EXTENSIONS OF A REALANALYTIC FUNCTIONAL
CALCULUS FOR COMMUTING OPERATORS

MATS ANDERSSON

ABSTRACT. Let a = (ai,...,a,) be a tuple of commuting opera-
tors on a Banach space. We discuss various conditions equivalent to
that the holomorphic (Taylor) functional calculus has an extension
to the realanalytic functions or various ultradifferentiable classes.
Especially we discuss the possible existence of a functional calculus
for smooth functions. We also provide a new simple proof that the
existence of such a functional calculus implies the so-called (3)¢
property. One of the equivalent conditions is expressed in terms of
possible current (or ultracurrent) extension of the resolvent map-
ping of a over the spectrum. Our main tool that we introduce in
this paper is Fourier transforms of forms and currents.

1. INTRODUCTION

Let aq,...,a, be an n-tuple of commuting operators on a Banach
space X. For any polynomial or entire function f(z) = f(z1,...,2,)
one can define an operator f(a) on X, simply by replacing each z;
by a; in the Taylor expansion for f(z). One then gets an algebra
homomorphism O(C") — L£(X), usually called a functional calculus,
where £(X) is the space of bounded operators on X. In order to find
extensions of this functional calculus, one is led to consider the joint
spectrum of the n-tuple a; the relevant definition was found by Taylor,
[14] 1970, and can be described as follows. Let T, be the complex
tangent space at the point z € C", and let §, , denote contraction
with the operator-valued vector field

) 0
27 ;(ZJ — aj)a‘z.
We then have a complex
(11) 0 AT, @X AT, @ X &2 - &2 A", @ X « 0,
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for each z € C", and the Taylor spectrum o(a) of the n-tuple a is, by
definition, the set of all z € C" such that (1.1) is not exact. It turns
out that the spectrum is a compact nonempty (unless X = {0}) subset
of C*. The fundamental result, due to Taylor [15], is

Theorem 1.1 (Taylor). Let a be an n-tuple of commuting operators
on the Banach space X. There is a continuous homomorphism

(1.2) O(o(a)) = L(X)

that extends the functional calculus O(C*) — X. If f = (f1,---, fn)
is an analytic mapping, f; € O(o(a)) and f(a) = (fi(a),..., fula)),
then

(1.3) o(f(a)) = f(o(a))-

The equality (1.3) will be referred to as the spectral mapping prop-
erty. It was proved in [12] that any two extensions of the functional
calculus, which fulfill the properties stated in Theorem 1.1 coincide.

Let A be an algebra of functions that contains O(o(a)). We say that
a admits an A functional calculus IT if (1.2) has a continuous extension
to a homomorphism

II: A — L(X).

A natural attempt to obtain such an extension is by means of the
resolvent mapping w, 4, cf., Section 3. If f is holomorphic in a neigh-
borhood of o(a) and has compact support, then

fla) = - [ 35(:) Ao

However, the same formula may have meaning even for an f that is not
necessarily holomorphic in a full neighborhood of o(a), provided that
0f(z) has enough decay when approaching o(a) to balance the growth
of (some representative of) the resolvent. In one variable this approach
was first exploited by Dynkin, [8]; for several commuting operators a
similar approach is used by Droste, |7], and recently by Sandberg, [13];
for the case when o(a) is real, see [4]. Notice that such an approach will
always require that 0f = 0 on o(a) which is a very strong restriction
if o(a) contains some complex structure.

In this paper we will consider algebras A that contain the algebra
C¥(o(a)) of germs of realanalytic functions on o(a), i.e., (equivalence
classes of) functions that are realanalytic in some neighborhood of o (a).
The main results are contained in Sections 5,6, and 7. Here we discuss
various equivalent conditions for the existence of an extension to various
classes of ultradifferentiable functions. Especially we study the case of
a functional calculus for smooth functions. We also give a new simple
proof for that the existence of a smooth functional calculus implies that
the tuple a has the property (3)e.
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However, we begin with discussing some equivalent formulations of
the existence of a realanalytic extension in Section 2 and point out that
in general such an extence will not be unique.

To be able to relate to the holomorphic calculus we briefly recall its
definition in terms of the resolvent mapping. One of our conditions
equivalent to the existence of a ultradifferentiable extension of the re-
alanalytic functional calculus is expressed in terms of a possible current
(or ultracurrent) extension of the resolvent mapping over the spectrum.
Our main tool is Fourier transforms of differential forms and currents,
and the necessary definitions and results are introduced in Section 4.

Throughout this paper X is a Banach space and e denotes the iden-
tity element in £(X). If a is a tuple of operators, then (a) denotes
the closed subalgebra of £(X) generated by a, and (a)' denotes the
commutant of a, i.e., the algebra of all b € £(X) that commute with
each a;.
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2. REALANALYTIC FUNCTIONAL CALCULUS

Let a be a commuting n-tuple with spectrum o(a) and let C*(o(a))
denote the space of realanalytic functions defined in some neighbor-
hood. For each ¢ € C¥(c(a)) we have a function ¢(z,w), holomorphic
in a neighborhood of {(z, 2); z € o(a)} in C**, such that ¢(z) = é(z, 2).
Sometimes it is natural instead to identify ¢ with the realanalytic
function (that we also denote ¢(z,y)) defined in a neighborhood of
{(z,y) € R?"; z + iy € o(a)} such that ¢(z + iy) = é(z,%). he topol-
ogy of C¥(o(a)) is defined by the seminorms given by taking supremum
of ¢ over small neighborhoods in C?" of {(z,2); z € o(a)}.

