) dv
1 2
= 5/(999 |Gh-n|dy.

By the inverse inequality and assumption on o we get
1
ho|(Avg, 90 + G(F)V9) g, | < 5 (olIVugllEy + hllg: + G() Valla,)

1
< =lgll*.
< 2lgl
Now the proof follows from (3.4)—(3.7). O

(3.7)

Lemma 3.2. For any constant C; > 0 we have for any g € Ho,

M
1
l9lir < | 5-llge + G(F")Vallgr + 3 lo-lm + / g2|G”-n|dvds] he'".
1 8axI

m=1

The proof is the same as that of Lemma 3.2 in [3].

3.2. Error estimates. Let f* € V}, be an interpolant of f with the interpolation
error denoted by n = f — f* and set ¢ = f* — f", so we have

e=f—-ft=n-¢
The objective in the error estimates is to dominate |||£]|| by the known interpo-
lation estimates for |||n|||. Our main result in this section is as follows:

Theorem 3.1. Assume that f* € Vi, and f € H**Y(Qr), with k > 1, are the
solutions of (3.3) and (2.18), respectively, such that

(3.8) IV flloo + [1G(H)lleo + [[Vn]leo < C-
Then there exists a constant C' such that

£ = £l < CRE 2 1 fllkr,Q0-
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In the proof of Theorem 3.1 we shall use the following two results estimating the
forms B and K.

Lemma 3.3. Under the assumptions of Theorem 3.1 and with f*, ¢ and n defined
as above we have that

|B(G(f); £,£)—B(G(f"); f*,€)| <

1 _
< LllelP +c[ [ wpletnldvds+ 1ol +
oaxI

+ Z 0[5 + hllmellor + 1Valler)?| +

m=1

+CllEllar + IInlle)liEller + Chlléllr + lnllor)*-

Proof. Using the definition of n we may write
B(G(1); £,€) = B(G(f"); *,€) =

= B(G(f");n,€) + B(G(f); £,€) = B(G(f"); 1,€)
= T1 + T2 — T3.

Now we estimate the terms T and T» — T3, separately. For the term T} we use the
inverse inequality and assumption on ¢ to obtain

_ g
(3.9) a|(Vn, Vo€) o, | < ollVenllor Veéllor < Ch7HInllg, + §||Vv§||22T
and
hU| (Avna £t + G(fh)VE)QT| < hU”Avn”QT”ft + G(fh)v€”QT <

- h
< Clinllgr 1€ + G(f") Véller < ChInll, + gllée + G(f")VEllg,-

Then integrating by parts, using (3.2), a similar argument as in the proof of Lemma
3.1 and the fact that QF is bounded with zero boundary condition we get

(3.10)

(me + G(F")Vn, &+ h(& + G(FM)VE) , + Z 1,)

+ 45,84)0 — (s € )pr =
M-1

~(n.& +G(f")VE)g, +

m=1
+/ n€|G" - n|dvds + h(n; + G(f")Vn, & + G(f")VE)
o xI

which together with (3.9) and (3.10) gives

1 _
il < gl + | [ opiGhnldvds+ 0ol +
oQxI
(3.11) o
+ ) In- 2, + hllne + GV, |-

m=1
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To bound the last term on the right hand side of (3.11) we use some basic properties
of the solution of the Poisson equation together with the definition of G (see [3] for
more detailed description) and derive the estimate

1G(F") = G(Pller < CIf = Fllor < ClEllr + lInller)s
which gives
I + G(£")Villar < lInellor + IG(HllolVallar +
+ ClIValleo ([I€ll@r + lInllor)-

To estimate the term T — T3, we follow a similar argument as in [3] and get
IT> = T3] < C([[Ellor + lInller) IV Fllolléllor +

1
+ Ch(ligller + lInllor)* IV F1I% + ghll& + G(f*) VElIG, -

Now combining the estimates (3.11)—(3.13), using assumptions of Theorem 3.1 and
hiding the term %h”ft + G(fh)V§||2QT in the triple norm the proof is complete. [

(3.12)

(3.13)

Lemma 3.4. Under the assumptions of Theorem 3.1 we have

K (.€) = K (£,€)] < GNEI® + ClEl, +Ch Il

Proof. Using the definition of £ and 7, we have the identity
K(fhaé-) _K(fag) = K(§7€) _K(nag) = Kl _K2'

Below we bound the terms K; and K, separately. For the first term using the
vanishing boundary condition on Q" we have

K| = | (Vu(B0E), € + hl& + G(/")VE)) . | =
= |(d + VW&, € + h(& + G(FMVE) g, | =

(3.14) = B3 1€l13, + Bdh(E.& + G(VE), +
+ Bh(vV€, & + G(F")VE) o, | <
< BN, + CBMIE + GUMVEIR, + Cbhllvutly,

