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Abstract

Let G be a compact group. We construct an imbedding of the Fourier algebra
A(G) of G into the algebra V(G) = C(G) ®" C(G) and deduce results about parallel
spectral synthesis, generalizing a result of Varopoulos [20]. We then characterize which
diagonal sets in G xG which are sets of operator synthesis with respect to the Haar
measure, using the definition of operator synthesis is due to Arveson [1]. We apply
this result to obtain an analogue of a result of Froelich [8]: a tensor formula for the
algebras associated with the pre-orders defined by closed unital subsemigroups of G.

In [20], Varopoulos conducted a study of spectral synthesis for algebras which are the
projective tensor products of several commutative semi-simple regular Banach algebras, in
particular tensor products of commutative C*-algebras. He used certain relationships be-
tween these algebras and the Fourier algebras of compact Abelian groups. One of his remark-
able results is that for a compact Abelian group G, there is a natural isometric imbedding
of A(G) into C(G)®C(G). Moreover, he showed that a closed subset E C G, is spectral for
A(G) exactly when E* = {(s,t) € GXG : s+t € E} is spectral for C(G)®C(G). That A(G)
is the closed span of characters is crucial for some of his calculations.

In Section 2, we generalize Varopoulos’ imbedding, but use the Haagerup tensor product
instead of the projective tensor product. By Grothendieck’s inequality, this amounts only to
a renorming of Banach algebras. However, this renorming is critical to obtaining an isometric
imbedding. It is necessary for us implicitly to use the theory of completely bounded maps
of operator algebras, i.e. in the papers of Blecher and Smith ([17], [2]). This is no accident,
as it is becoming apparent that the theory of operator spaces is an invaluable tool for the
study of the harmonic analysis of non-Abelian groups.
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With our imbedding result in hand, we are then able to generalize Varopoulos’ spectral
synthesis result, mentioned above, to arbitrary compact groups. We do this in Section 3.

In Section 4, we obtain an analogous result to that in Section 3, but obtain sets of
operator synthesis in GxG with respect to Haar measure, in the sense of Arveson ([1]). We
then obtain an analogue of the tensor formula for algebras associated to the pre-order defined
by unital semi-groups, due to Froelich [8].

In Section 5 we investigate the analogue of the imbedding from Section 2 for a non-
compact group. We show that the most natural analogue of this imbedding fails. Hence the
methods of this paper are special to compact groups.

We attempt to give sufficient background references for all of the concepts involved, both
at the beginning of each aforementioned section, and in Section 1.

The authors would like to express their gratitude to V.Shulman for helpful remarks.

1 Preliminaries and Notation

For any Banach space X, let b;(X) denote the unit ball of X', X* denote the space of all
bounded linear functionals on X', and B(X') denote the Banach algebra of all bounded linear
operators on X. For a subset Y of X, let Y+ be the annihilator of ) in X*. If T € B(X),
let T* € B(X*) denote the adjoint map. If M is a von Neumann algebra, let 87(M) denote
the space of bounded operators which are ultra-weakly continuous on M, and M, denote
the predual. Then B°(M) = {T*: T € B(M.,)}.

Let G be a compact group with normalized Haar integration [...ds. Let L?(G) denote
the space of (almost everywhere equivalence classes) of p-integrable functions, for p = 1,2,
with norm [|-||,. The left reqular representation, A : G — B(L*(G)) is given by A(s)g(t) =
g(s7't) for all sin G, g in L?(G) and almost every ¢ in G. Define \; : L'(G) — B(L*(G))
by M (f)g = [, f(s)A(s)gds = fxg for f in L'(G) and g in L*(G). Let

C(G) ={M(f) : f € LYG)} € B(L*(@G))
be the (reduced =) enveloping C*-algebra of G and

WOT

VN(G) = 5pan"OT{A\(s) : s € G} = C*(G) ' C B(LA(G))

be the von Neumann algebra of G, where WO'T indicates “weak operator topology” closure.
The Fourier algebra is the family of functions

AG) ={s = (A(s)flg) : f,9 € L*(G)}

as defined by Eymard in [7]. Then A(G) = VN(G). via ((A(:)flg),T) = (T flg), and is
normed thusly, with the norm denoted by || - [[a. A(G) is a semi-simple unital Banach
algebra of functions on G with spectrum G. If u € A(G), then there exist f and g in L2(G)
such that

(1) u=(A()[lg), and

(ii) [Julla = sup{[{u, )| : T € b1 (VN(G))} = [|£ll; llgll,-
(See [7] or [11, 34.15].)