Assume that @ admits a realanalytic functional calculus II: C¥(o(a)) —
L(X), and let a} be the images of z;. Then (a,a*) is a commuting 2n-
tuple of operators, as well as (Rea,Ima) if Rea = (a + a*)/2 and
Ima = (a — a*)/2i. We claim that

(2.1) o(a,a*) ={(2,2) € C"; 2z € o(a)}.
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By the spectral mapping property for the holomorphic functional cal-
culus, applied to the mapping (z,w) — ((2 + w)/2, (z — w)/2i), (2.1)
holds if and only if

(2.2) o(Rea,Ima) = {(z,y); v+ iy € o(a)}.

If (5(2, w) is a holomorphic polynomial, then clearly

(2.3) 1(¢) = ¢(a,a"),

where the right hand side denotes the holomorphic functional calculus
of (a,a*). Moreover, (2.3) also holds for each entire function ¢(z, w),
since it can be approximated in neighborhoods of o(a, a*) by polyno-
mials. In particular, if

Ey(z) = miRest = G020 (e,

then

(2.4) II(E;) = e™@te™0) ¢ e,

and therefore, by the continuity of 1I, we get the estimate
(2.5) lee el < D, |¢] — oo

We will need the following simple lemma; for a proof see, e.g., [4].

Lemma 2.1. Suppose that aq, ... ,ay are commuting operators. Then
o(a) is real if and only if || exp(2mic - £)|| < C exp(o(|€])-

Notice that 27i(Re a-é+Ima-n) = wi(a-(+a*-¢) if ¢ = £+in. In view
of Lemma 2.1, therefore (2.5) implies that o(Rea,Ima) C R?*, hence
o(a,a*) C {w = z}, and by the spectral mapping property applied to
the projection (z,w) — z we get (2.1). Conversely, (2.1) implies (2.5).

It now follows by approximation that (2.3) holds for all ¢(z, w) that
are holomorphic in a neighborhood of {(z, 2); z € o(a)} since this set is
polynomially convex. By the holomorphic spectral mapping property,

o(Il(¢)) = o(8(a,a”)) = ¢(o(a,a”)) = ¢(o(a)),
and thus the spectral mapping property holds for II.
If a is a commuting n-tuple and there is a commuting n-tuple a* €
(a)" such that (2.1) holds, then one can extend the holomorphic func-

tional calculus to an algebra homomorphism II: C¥(o(a)) — L(X) by
formula (2.3). Summing up, we have proved

Proposition 2.2. Assume that a is a commuting n-tuple of operators
on X that admits a realanalytic functional calculus I1: C¥(o(a)) —
L(X), and let a* =11(2). Then (2.1) (and (2.2)) and (2.5) hold, and
(2.3) holds for all ¢ € O({(z,2); z € a(a)}). Moreover, the spectral
mapping property o(I1(¢)) = ¢(o(a)) holds for all p € C¥(o(a)).

Conversely, if there is an n-tuple a* such that (a,a*) is commuting,
and such that (2.1) or (2.5) hold, then a admits a realanalytic func-
tional calculus defined by (2.3).
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In general a possible extension of the holomorphic functional calculus
to C*¥(o(a)) is not unique. We say that a tuple ¢ is quasi-nilpotent if
o(q) = {0}. This holds if and only if both ¢ and ig have real spectra,
and this in turn holds, in view of Lemma 2.1, if and only if || exp(7ig -

|l < expo(|¢]) for all ¢.

Proposition 2.3. Suppose that I1: C¥(0(a)) — L(X) is a C¥(0(a))
functional calculus and a* = 11(Z). Moreover, assume that q € (a,a*)’
is a quasi-nilpotent commuting n-tuple. Then there is another C*(o(a))
functional calculus II' such that a* + q = 1I'(2). Conwversely, any two
C¥(o(a)) functional calculi IT and II' such that I1(Z) and IT'(Z) commute
are related in this way for some quasi-nilpotent n-tuple q.

Proof. If (2.5) holds and ¢ is quasi-nilpotent then also (2.5) holds for
a* 4+ q instead of a*, and hence a* + ¢ corresponds to another C¥
functional calculus according to Proposition 2.2. Conversely, if (2.5)
holds for both ¢* and a* + ¢ and they are commuting, then || exp(7ig -
Q)|l < expo(|¢]) and so ¢ is quasi-nilpotent. O

Notice that thus IT'(f) = f(a, a* + ¢) whereas II(f) = f(a, a*).
Ezample 1. Let a be any nonzero quasi-nilpotent tuple. Then a* = a
and a* = 0 provide two different C' extensions. O

Remark 1. Assume that a has real spectrum. Then a admits a natural
realanalytic functional calculus corresponding to the choice a* = a
in Proposition 2.2 (notice that then (2.5) holds). There is always a
nontrivial extension of this C*“-functional calculus (depending on the

size of o(|C])), see [4]. O
If a admits a C* functional calculus, we thus have that
(2.6) (¢) = (Rea,Ima),

where the right hand side is the natural realanalytic functional cal-
culus ((2.6) is of course equivalent to (2.3)), and hence the question
of possible extensions to wider classes of functions is transformed to
the question of possible (nonholomorphic) extensions of the natural
realanalytic functional calculus of the 2n-tuple (Rea,Ima) with real
spectrum. As was noted in Remark 1 above, some nontrivial extension
always exists. In subsequent sections we shall consider specific such
extensions.