The term K> is estimated using the integration by parts, inverse inequality and
boundedness of 0", according to

K| = | (Vo (Bun), € + h(& + G(F")VE)) o, | =
= B(Vo(vn), &), + h(Vo(n), & + G(f")VE), | <
< B|(vm, Vi) o, | + BRIV @)Dy + 116 + G(FM)VEIR,) <
< B2 lonllgr) (b2 | Vatllr) +
+ Coh 7 Il + Rl + GUMVElR,) <
< BIVENR, + Coh™ Inll3, + hll& + G(FM)VEIR,)-

Combining (3.14) and (3.15), recalling the assumption on 3 and hiding the terms of
the form Ch||¢; + G(f")VE[[, and Ch||V,£[[3), in [[€]]]* the proof is complete. [

(3.15)

Now using Lemmas 3.3 and 3.4 the proof of Theorem 3.1 is straightforward.
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Proof of Theorem 3.1. The exact solution f satisfies
B(G(f); f.9) —K(f.9) =L(9) Vg€ Va,

so that by Lemma 3.1 and some algebraic labour we get

Sl < B(G(™; £~ 7.6) =

(3.16) = L&) + K(f",€) - B(G(f"); f",€) =
= B(G(f); 1,€) = B(G(f"); /", &) + K(f",€) — K(£,€)
:= AB + AK.

Now we use Lemmas 3.3 and 3.4 to bound the terms AB and AK, respectively.
Further estimating [|[|7,, and [|n||?), by Lemma 3.2 with sufficiently large C;, and
also using (3.16) we obtain

mawfchéQInﬂahnhwds+h-wm@T+
X

M M
+§:m4;+hmeT+§jm4;4-
m=1 m=1

Finally, by a Gronwalls type estimate, proceeding as in [3] the proof is complete. O

(3.17)

4. THE DISCONTINUOUS (GALERKIN METHOD

4.1. Stability. In this section we use trial functions which are polynomials of
degree k > 1 on each element K of the triangulation and may be discontinuous
across inter—element boundaries in time, space and velocity variables.

To define a finite element method based on discontinuous trial functions we
introduce the following notation: if ¢ = ((1,¢2,...,C24), d = 1,2,3, is a given
smooth vector field on © we define for K € Cj the inflow (outflow) boundary with
respect to ¢ as

(41) OK_((Q) = {(5,v,8) € K : my(w,0,8) +n(2,0,8) - {(3,0,8) < 0(> 0) },

where (n,n;) := (ng,n,,n;) denotes the outward unit normal to 0K C Qr. Fur-
ther, for £ > 0 we define the function spaces

Wy = {g S LQ(QT) :g|K S Pk(K) VK € Ch},
Wi = {w € [L2(Q7)]* : w|k € [Pr(K)]? VK €Ch},
where d = 1,2, 3 is the dimension of the velocity domain.
To derive a variational formulation, for the diffusive part of (1.1), based on

discontinuous trial functions we introduce the operator R: W), — W;‘f defined in
[11], and [12]. More precisely, given g € W}, we define R by the following relation

(R(9), W), =— Z/ > [lolne-(w)dv  Vwe WY,
12 XTI T XIm ocg, Ve

where we denote by &, the set of all interior edges of the triangulation T} of the
discrete velocity domain Q. Moreover for an appropriately chosen function y, we
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define

where x°*! denotes the value of x in the element 7¢** having e € &, as the common
edge with 7,. Hence, roughly speaking, [x] corresponds to the jump and (x)° is
the average value of x in the velocity variable.

Next for e € £, we define the operator r.: Wy — Wz to be the restriction of R
to the elements sharing the edge e € &,, i.e.,

(re(9),w)p, =— Y. /xI /[[g]]nv Vdv, VYwe WL

Te X1Im

One can easily verify that

(4.2) > re=R onm,

eCOT,NEY

for any element T, of the triangulation of Q. As a consequence of this we have the
following estimate

(4.3) IR@)IE <v D lre(a)ll,

eCOT,NEY

where 7, corresponds to the element K and v > 0 is a constant depending on d.
Now, since the support of each 7, is the union of elements sharing the edge e,
we can evidently deduce

(4.4) Yolre@lip, =D > @)l

e€Ey KeCy eCOTyNEy

Using these notations we are now ready to formulate the variational formulation
for the discontinuous Galerkin approximation of (2.18) as:

find f* € W}, such that for m =0,1,... ,M — 1 and for all g € W},

(ff +GUMV " = Vu(Buf™), 9+ h(ge + G(f)V9)) o, +

+ z / fMosng + G n|dv + o (V, f", V, )QT +
(4.5) KeCy
+ U(va ,R(g))QT + J(R(fh):vvg)QT + Ao Z (Te(fh);Te(g))QT +
ec&y