2 Imbedding the Fourier Algebra into the Varopoulos
Algebra

As above, we let G denote a compact group for this entire section.
We start with a result from [3], which is given there in more general form. We sketch the
proof in our case for convenience of the reader.

Proposition 2.1 The following are equivalent for a complex valued function u on G.
(i) u € b1(A(GQ)).
(ii) There is an operator M, in bi(B7(VN(G))) such that
My\(s) = u(s)A(s)
for s in G.
(iii) There is an operator M, in by(B(C*(G))) such that

My (f) = M(u-f)
for f in LYG).

Proof: (i)=(ii) Since A(G) is a Banach algebra, if u € b;(A(G)), then the multiplication
operator by u, my, is in by (B(A(G))). Then M, = m} € bl( 7(VN(@))).

(if)=(iii) If fin L}(G), we can realize \i(f) = [, f(s)A(s)ds as a WOT-converging
integral. Then M, = M,|c+(c) € bl(B(C*(G))).

(iii)=(i) We have that A(G) = C*(G)* via the dual pairing which gives A(G) = VN(G)..
Let my = M. Then u =my1 € A(G) with |jul[s = |[mal]ls < ) 1, O

Let C(G) denote the C*-algebra of continuous complex-valued functions on G and
V(@) = C(G) ®"C(G)

where ®" denotes the Haagerup tensor product. Let us recall the definition of this space: it is
the completion of the algebraic tensor product C(G) ® C(G) with respect to the norm defined

. 1/2 1/2
by [lwlly = inf {17, [P IS0y P w =500, @i ® i} We note that every
w in V(G) can be represented as a norm converging (infinite) sum of elementary tensors,
and for such w we have

1/2

Horw=) g0 (1)
o i=1

||wl||v = inf




where the sums Y oo |¢;|* and Y | |¢/;|* are uniformly convergent. Moreover, the infimum
is attained. (See [2], for example.) For ¢ in C(G), let M,, denote the multiplication operator
on L*(G). For w = "2, ¢; ® ¢; in V(G), the operator T,, : B(L*(G)) — B(L*(Q)) given by

T,S =3 M,5M,, (2)

i=1

(with norm convergent sum) is in B’ (B(L?(G))), with ||T,|| = ||w||v (as in [17]). That V(G)
is a Banach algebra (under pointwise multiplication) follows from that for v and w in V(G),
Tyw =T1T,T,.

On C(G) ® C(G), the Haagerup norm is exactly Grothendieck’s H-norm, and thus is
equivalent to the projective tensor norm by Grothendieck’s inequality. Hence V(G) is the
algebra studied by Varopoulos in [20], renormed. We thus call it the Varopoulos algebra.

The invariant part of the Varopoulos algebra is given by

Vinv(G) = {w € V(GQ) : w(sr,tr) = w(s,t) for s,t,r € G}.
It is easily seen to be a closed subalgebra of V(G).
Theorem 2.2 The map N : A(G) — Vi (G) given for s,t in G by
Nu(s,t) = u(st™")
1 an 1sometric isomorphism.

Our map N above is denoted M in [20] and [9], a symbol which has already been over
used here. Varopoulos defines M only for Abelian compact groups, and shows it is an
isometry, but with V(G) = C(G)®C(G) (the projective tensor product). Thus for Abelian
groups, the Haagerup and projective norms coincide on Vi, (G). If we could conclude that
any continuous function in V*°(G) (defined in Section 4, infra) is in V(G), then this result
would follow from [9]. However, the immediately preceding statement is not apparent, and
we feel that our proof is illuminating.

Proof of Theorem 2.2: First some notation is needed. Let G denote set of (equivalence
classes of) irreducible continuous unitary representations of G. For 7 in Glet T, C L%(G)
be the space spanned by matrix coefficients of 7. By the Weyl-Peter Theorem [11, 27.40],
L*(G) = @, 5 T~ (Hilbertian direct sum). Moreover, each Ty is A-invariant (see [11, 27.20]).

Thus for any F C G, if Pr denotes the orthogonal projection from L*(G) onto Tr = @, o T
then A(s) Py = PpA(s) for any s in G. Let F denote the set of all finite subsets of G, directed
by inclusion. For each 7 in G, let {e{™ : i =1,...,d2} (d, = dimm) be an ortho-normal
basis for 7.