3. THE RESOLVENT MAPPING

In the case of one single operator, the extension of the functional cal-
culus from entire functions can be made by Cauchy’s integral formula,

(3.1) f(a):c:/Dwz_afa::—/éx/\wz_afx, feo), ze€ X,

7]
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where o(a) C D CC U, and x is a cutoff function in U which is
identically 1 in a neighborhood of o(a), and

W, o = (2mi)"H(z — a) " tadz.
In the multidimensional case, for U D o(a), w,_, is a mapping
Wo—q: OU,X) = Hy" H(U\ 0(a), X)

that we call the resolvent mapping. If f € O(U) and = € X, then
fzr € O(U,X) and f(a)z is given by (3.1) just as in the one-dimensional
case. The definition of the resolvent mapping is in short as follows; for
more details, see [1] and [2]. Since 6, ,0 = —00, o, L*(E, X, V) =
E 1x(V,X) is a double complex with the coboundary operators d,_,
and 0, and it gives rise to the total complex

(3.2) 2 mm1e, v, x) sl om(e, v, X) S
where

LMEV,X)= @ LYV, X) =P Eneim(V, X).
¢l

l+k=m

It is well known that £%%(&, X, V) has exact rows if V C C* \ o(a) and
therefore (3.2) is exact for such V. If now U D o(a) and f € O(U, X),
then f defines a closed element in £°(€,U \ o(a), X) and hence there
is a solution u € L 1(&,U \ o(a), X) to (6,_q — 0)u = f. If u, denotes
the component of u of bidegree (n,n — 1) it follows that du, = 0 and
w,_of is defined as the Dolbeault cohomology class of u,,. In particular,
if there is a v € L7YE,U \ o(a), (a)') that solves (6, , — 0)v = e in
U\ o(a), then w,_,f is defined by the form v, f. However, in general
it is not possible to find such a solution v close to o(a), but for large z

one can take. e.g.,
n
v = Z s A (0s)
=1

where 6,_,s = 1; a possible choice is
s = (2mi) " (|z]* — 2 - a)"'O| 2.

All the spaces O(V), D(V), E(V), S = §(C"), as well as their duals,
are nuclear. This implies that one can form topological tensor products
like £(U, X) = £(U)®X in an unambigous way, and that furthermore
these tensor product preserve exactness, see, e.g., [9]. For instance,
since the Dolbeault complex

0= OV) = Eo(V) -2 &1 (V) -2

is exact if V' is pseudoconvex, it follows that the corresponding X-
valued Dolbeault complex

0= OV, X) = E0o(V, X) -2 &1V, X) -2
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is exact as well. We will also consider spaces of X-valued currents, e.g.,
D, (V,X) =D, (V)®X. For further reference we include

Lemma 3.1. Suppose that V. C C* \ o(a). If f € D, (V,X) and
0,_af =0 it follows that f =0 in V.

Proof. Let ¢ € Dy,—q(V); then there is a ¢ € Dy, (V) such that
5y atd = 1. Thus fth = f.6, ub = +6, of-6 =050 that f=0. [

4. FOURIER TRANSFORMS OF FORMS AND CURRENTS

Our main tool is the Fourier transformation of vectorvalued cur-
rents. To begin with we introduce Fourier transforms of forms. Roughly
speaking the Fourier transform of a (p, ¢)-form f = fr;(2)dz? Adz’ will

be £ f77(¢)d¢” A dC", where f;; is the usual Fourier transform of the
coefficient f;; and I’ and J’ denote complementary indices. However,
to make the formalism run smoothly we give the following definition.
Let
w=w(z,¢) =2miRez-(+Redz-d{ =
=mi(z-C+2-¢)+ (dz-d{ +dz - d¢) /2.

Since w has even degree, exp(—w) is welldefined, and for a form f(z)
with coefficients in S(C") we let

(4.1 FIO = [0 n 1(2).

Since we have an even real dimension it is immaterial whether we put
all differentials of d¢,d( to the right or to the left before performing
the integration, and thus F f(() is a welldefined form with coefficients
inS. If f €S,,, then

FfQ) = /6_2”}“’2'%(2) A (=Redz - dC)*" ™77/ (2n — p — q)!

and hence an (n — ¢,n — p)-form. In what follows we let f mean the
same as Ff.