- ha(Avfhagt + G(fh)Vg)QT = 07

where [u] = uy —u_, with uy = lim,_,o1 u((z,v) + G(f*)s,t+s), A > 0is a given
constant, f(x,v,0) = fo(x,v), and in OK_(G); G := G(f").
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To proceed we define the discontinuous Galerkin trilinear form Bpg by

Bpa (G(F); £,9) =(fr + G(F)V .9+ hlg + G(f")V9)) o, +
G"-n|d
+ th /8 oy o Ine+ Gt omldv &
+{fe,94)0 —ho(Auf, 9: + G(f")Vg) o, +

T

+ U(va, va)QT + Ao Z ("'e(f)a Te(g))QT +
ecéy

+a(Vf, R(g))QT +o(R(f), V“g)QT

and the bilinear form K as in the streamline diffusion method, i.e.,

Note that again both Bpg and K depend implicitly on f” (hence also on h) through
the term G(f"). Moreover we define the linear form L as before

L(g) = (fo, 9+)o-
Now we can formulate the problem (4.5) in the following concise form:
find f* € Wy, such that
(4.6) Bpe(G(f"); f*.9) = K(f",9) =L(g) Vg€ Wh.
We shall refer to (4.5) or (4.6) as the DG-scheme.

We derive our stability estimate and prove convergence rates for the DG-scheme
(4.6) in the triple

. 1 .
llgll* = 3 [20||vvg||2QT +20 Y [Ire(9) 5, + 2hllg:e + G(F")Valla, + lgla +
e€e&,

+lglo + Z / [g]2|nt+Gh'1’l|dV+/ gz|Gh-n|dl/ds ,
Kec, Y OK-(G) 80y xI

where 0K_(GQ)' = 0K_(G) \ Q x {0}.
Lemma 4.1. There exists a constant a > 0 independent of h such that

Vg € W, Bpa(G(f"); g,9) > allgl|*.
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Proof. Using the definition of Bpg and (4.4) we have that

Bpa(G(/"):0,9) =lof3 + 3 [gt, (G(/")Vg,9)  +

KeCp

+ / Tolgs Ime +G"nldv +
8K _(G)
T llg + GUMVallk — ho (Aug, g + G(FM)Vg) o +

+olVglii +20(%o0, B9)  + A0 3 ||re<g)||%(]

eCOT,NEy
9
i=1
Now we estimate the terms T1,...,Ty, separately. Integrating by parts we get
1 .
T+ Tt Ta+ T = 3 [l + 1o +
(4.7) 2 h 2(~h
+Z/ [g] |nt+G-n|dV+/ g|G-n|dV].
KeCh, 3Q+ xT
Using (4.2) and (4.3) we deduce for some € > 0, that
Ty +Tg +To >
>0y [ 1= o)IVugll% — —IIR(g)II%ﬂL/\ > IITe(g)II%(] >
(4'8) KeCp eCOT,NEy
>0 3 [a-alNalie+ (-0 T Il
KeCy eCOTyNE,

As for the term Tg we use an estimate similar to (3.7) to obtain
(4.9) ho|(Avg, g + G(f")Vg) o, | < dllgll,

where 0 < § < 1 — ¢, and all the constants depending on o; (C,), as well as o itself
are assumed to be sufficiently small. Finally combining (4.7)—(4.9), including the
term T, and taking a = min(1 —¢ —d, A — 1), (which is positive for ¥ <& < 1 and
0 < < 1—¢), the proof is complete. O

Lemma 4.2. For any constant C1 > 0 we have for g € W,

||g||22Ts[ ||gt+G<fh>Vg||QT+Z\g 2+

+Z/

]2|Gh-n| du+/ gz|Gh-n|duds heCh,
Kec, /9K-(G)"

8Q+ xI

where

0K (@)" ={(z,v,t) € 0K (G)" : ny(z,v,t) = 0}.

The proof is similar to that of Lemma 4.2 in [3], and therefore is omitted.
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4.2. Error estimates. We use the same notation as in the SD—method with fh €
HY(Qr) denoting the interpolant of the exact solution f.
The main result of this section is the following error estimate:

Theorem 4.1. Assume f* € Wy, and f € H*1(Qr) N WL (Q7), with k > 1,
are the solutions of (4.6) and (2.18), respectively, such that
(4.10) IV fllee + 1G()lloo + [IVAlJeo < C.

Then there exists a constant C' such that

I = £l < Ch¥+s.