Now let u € A(G) and write u = (A(-) f|g) where ||u|la = [|f]],]|g]l,- Then Nu(s,t) =
(A(t)*f|\(s)*g) for s, in G. For min G and i = 1,...,d2, let

* Um

0ni(s) = (eVA(5)"g) and ¥ i(s) = (A(s)" flel™)



for s in G. Note that at most countable many ¢, ;’s and 1. ;’s are non-zero functions, since,

for example, ¢, ,; = ()\(-)eg”) |g), and the are at most countable many 7’s for which P9 # 0.
It follows from Parseval’s formula that

dz
Nu(s,t) =Y Y 0ni(8)¥milt)
re@ =1
for all s,¢in G. We will have that Nu € V(G), and hence in Vi, (@), if we can show that
Yol Z?il l¢ril? and > 5 Zﬁl ¢z i|* converge uniformly in C(G). For sin G, using

Parseval’s formula, that each Pr commutes with A(s) and that Pg rex idr2(@) in the WOT,
we have

S5 o) = 303 (6P IA6) ) (As) glel™)

TEF i=1 meF i=1
= (PrA(s)"g|PrA(s)"g) = (Prglg)
FeF 2
— (gl9) = llgll,
for any s in G, and thus convergence is uniform over s in GG. Hence we have ) | & Zfil |omil?

= ||g||> 1 with uniform convergence. Similarly, h— Z?il ril? = || fIl5 1. Thus we have

d2
Nu = Z wa,i ® Yri € Viny(G)

reG =1

with

a2 a2
INullv < YD om0 mal?

reG =1 reG =1

= [I£llzllglly = [lulla-

o o0

To see that N is surjective, let w = Y2 0;®@9; € Vi (G), with [Jw|lv = ||> o, \%\QHZQ'
1322, |1/1i\2||i</>2. Let u(s) = w(s,e) for sin G, so u(st™!) = w(s,t) for s,t in G. We will
show that u € A(G) with ||u||a < |Jw|]y. Clearly Nu = w. Let s € G and f € L*(G). Then
for almost all ¢ in G,

I

TuA(s)f(t) = ) My A(s) My, f(2)

i

=1

I

Qi(t)i(s™'t) f(s™'t) (3)

w(t, s™1) f(s7') = u(s)A(s) £ (1)

Since T, € B (B(L*(Q@))), TwVN(G) C VN(G). Thus if we let M, = Ty,|vn(), My satisfies
Proposition 2.1 (ii), with | M,| < ||[Tw|| = [|w|lv, so u € A(G) with ||ul][s < ||w|]yv. (This
part of the proof should be compared with [15, Theo. 6.4].) O
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If r € G, and w € V(G), define r-w by
r-w(s,t) = w(sr,tr)

for s,¢in G. Then (r,w) — r-w is a continuous action of G on V(@) by isometries. Thus
for f in L}(G) and w in V(G), we may define a convolution

fow= /G F(r) rewdr ()

where the integral is V(G)-valued. Indeed, if f € C(G), then r — f(r)r-w is continuous,
and hence Bochner integrable. Moreover, ||f-w|yv < ||f]l, ||lw|lv, for such f. Hence we
may unambiguously define f-w for an arbitrary f in L'(G) just by taking it as a limit of
continuous functions. If {ey} is the bounded approximate identity for L!(G) formed by
letting ey = ﬁxtj (normalized indicator function) for decreasing neighbourhoods U of e,
then it is clear that ey-w — w, as U N\ {e}, for all w in V(G). Then by Cohen’s Factorization
Theorem [11, 32.22], and [11, 32.33 (a)], eqw — w for any bounded approximate identity
{ea} in L}(G).

We will now define a map which will be useful in the sequel.

Proposition 2.3 The map P : V(G) — Vin(G) given for s,t in g by

Pw(s,t) = / w(sr, tr)dr
G
is a contractive projection and a Vin, (G)-module map.

Proof: Clearly Pw = 1-w, where 1 is the constant function equal to 1, and thus P is a
contraction. Its range is in Vi, (G) by the left invariance of the Haar measure. Since
Viny(G) = {w € V(G) : rw = w for all r in G}, it is clear that Ply, (g = idy,, (- That P
is a Viny (G)-module map follows from the same observation. O

3 Spectral Synthesis

Let A be a unital semi-simple regular commutative Banach algebra with spectrum X, which
is thus a compact Hausdorff space. We will identify A as a subalgebra of C(X) in our
notation. If £ C X is closed, let

I4(E)={a€ A:a(x)=0forz € E}
1%(F) ={a € A:supp(a) N E = &}

and J4(E) = 1%(E).