Proposition 4.1. We have the following inversion formula
(12) £ = (-1 [ 9 A fc).
¢

Of course it can be deduced from the inversion formula for the usual
Fourier transform, but we prefer to repeat one of the wellknown argu-
ment in the form formalism.
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Proof. Take ¢ € Sy such that ¢(0) = 1. Then

/ FOAe ™) =1Tim [ y(e¢) f(2) A e =
=0 J¢

¢
= lim//w Q) f(z) A e =59,
e—0

Making the change of variables ¢ — (/e€, z — z + w, the right hand
double integrals becomes (the mapping is orientation preserving, so no

minus sign appears)
//‘w Z + w w(z,(/e)

and since w(z,(/€) = w(z/¢, () another change of variables ( — €(

gives
/ / P(C w + €2) e~w(#:0)

which tends to ¢, f(w), where

o fooee

Taking for instance 1(¢) = exp(—|(|?), a simple computation reveals
that ¢, = (—=1)". O

Let 6., denote contraction with the vector field 27i(z — a) - 2 for
a € C". Since w = (1/2)(0, — 6¢ — 0)(¢ - dz — Z - d() it follows that

(4.3) (6,0 — 0¢ — O)w(z,¢) = —mia - dC.
Proposition 4.2. Ifa € C, then

(4.4) F((8oma — 0)1(2)) = —(6c + 3 + A)FF,
where

Ap =mia-d{ N\ ¢
for forms ¢(().
Identifying bidegrees we also get that
F(0reaf) =—(0; + A)Ff and F(Of) =0:Ff.
Proof. By (4.3) we have that
(Oa=0c=0)(e“Nf(2) = Al Af)+e“A(0;a—0—0)f =
=A™ Af)+ €A (bma — 0.) .

Intggrating with respect to z we get (4.4), since féz,ag = 0 and
[, 0.9 = 0 for forms g in S. O
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We now want to extend the Fourier transform to currents in S’, and
to this end we first notice that

(4.5) (—1)" / u(2) A f(2) = /C f=0) A

for u, f € §. To see this, just notice that both sides are equal to

// /\ f /\ ew(z,C // /\ e—w( ,C)

Moreover, one easily checks that if f(z) = f(-z), then }‘f(O —
Ff(—=C¢). Any u € S defines an element in S’ by

u.f = /u(z) A f(z), feS.
For a general u € &' it is therefore natural to define 4 by the formula
a.f=(-1)"u.f, feS.

It is routine to extend §,_,, O etc to &', and verify that Proposition 4.2
still holds for currents u € S'.

Remark 2. We have deliberately avoided to introduce the Fourier trans-
form for forms on the “transform side”. However, if we define

3(z) = /< 0 A §(C),

for forms ¢(¢) on the “transform” side (notice that this definition is
not symmetric in ¢ and z) then

(4.6) / a0 A () = / u(2) A ()

since both sides are equal to

//‘ O Au(z) A d(C).

One can then define the Fourier transform of currents in view of this
formula instead. 0

Lemma 4.3. If [0] denotes the current integration at the point 0, then
(4.7) FOl(¢) =1 and F1(¢) = (=1)"[0](¢).
Proof. In fact, for f € Sy we have

017 = 1 [1G) A ) = (- /f

where the last equality follows from the inversion formula (4.2), holding
in mind that f is a (n, n)-form. In a similar way we have

/ F(2) = (~1)" / 1(2) = (=1 f(0),

since in this case f is a (n, n)-form. O
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We say that u € £L71(S',C") is a fundamental solution if
(6, —0)u=1-]0].

From Lemma 4.3 and Proposition 4.2 it follows that u is a fundamental
solution if and only if

(6 +0)a(¢) =1 - (=1)"[0].

For instance, let

(4.8) B(z) =) b(z) A(0b(2))"", b(z) = 1 9l

Coomi |22

Then 8,b(z) = 1 and hence (§,—8,) B(z) = 1—[0]. Thus (5,48,)B(¢) =
1 — (—=1)"[0]. We claim that actually

n

B(¢) =) _(=1)*"(¢) A (9b(¢)

=1

In fact, one can verify that B(z) is the only possible fundamental solu-
tion that is rotation invariant and 0-homogeneous. Since these proper-
ties are preserved by F, the claim follows. Alternatively, one can use
the wellknown formulas for Fourier transforms of homogenized R?"-
harmonic polynomials. We will refer to B(z) and B(¢) as the Bochner-
Martinelli forms.

It is readily verified that Propositions 4.1 and 4.2 hold for X-valued
forms and currents and commuting n-tuples of operators a. This is
checked by applying functionals on both sides of each equality.

5. GENERALIZED SCALAR OPERATORS

Assume that ay, . .. , a, is a commuting tuple that admits a £-functional
calculus, i.e., a continuous algebra homomorphism IT: (o (a)) — L£(X)
that extends (1.2). Such a tuple a is sometimes called a generalized
scalar tuple. Here £(o(a)) denotes the algebra of germs of smooth
functions on o(a). Thus II is a (a)-valued distribution in C* that is
supported on o(a). The continuity assumption implies that there is a
nonnegative integer m such that for each U D o(a)

(5.1) () < Culf

where | flom = 320 <m SUPy [D*f]-
First we shall relate the existence of a £-functional calculus to the

existence of a current extension of the resolvent over the spectrum, cf.,
Remark 5 below.