To prove this convergence rate we shall need the following results:

Lemma 4.3. Let u € L?(Q, x I, H'(Q,)) with Ayu € L*(Q1), and let w € Wy,

Then
Kec, /meI /arv / Z /[[w]]nv (Vyu)°

Im ec&y

Proof. The regularity of u implies that V,u - n, is continuous across the inter—
element boundaries. Hence we have

/rmxIm /{-)Tu 6nv /xIm ec&,

VyuT +Vu _ _ Vyut+Vu~
Z/XI Z/ g twom, 2 ]:

Te X I ¥ T2 XIm ecg,

S [ % fem

Te X Im mecé,

/**Vu—l—wn Vu]z

and the proof is completes. O

Lemma 4.4. Under the assumptions of Theorem 4.1 we have that

|Bo (G(f); 1:6)=Boa (G("); ") | < ClIEN + Ch*+1 +

M
+ C[/ n2|Gh- n| dvds + h_1||n||2QT + Z |n|fn] +
3Q+XI

m=0

+ C(llEllor + Inlleo)llEllor + ChlllEllQr + lInllor)?,
where the constant C' < 1.
Proof. Once again by the definition of the interpolation error n we may write

Bpa(G(f); f,€) — Boa(G(f*); f,€) =

= Bpa (G(f");n,€) + Bpa(G(f); f,€) — Boa (G(f"); £,€)
= Tl + TQ — T3.
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To estimate the term T3 — T3 we proceed as in the proof of Lemma 3.3 (cf. (3.13)).
For the term 77 we have

AN [ntm M€+ h(E + G(MVE)  +

KeCy

+ / I+ G nldv — ho (A & + G(FPVE)  +
OK_(Q)

+a( vn,va)K+)\a Z (Te(n)are(f))K+

e€&,

8
+ 0 (RO),V08) g + 0 (%o BE) | = Y- 55

Thus we need to estimate S;, 1 <14 < 8. For the term S; we have

(4.12) 1S1] < 415 + 1€+ 5-

Integration by parts leads to an estimate for Sy + S3,

(4.11)

|52+53|<|Z/ [€]ln; + G- ndv| +
(4.13) Kee, 7 o'
+ | n-¢-|G" n|dv ds|.
5Q+XI

To bound the first term on the right hand side of (4.13), the crucial part is to
estimate a term of the form

7= % [ n 6" uld.

K;}L AK_(G)"

To this approach using Cauchy—Schwartz inequality we have for § > 0 that

(4.14) |T|< = Z / In-I’|G" n|dv +C5 / [€]%|G"- n|dv,
KEC )ll Kech _(G)ll

where the last sum can be hidden in |||£]||?, and the first sum is estimated below

> [ PGt nldr <

Kec, ' OK-(G)"
(1.15) <l ¥ | [ jetpas [ <
Keo, LJoax_(G)r K _(G)"

<Clnllz, > [Ch G + Cch?Y],

KeCy

where d = 1,2, 3. Further, the interpolation error 7 satisfies
(4.16) 17llo0 < CREFH| k41,00

Hence by (4.14)—(4.16) and by assumptions of the lemma we obtain

1
(4.17) IT| < CR** + alllSlllz,
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where (' is a sufficiently large constant. So that using once again the Cauchy—
Schwartz inequality we obtain for S; + S3 the estimate

1
|2 + S| < Ch*FH 4+ C—1|||§|||2 +

(4.18) M
+C n2|Gh-n|dud8+CZ|n|fn.
m=1

BQ+XI

The terms S4 and S5 are estimated as in Lemma 3.3. Moreover, from the definition
of operators R and r. and from the fact that n is a continuous function we can
easily deduce that Sg = 0 and S7 = 0. Thus it remains to estimate the term Sg. To
this end we use (4.3), (4.4), the inverse inequality and assumption on ¢ to obtain

Si < 3 olnllB@l < Y (ColVunlic + SIROIE) <

(4'19) KeCy, KeCy

< Ch7H L, + C2o D lIre(©)lI,
ecé,

where, as above, C is taken to be large enough. Finally combining the estimates
for the terms T7 and T5 — T3 we obtain the desired result. O

Now we are ready to prove our error estimate.

Proof of Theorem 4.1. From the definition of Bpg and Lemma 4.3 we deduce that
the exact solution f satisfies the variational formulation

BDG(G(f);fag) _K(fag) :L(g) VgEWh.
So using Lemma 4.1 and some algebraic labour we get
allgll® < Boa (G(f"); f* - f*,€) =
= L(&) + K(f",€) — Boa (G(f"); f".¢

= BDG(G(f)7f7£) _BDG(G(fh)7fh7€) +K(fh7§) _K(f7€)
= AB + AK.

~—

(4.20)

Here the term AK is similar to the one given in the SD-method and therefore is
estimated in an analogous way as in the proof of Lemma 3.4. Furthermore a bound
for the term AB is given by Lemma 4.4. Now we complete the proof combining
Lemma 4.2 by a similar argument used in the proof of Theorem 3.1. O
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