(Note that for ¢ in C(X), supp(¢) = {z € X : ¢(x) # 0}.) We say that F is spectral for A
if [4(E) = J4(E). By [11, 39.18] this is equivalent to the usual notion of spectral synthesis.



We, as usual, let G be a fixed compact group. We note that A(G) and V(G) are semi-
simple regular Banach algebras with spectra G and GxG, respectively. For A(G) this is
shown in [7] and [11, Sec. 34]; for V(G) this is discussed in [20, 1.5], where we note that
V(G) = C(Q)RC(Q).

Recalling the definitions of N and P from the previous section, define @ : V(G) — A(G)
by @ = N 'oP, so for w in V(G) and s,t in G,

Quis) = [ wsr. ).

Let 6 : GXG — G be given by 0(s,t) = st~!. Then 6 is an open continuous map. Moreover,
Nu = uef), for u in A(G).

The following theorem is proved for compact Abelian groups in [20, 8.2]. The proof is
motivated by the one given there.

Theorem 3.1 A closed set E C G 1is spectral for A(G) if and only if E* = 67'(F) =
{(s,t) € GXG : st™' € E} is spectral for V(G).

Proof: We will write I, (E) for Ixq)(E), Iv(E*) for Iyg)(E*), etc. It is clear that

u €IA(E) & Nu e Iy(EY). (5)
We also have that

u € JA(E) & Nu € Jy(E"). (6)

To see this, first suppose that u € Jo(E). Then there is a sequence {u,} C I (E) such
that u, — u, so Nu, — Nu. Since for each n, supp(u,) N E = &, supp(Nu,) N E* =
6~ (supp(u,)NE) = @, and hence {Nu,, } C I{,(E*), showing that Nu € Jy(E*). Conversely,
if Nu € Jy(E*), there is a sequence {w,} C I},(E*) such that w, — Nu, so Qu, —
QNu = u. For each n it is clear that supp(Qw,) C O(supp(w,)), and §(supp(w,)) N E =
(supp(wy,) N E*) = @. Thus supp(Qw,) N E = @ for each n, and we have {Qu,} C I (F),
sou € JA(E).

If E* is spectral for V(G), then it follows from (5) and (6) that E is spectral for A(G).

We now suppose that E is spectral for A(G). For each 7 in G , let H, be the representation
space of 7, and {ey, . .., eq_} be an ortho-normal basis for #,. For 7 in G and ,j=1,...,d,,

uf) = (m(Jesleq)-

By the Weyl-Peter Theorem, H, = span{ug-r) i E é,i,j =1,...,d;} is dense in L*(G)
and thus dense in L!(G). Hence we can find a net {u,} C Hy which forms a bounded
approximate identity for L!(G).

Now suppose that w € Iy(E*). For each 7 in G we define “matrix-valued” functions
w™, ™ GxG — B(H,) by

w™ (s, 1) :/Gw(sr,tr)w(r)dr and  @™(s,t) = 7(s)w™ (s,1).
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Then for any s,t,r in GG, we have that

™ (sr,tr) = 0™ (s, 1). (7)

Let us fix 7 for the remainder of this paragraph. For 7,7 = 1,...,d,; we let ng) and w(”)

denote the matrix coefficients of w(™ and @™ with respect to {ei,...,eq. }. Then for each
475

wg-r) = uz(;r)-w. (8)

Since w € Iy(E*), f-w € Iy(E*) for each f in L'(G), and hence each wgr) € Iy(E*). Now
for each 7,5 and s,t in G,

Zuzk wkJ s,t)
”)—Zu”)éblwkj (9)

so @) € Ky(E*). By (7), @ € Vin(G). It then follows from (5), (6) and the identity

%)

IA(E) = JaA(E), that u?z(;r) € Jy(E*). Using that w(™(s,t) = 7(s7 1)@ (s, 1), we have that

dr
=Yy @1y (10)
kj:

(where 1(s) = u(s™')), so each wg;-r) € Jv(EY).