U,m»
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Theorem 5.1. Let a be a commuting n-tuple of operators. Then the
following conditions are equivalent:

(1) a admits a E-functional calculus I1: E(C") — L(X).
(i1) There is a commuting n-tuple a* € (a)' and a number m such that

(5.2) eSO < Cl¢™, ¢ e
(iii) There is av € L™H(D',C", (a)') such that
(5.3) (8,—a — 0)v = € — [a],
where [a] is an (a) -valued (n,n)-current such that
(5.4) [al(¢ +¢') = [al(Q)fal(¢)-

In case these statements hold, then [a] is a (n,n)-current supported

on o(a), II(f) = [a].f for f € Soo(C"), and
(5.5) [a](¢) = e~mi@t+a™)

where a* = I1(Z). Moreover,
56) )= [T, S S

Proof. 1f (i) holds and a} = I1(Z;), then (a, a*) is a commuting 2n-tuple
and (2.4) holds, so (5.2) follows from (5.1).

Now assume that (i7) holds, and let 2Rea - = a-( +a* - (. Then
exp(—2miRea - ) is in &'(C", (a)’) so we can define an (a)’-valued
(n,n)-current [a] by formula (5.5), and then (5.4) will be satisfied since
(a,a*) is commuting. Let u(z) be a fundamental solution in &', e.g., the
Bochner-Martinelli form, cf., Section 4. Then (§; +9;)@ = e — (—1)"[0]
and hence

(8 + B + A) (727 Reaq) = (1 — (=1)"[0])e 2" Reo = Ta] — (=1)"[0].

By the assumption (5.2), e 2"®ea¢j is in &' and by Proposition 4.2
and Lemma 4.3 then (5.3) holds if & = e 2™Reaty,

Finally, assume that (i74) holds. Then to begin with, d,_,[a] = 0
so [a] has support on o(a) according to Lemma 3.1. Thus [a] is in &’
although we a priori only assume that v is in D'(C", (a)'), so that (5.4)
anyway has meaning. Let f be holomorphic in a neighborhood U of
o(a) and let u € L7HE,U \ o(a), X) be a solution to (§, , — O)u =
f(2)x. Then, since v is (a)’-valued, (8, o — O)(v Au) = u — vf(2)x
so that u, — v, fr is -exact in U \ o(a), and hence v, fz is a current
representative of the Dolbeault cohomology class w,_,fz in U \ o(a).
Now, let II(f) = [a].f and let x be a cutoff function that is 1 in a
neighborhood of o(a). Since [a] is supported on o(a) and 0v, = [a] we
have that

H(f)m = [a]-Xfl“ = Unfﬂﬂ-éx = _/a_X ANw, ofT = f(a):z:
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according to (3.1). Thus II is an extension of the holomorphic func-
tional calculus and (5.4) ensures that it is multiplicative. Thus (i7i)
implies (i).

The first stated relations between II, [a], and a* follow from the proof
above, whereas (5.6) follows since

(f) = [al.f = (~1)" /C [@(=0).f(©) = (~1)" / emiRead f(c),
]

Remark 3. The proof of (ii) — (iii) above is based on the possibility
to define “translates” f,(z) = f(z — a) of currents f € S'(C", (a)"),
by multiplying with exp(—27iRea - {) on the Fourier transform side,
provided that (5.2) holds. Given a fundamental solution u, and taking
v = u,, we have that (§,_, — 0)u, = 1 — [a], since [a] is the a-translate
of [0]. Of course we can think of v(z) as the “convolution”

2= [ lale = w) A uw).

If u(z) is chosen to be smooth outside 0, like the Bochner-Martinelli
form, it follows that v is smooth outside o(a). Hence there is a smooth
solution to (8, , — @)v = e there. In particular, §, ,v;0(2) = e, which
implies that o(a) coincides with the spectrum with respect to the com-
mutative subalgebra (a,a*) of £(X), and with the splitting spectrum,
see e.g., [2]. O

Remark 4. We can write more suggestively

f(a) = TI(f) = / £(2)[al(2)

and so it is natural to think of [a] as a generalized spectral measure (or
rather a spectral current).

Let X be a Hilbert space and a a commuting tuple of normal op-
erators; this means that (a,a*) is a commuting tuple, where a} is the
Hilbert space adjoints of a;. Then (Rea,Ima) is a selfadjoint commut-
ing tuple and hence || exp(mi(a - + a* - ¢))|| < 1. From Theorem 5.1
it follows that ¢ admits a £ functional calculus. However, as is well-
known, the spectral current [a] in this case actually is a measure (a
(n,n)-current of order zero) so there is even a C'(c(a)) functional cal-
culus. O

It a admits a £-functional calculus we know from Section 2 that
o(Rea,Ima) = {(z,y); z+iy € o(a)}. Moreover, the mapping ¢(z) —
é(z,y) = ¢(z + iy) extends to an isomorphism

E(o(a)) = E(c(Rea,Ima)),

where o(Rea,Ima) is considered as a subset of R?*", and since the
realanalytic functions are dense the equality (2.6) extends to these
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spaces. Since the spectral mapping property holds for the natural C¥
functional calculus for the commuting 2n-tuple (Re a,Ima), see [4], we
have

Proposition 5.2. If a admits a £ functional calculus T1: E(C*) —
L(X), then o(II(f)) = f(o(a)) for all f = (f1,..., fm), where f €
E(o(a)).