Finally, we let {u,} be the bounded approximate identity for L'(G) chosen from H,, as
above. By (8), for each «, uy-w € span{wg-r) ITE @,i,j =1,...,d:} C Jy(E*). Since V(G)
is an essential L'(G)-module, u,-w — w, and hence w € Jy(E*). O

We remark that amongst the subsets of G, which are spectral for A(G) are closed sub-
groups, by a Theorem of Herz [10], and their cosets, the latter because right and left translates
are isometric automorphisms of A(G). Also Ditkin sets, i.e. sets whose boundaries contain
no perfect sets, are spectral by [11, 39.26 and 39.31].

By a theorem of Malliavin, of which a proof is given by Varopoulos [20, 9.2.2] (also see
[11, 42.18]), every compact Abelian group contains a set which fails spectral synthesis for
A(G). In [21], it is shown that every infinite compact group contains an infinite Abelian
subgroup. Hence by [11, 42.27], every infinite compact group contains a set which fails
spectral synthesis for A(G). Thus we obtain the following.

Corollary 3.2 If G is infinite, then spectral synthesis fails for V(QG).



4 Operator Synthesis

Let A and X be as at the beginning of Section 3. For 7 in A* and a in A, define a7 in A*
by at(b) = 7(ab). Define the support of 7 by

supp(7) = {z € X : a7 # 0 whenever a(x) # 0}.

Using the regularity of A and functional calculus, it can be shown that supp(7) consists of
all z in X such that for any neighbourhood U of z, there is a in A for which supp(a) C U
and 7a # 0. Then it is well known that for a closed set £ C X,

JA(E): = {r € A" : supp(7) C E} (11)

and hence E is spectral for A if and only if I4(E)* = {r € A* : supp(r) C E}. If
S € VN(G), then we will denote by suppyy(S) the support of S qua linear functional on
A(G). If u € A(G), then by Proposition 2.1 we see that uS = M,S = Ty,S.

We now wish to establish a framework in which we may recall the definition of operator
synthesis due to Arveson in [1]. To make use of some of the results from [1] and [16] needed
in the sequel we will assume that G is separable, and hence metrizable by [12, 8.3]. As above,
the assumption that G is compact is still in force.

Let

T(G) = L*(G)®L(G)

where ® denotes the projective tensor product. A set K C GxG is called marginally
null (with respect to Haar measure mxm) if there are sets Ny, No C G such that K C
(N1xG) U (GxNy) and m(N;) = m(Ny) = 0. We note that if E C G is closed and non-
empty, then E* is never marginally null. In fact if G is infinite, {e}* has measure 0 but is
not marginally null. By [1, 2.2.7], an element w in T(G) may be regarded as a function on
G x@, defined up to marginally null sets: for marginally almost every (s,t) in GxG, let

s,t) = Zfi(t)gi(s) where w = Z fi ® g; in L*(G)®L*(G).

=1

Note that the order of s and ¢ above is purposeful, and gives us some technical simplifications
in the sequel. For w in T(G), define supp(w) = {(s,t) € GXG : w(s,t) # 0}. Note that
supp(w) is defined only up to marginally null sets. If F' is a closed subset of GXxG, let

O(F) ={w e T(G) : supp(w) N F = &}

Oo(F) ={w € T(Q) : supp(w) NU = & for some neighbourhood U of F'}
and U(F) = &y (F).
By [1, 2.2.8], ®(F) is closed in T(G). A closed subset F' of GXG is a set of operator
synthesis (or is synthetic) with respect to mxm, if ®(F) = ¥(F). We note that there is

a more general notion of operator synthesis which does not make explicit reference to the
underlying topology on the measure space. See [6] or [16].
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It will be convenient for us to make use of a space similar to V(G). Let L*°(G) denote

the usual space of (equivalence classes of) essentially bounded functions on G with norm
||| .- Then let

V=(G) = L2(G) " 12(G)

where ®“"" denotes the weak* Haagerup tensor product of [2]. We note that V*°(G) is
the weak™* closure of L®°(G) ®" L*(G) in (L}(G) ®" L}(G))*, and, in fact, comprises all of
(LYG) ®"L}(G))*. The space L!}(G) ®" L!(G) is defined differently than V(G), and requires
the maximal operator space structure on L!(G). Will will not need to go into detail about
this, but refer the interested reader to [5]. In analogy with (1) every w in V(@) admits a
representation as a weak® converging (infinite) sum of elementary tensors, and for such w
we have

1/2 1/

||w||voo = inf

2 [e.e]
W= @i ®Y
i=1

o
Z |0il?
i=1

> Il
=1

o0 o0

but with the sums Y ;o |¢;|* and >°2°, [¢4]? converging weak* (instead of uniformly). Also,
as in (1), the infimum is attained. Note that V(G) is a norm-closed subspace of V*(G).
For w in V*(G), we can define T, just as in (2) (but with the sum T;,S = Y o2, M, SMy,
converging ultra-weakly), and we have ||w||v~ = ||Tw||- We note that V*°(G) is a Banach
algebra. We can identify elements of V*°(G) as functions up to equivalence on marginally
null sets. This follows from Proposition 4.1, infra.

We say that a complex valued function w on GxG is a multiplier of T(G) if for any
win T(G), (s,t) = w(s,t)w(s,t) defines an element m,w of T(G) such that |m,w|; <
C||w||p where C is some constant, so w defines a bounded linear operator m,, on T(G).
It is clear that two multipliers w and w' satisfy m,, = m, if w = w' marginally almost
everywhere. We say that w and w' are equivalent if m,, = m,,. We denote the space of
equivalence classes of multipliers of T(G) by MT(G).

Recall that B(L*(G)) 2 T(G)* via (f ® g, S) = (Sf|g).

Proposition 4.1 V*(G) = MT(G) with ||w||ve = ||my|| for w in V=(G).

Proof: Let w € V>(G) with w = 32, ¢ ®; and [[wlly= = [IZZ, il [l 352, i1
It suffices to show that m,f ® ¢ € T(G) with ||m,f ® gl < [|[w|lve ||fll5 llgll, for any
f and g in L*(G), in order to establish that w € MT(G) with ||my|| < ||w|y~. Using
Holder’s inequality we have that

S Z ||M¢¢f||2 ||M ig||2

T =1

s(an%fn;) (anw,.gu;)
=1 =1

ZM%’f@M )

=1

I f ® gl =

1/2
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Then, using Tonelli’s Theorem, we have

S sl =Y [ P = [ (Zwi(s)f(sw) ds
-/ (Z\wi(@P) 5(6) P < || S il

and, similarly Y2, [[My,gll2 < |5, @il lgll3- Hence

> el > |l
=1

i=1

2
171l
o0

1/2

1£1l2 glly = Tlwllve [1£1lz [lg]l

1/2
||mwf ® g”T S

o

as required.
Now suppose that w € MT(G). For ¢, in L*(G), the adjoint of M, ® M,,, qua operator
on T(G), is T,gy. Indeed, if f,g € L*(G) and S € B(L*(G)), then

(My @ My(f ®49),5) = (Myf ® Myg,S) = (SMyf|Myg)
= (MySMy flg) = {f ® 9, ToyS)-
Since my My @ M, = My ® M,ymy, for all ¢, ¢ in L®(G), Tygymi, = miT,gy. Hence m?, is a

L*°(G)-bimodule map on B(L?(G)), and thus, by [17, 3.1], m}, = T, for some w' in V*°(G).
It follows that w' = w and hence ||my|| = | Tw|| = ||w||ves- O

We remark that the proof above works for a non-compact group as well. However, the
following result is particular to the compact case. It is noted in [16].

Corollary 4.2 The map J : V*(G) — T(G) given by Jw = myl ® 1 is a contractive
njection.

Proof: That J is contractive is evident. If w € ker J, then w = 0 marginally almost every-
where, and hence almost everywhere. Since V*°(G) imbeds contractively into L®°(G'xG) by
[2, Cor. 3.8], w = 0. 0

Note that J may be considered to be the “identity” map on elementary tensors.
If S € B(L?(G)), define

supps(S) = {(s,t) € GXG : for any nbhds. U of 5,V of ¢, there are f, g in L*(G)
such that supp(f) C V,supp(g) C U and (Sf|g) # 0}.

(We note that for f € L?(G), supp(f) = {s € G : f(s) # 0}. This notion is distinct from the
one we used for continuous functions.) Then suppg(S) is closed in GXG. See [6] or [16] for
a notion of the support of an operator which does not make explicit use of the underlying
topology.

A couple of results in [16] tie together the contents of the preceding few paragraphs. We
amalgamate them and quote them here in a form that will be useful to us.
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Proposition 4.3 If FF C GxG is closed, then F is synthetic for GXG if and only if T,,S = 0
whenever suppg(S) C F and w € V*(G) with Jw € ®(F).