Remark 5. Assume that a admits a € functional calculus [a], let IT: (o (a)) —
(a)" be a linear continuous mapping, and let 7 be the (a)’-valued (n, n)-
current supported on o(a) such that II(f) = 7.f for smooth f. Then

the following conditions are equivalent:

(1) IIis a linear extension of the holomorphic functional calculus such
that II(z; f) = a;II(f) for all a;.

1) There are ¢, € (a)’ such that
(24)

(57) w) =l + Y conelal
0<|a|<m

(17i) There is a (a)’-valued current solution to (6, , — 0)v =e— 7 in
Cc.

Suppose that () holds. Then 0, _,7(z) = 0, and thus, cf., Remark 3,
8,m(z + a) = 0, which means that

m(z+a) = Z ca%[ﬂ].

la|<m

Moreover, since 7.1 = e and thus 7(- + a).1 = e, it follows that ¢y = e.
By “translating” back we get (5.7). On the other hand, if (5.7) holds,
it is easy to modify v, in a solution v to (5.3) so that the equation in
(741) is satisfied. Finally, if (7i7) holds, then as before it follows that = is
supported on o(a) and that §,_,m = 0. As in the proof of Theorem 5.1
this implies (7).

Thus any choice of coefficients ¢, € (a)’ gives a current extension of
the representative u,, of the Dolbeault cohomology class resolvent w,_,
over the spectrum o(a), and a linear extension II of the holomorphic
functional calculus such that (i) holds, but in general the extension
will not be multiplicative. In fact, it is if and only if 7(¢ + (') =

(O (C)- 0

However, in general there are several possible multiplicative exten-
sions of the holomorphic functional calculus. The following result is a
multivariable version of a classical theorem, see [6].

Theorem 5.3. Suppose that 11 and II' are two E-functional calculi
such that 11(Z) and II'(Z) are commuting. Then q = I1(z) — II'(Z)
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is a nilpotent (commuting) tuple, and

(58) =Y Tu(sl

o

la|<m+m/

where m and m' are the orders of Il and II' respectively. Conversely, if
I is a E-functional calculus, a* =11(Z), and q € (a,a*)' is a commuting
nilpotent tuple, then (5.8) defines another E-functional calculus.

Proof. If [a] and [a]" are the corresponding (n, n)-currents, then
(5.9) [/a\]l(g) _ e—m’(a-@-a*-&-l—’]() — [/a\](c)e—niq{’
and since . .

Ial (Ol < €™ and [[a] (Ol < [€]™

it follows that
le™ <) < ¢

which implies that ¢* = 0 for |a] > m + m’. Observe that

wiq - al(Q) = Fla- ),

so that

1)«

e <[a] = Z o]

In view of (5.9) this means that (5.8) holds. The converse is obtained
by arguing backwards. 0J

Remark 6. If f € C¥(0(a)) and f(2) = f(z,%) as in Section 2, then
then Il(a) = f(a,a"), and II'(a) = f(a,a” + ¢). Thus one can think of
(5.8) as the Taylor expansion of f(a,a* + g) at the “point” (a,a*). O

6. THE PROPERTY ()¢ FOR GENERALIZED SCALAR OPERATORS

Let a be an n-tuple of commuting operators. It has the property
(B)¢ if the complex

(6.1) 0= Sno(C, X) 5 ... 558 8, (T, X) 8 Sp0(C, X) = 0
is exact at S o(C", X) for k > 0 and the range is closed at Sp(C", X).
For a background to the this notion, see [4]. For large |z| the (local)
exactness of the complex follows by means of the homotopy operator
Sf=sAf, where, e.g., s =>.0|21?/(|z|> — a- ). Therefore, one can
just as well replace S(C™, X) by £(C", X) or D(C", X) in the definition
of (ﬂ)g

The main result in this section is a new and simple proof of the
following theorem due to Eschmeier and Putinar, [9)].
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Theorem 6.1. If the tuple a admits a £ functional calculus, then it
has the property (B)s.

If a admits a £ functional calculus, then it induces a mapping £(C", X ) —
X intuitively defined as f +— f(a). If f is in S it can be defined by the
current [a] acting on f or, equivalently, by the formula

f(a) = (~1)" /4 PriReat f ()

This mapping is S(C")-linear (this follows from (5.4)) and it commutes
with each a; (since [a] is (a)’-valued). We define the closed subspace
S (C*, X) of Spp(C*, X) as
a " o f
Sto = {f € So0(€", X); 52Ha) = 0 Va .

It immediately follows that J, ,u(2)|.=a = 0, and therefore f € Sf if
f(2) = 0,_4u(z) for some u € & o(C", X). However also the converse
is true.

Theorem 6.2. Assume that a is a generalized scalar, and let f €
S(C", X). Then the range of

6z—a: Sl,o(Cn,X) — So,o(Cn,X)

15 precisely S&O((C”,X), hence it is closed, and the sequence

(6.2) 0= Spo(C, X) 28 ...

28 810(C", X) 28 850(C, X) — So,0(C", X)/S3,(C™, X) — 0.

18 ezract.

In the case when X = 0 and a is just a point in C*, e.g., a = 0, then
this theorem is a wellknown nontrivial result of Malgrange, see [9].

Clearly, Theorem 6.2 implies Theorem 6.1.

Proof of Theorem 6.2. Since

FOT) = iy 70

and 5
e (0) = (17 [ emenmicy (),

it follows that Sg;(C", X) via the Fourier transform corresponds to

Sg,n(C”,X) _ G_ZMRGZ{_Sg’n(Cn,X),

where

(€, X) = {p € 8.(©.X); [760) =0 Vol
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Therefore, (6.2) is exact if and only if

(6.3) 0= S,o(C, X) X5 s, (C, x) %5
5 +A Sn,n (Cn ) X)
e—ZﬁiRea-fsg,n(Cn’X)

X (@, X) 5 s, X)

is exact. On the other hand, since multiplication with e?™®Rea<C jg 5
continuous isomorphism on S(C", X), (6.3) is exact if and only if

(64) 0= Spo(C", X) =5 Spr(C, X) 25 ..

0 m 8¢ n Sn,n(cn’X)
T S (€ X) = 50(CX) = ST

is. However, Malgrange’s theorem means that (6.4) is exact when X =
C, and since the spaces S, 4 are nuclear, see, e.g., [9], the exactness is
preserved when applying ®X. Thus the theorem is proved. O

—0

The proof above may be rephrased in the following way. First notice
that there is a a continous mapping f(z) — fu(2) = f(z — a) on
S(C™, X) if a is a generalized scalar, obtained by multiplying by with
exp(—2miRea - () on the Fourier transform side, cf., Remark 3. By
Malgrange’s theorem (the X-valued version, obtained from the usual
one by some reference to nuclearity of S), (6.2) is exact if a = 0.
We then obtain the exactness in general by making the “translation”
by a. More concretely, if we have got an X-valued f(z) such that
0.—af(2) =0, then 0, f(z + a) = 0 and by the exactness hence we can
solve 0,v(z) = f(z +a). Thus §,_,u = f if u(z) = v(z — a).

Remark 7. In [9] Theorem 6.1 is first proved for n = 1, whereas general
case is then obtained by an ingenious induction argument. The one-
variable case of Theorem 6.2 and @ = 0 is via the Fourier transformation
equivalent to the following statement:

Suppose n =1 and ¢ € Sp1(C, X). Then there is a solution to du = ¢
in S(C, X) if and only if

/g’“q&(g)/\dg:o, k=0,1,2,....
¢

To prove this statement, let u(z) be the unique solution that vanishes
at co. Because of the moment conditions,

- [(§) 10

for any nonnegative integer m, and hence u € Sy o(C, X). O

We conclude with a result which is somehow dual to Theorem 6.2,
but which seems to be more elementary.
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Proposition 6.3. Suppose that a is a generalized scalar tuple, with
E-functional calculus [a]. Then the sequence

0= D, (C", X) Z5 D! (C7, X) 255 .. 258 D) o (C, X) — 0

1s exact except at k = n, where the kernel is
{p(9/0z)[a]; p(z) polynomial}.

The same holds for &' or £ instead of D'. In particular, Proposi-
tion 6.3 implies that
0— D! (V, X) Z3 D, ((V, X) 255 ... Z58 D) (V, X) = 0
is exact if V' .C C" \ o(a).

Sketch of proof. For large z there is an (a)’-valued smooth form s such
that 6, s =esoif f € D,,, p <n, then §, ,f(2) =0then u =sA f
is a solution to 6,_,u = f for large z, and hence we may assume that
f is in &'. Via the Fourier transformation and multiplication with
exp(2miRea - () the problem then is reduced to solving the 0 equation
for X-valued currents in &', and this can be done, e.g., by weighted
integral formulas. If f € D;, o, and 6, ,f = 0, we know from Lemma 3.1

tllat f = 0 outside the spectrum; in particular f is in §'(C", X), and
(8, + A)f(C) = 0; thus

O (e e f(¢)) = 0,
so that f(¢) = p(¢)e 2Ree< for some holomorphic polynomial p. [

7. ULTRADIFFERENTIABLE FUNCTIONAL CALCULUS

Most of the results from Section 5 hold for algebras of ultradifferen-
tiable functions instead of £. For simplicity we restrict to the nonquasi-
analytic case; however, for instance all Gevrey classes will be included.

Let h(¢) be a nonnegative, continuous, subadditive function on C"
with h(0) = 1, and let A, be the space of all tempered distributions f

such that f is a measure and

|mm=lwmw@<w

Then A is an algebra, and if exp(—h(t)) = O(|t|”™) for all m, then
A, C £. We will also assume that

(7.1) /& < 00,

1+ [C[ertt
which ensures that A;, is nonquasianalytic, i.e., it contains cutoff func-
tions with arbitrary small supports, see [4] and [5]. Typically is A(¢) =
IC|%, 0 < a < 1, which gives the Gevrey classes, but also nonradial h are
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allowed. These algebras were introduced by Beurling in [5]. Since we
have access to cutoff functions we can easily localize the Aj-condition;
more precisely, for an open set V' we can define A (V') as the algebra
of functions f in V such that xf € A, for all cutoff functions x € A
with support in V. It turns out that C¥(V) is continuously embedded
in A, (V) and dense; for a proof see [4]. For a compact set K we define
Ap(K) as the inductive limit of the spaces Ax(V), V O K. It is not
hard to see that the dual space A (V') consists of all ultradistributions
u with compact support in V' such that |4(¢)| < Cexp h(—(). We say
that a ultradistribution v is in A} if xu € A}, (C") for each cutoff func-
tion xy € Aj. These definitions can easily be extended to vector-valued
ultracurrents.

Remark 8. In the quasianalytic case one can localize the A,-condition
by means of a variant of the FBI transform and define spaces Ay (V)
that consist of all functions f such that roughly speaking f, locally
in V, belong to A, for some ¢ > 1. The dual space then consists of
hyperfunctions u such that |4(¢)| < C.exp ch(—() for all ¢ > 1, see [4].
It is possible to prove an analogue to Theorem 7.1 for these spaces as
well. O

We say that a admits a A, functional calculus if there is a continuous
mapping
II: Ap(o(a)) — L(X)
that extends the holomorphic functional calculus. We have the fol-
lowing analogue to Theorem 5.1. However, since we have no analogue
to Lemma 3.1 for A; we have to formulate condition (i7i) somewhat
differently.

Theorem 7.1. Let a be a commuting n-tuple of operators. Then the
following are equivalent:

(1) a admits a Ap-functional calculus I1: Ap(o(a)) — L(X).
(ii) There is a commuting n-tuple a* € (a)' such that
(7.2) [emi(actamO|| < CeMO,

(iii) There is an (a)'-valued ultracurrent v in L1 (C", A}, (a)’) that is
smooth outside o(a), such that

(7.3) (6, o —0)v =¢e— [a],
where [a] is an (a)'-valued (n,n)-ultracurrent in A}, such that
(7.4) [al(¢ +¢) = [al(©)lal(¢)):

In case these statements hold, then [a] is a (n,n)-ultracurrent sup-
ported on o(a) such that II(f) = [a].f for f € So,0(C"), and

(7:5) @(C) — e~ mila-Cta*()
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where a* = T1(Z). Moreover,

(7. 1(f) = (-1)° [ e 9f(c).
¢
for f € A,.
Proof. Assume that (i) holds and define, as usual, a* = II(Z). As
before we have that [I(E¢) = exp(2miRea - £). Since f(—¢) = E_¢.f =

(=1)"Ee.f we have that E¢(¢) = (=1)"[—¢] and hence

|Eella, = /C [—E](Q)eMO = =9,

By the continuity of II we get the estimate (7.2).

Now assume that (7.2) holds. Then, as was proved in Section 2,
o(Rea,Ima) is real and equal to {(z,y); = + iy € o(a)}, and from [4]
it follows that the formula (7.6) defines a A;(o(a)) functional calcu-
lus; in particular, a (a)'-valued ultradistribution [a] in A}, with support
on o(a). Moreover, II(f) = f(a,a*) for entire functions so [a](¢) =
exp(—2miRea- (), and so (7.4) will be satisfied since (a, a*) is commut-
ing. Let u(z) be the Bochner-Martinelli form, cf., Section 4, and let
b = e72mReaCy  Since 4 is bounded it follows that |9(¢)| < Cexp h(—()
and hence v is in A}, and as before (7.3) holds. Since v is a convolution
with [a] and u it is smooth outside the support of [a], i.e., o(a).

Finally, assume that (4i7) holds. By the extra assumption on v it
follows from Lemma 3.1 that [a] is supported on o(a), and then (i)
follows in precisely same way as in the proof of Theorem 5.1. O

From the isomorphism
An(o(a)) = Ap(o(Rea,Ima)), ¢+ 4,
and the spectral mapping property for the A; functional calculus for

tuples with real spectrum, see [4], we get

Proposition 7.2. Suppose that a is a commuting tuple that admits a
Ar(o(a)) functional calculus I1: Ap(o(a)) — L(X). Then o(II(f)) =

f(a(a)).

As one can expect we also have an A,-analogue to Proposition 2.3
and Theorem 5.3.

Theorem 7.3. Suppose that II and II' are two Ap(o(a))-functional
calculi such that 11(Z) and I'(2) are commuting. Then g = I1(2) —1II'(2)
is a quasi-nilpotent (commuting) tuple satisfying

(7.7) |e™C|| < CeMOHh=4),

Conversely, if f 11 is a Ay, -functional calculus, a* = TI(Z), and q €
(a,a*) is a commuting nilpotent tuple such that ||exp(miq - Q)| <
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Cexp hy(C), then, if h = hy + ho, there is a Ay functional calculus
IT" such that II'(Z) = a* + q.

Proof. If a* =1I(Z) and a*+¢ = II'(Z), then from Theorem 7.1 we have
that ||exp(im(a-¢ +a*-Q)|| < Cexph(¢) and || exp(in(a- + (a* +q) -
O|l < Cexph((), and from this we immediately get (7.7). The second
statement is concluded in a similar way, again using Theorem 7.1. [J

As in the £-case, and for the same reason, II and II' are related by
the formula
ey q* (0°f
(7.8) ()= —l :

ol o
la|>0

for all say realanalytic f.
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