We note that we only use that for synthetic F', T,,S = 0 whenever suppgz(S) C F and
w € Iy (F), ie. w € V(G) with Jw € ®(F).

We can imbed A(G) into T(G), just as we imbedded it into V(G). The map Q is defined
in [9], where it is denoted by P.

Proposition 4.4 Define N : A(G) — T(G) by
Nu(s,t) = u(st™?)
for (marginally almost) all (s,t) in GxG. Define Q : T(G) — A(G) by

Qw(s)z/Gw(sr, r)dr

for s in G. Then N and Q are contractions satisfying Q°N = ida(g). Hence N is an
1sometry.

Proof: Let N and J be the maps from Theorem 2.2 and Corollary 4.2 respectively. Then
N = JoN, and hence is a contraction. To see that () is a contraction, it suffices to see that
||Qf®g||A < || fll5 llgl|, for any elementary tensor f ® g in T(G). Indeed, for s in G we have

Qf ® (s /f (s dr—/f “)g(r)dr = (A(s) 1)

and the desired inequality is clear. Also, that QoN = ida(@), is obvious. O
If for 7 in G and w in T(G) we define
r-w(s,t) = w(sr,tr)

for marginally almost all (s,t) in GxG, then (r,w) — 7w is a continuous action by isome-
tries. Hence it induces an L!(G)-module action, given for f in L'(G) by

fw= / f(r)yr-wdr
G
making T(G) an essential Banach L'(G)-module. Let
Tiw(G) = {w € T(G) : rw = w for all r in G}.
Proposition 4.5 Ty, (G) = NA(G).

Proof: That NA(G) C Tiny(G) is clear. Now, in analogy to the map P in Proposition 2.3, let
P :T(G) — T(G) be given by Pw = 1-w. Then P is a contractive projection onto va(G’)
and PoJ = JoP on V(G). Suppose w € Ty (G). Then if {w,} is a sequence in V(G) such
that Jw, — w, we have JePw, — Pw = w. Since each JoPw, € NA(G) and NA(G) is
closed, w € NA(G). O
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We can now state the main result of this section. This was proved for locally compact
Abelian groups in [8].

Theorem 4.6 Let G be a separable compact group and E be a closed set in G. Then E 1is
spectral for A(G) if and only if E* is synthetic for GXG with respect to mxm.

Proof: Let us suppose that E is spectral for A(G). First, we will see that if w € ®(E*) N
Tiny(G), then w € W(E*). From Proposition 4.5, there is u in A(G) such that w = Nu. Since
supp(w) = {(s,t) in GXG : u(st™') = w(s,t) # 0}, u € I5(E). SinceI5(E) = Jao(E), there is
a sequence {u,} in I (E) such that u,, — u. Then, for each n, supp(Nu,) C supp(u,)*, and
since supp(u,)* is closed, its compliment U, is a neighbourhood of E*, so supp(Nun)ﬂUn =g
and hence Nu,, € ®o(E*). Then, since Nu, 5 Nu=w, w € U (E™).

Suppose w € ®(E*). Let {ug) 1T E @,i,j =1,...,d;} and {u,} be as in the proof of
Theorem 3.1. If for 7 in G and 1,7 =1,...,d,, we let

wz(;r ) = ug-r)-w
then w’ € ®(E*). Note that both ®(E*) and ¥(E*) are MT(G)-submodules of T(G).

Analogously to (9), let

dr
~(m) _ § ' (7)
k=1

Then each G)Z-(;-T) € ®(E*) N Tinw(G), so &JZ(]W) € U(E*). Finally, in analogy with (10) we have

dr

ij 2: a1 “ki

k=1

and hence w € U(E*).

Now suppose that E* is synthetic for GXxG. First, we will show that for S in VN(G),
suppg(S) C suppyy(S)*. If (s,t) € suppg(S) but st™! & suppyy(S), find neighbourhoods
U of s and V of ¢ such that UV™' N W = & , where W is a neighbourhood of suppyx(S5),
and then take f and g in L?(G) such that supp(f) C V, supp(g) C U and 0 # (Sf|g). Now
(Sflg) = (u,S) where u = (\(-)f|g). However, supp(u) C supp(g)supp(f)~t € UV~ so
u € I{(E) and hence (u, S) = 0 by (11), contradicting that (S f|g) # 0.

Thus if suppyy(S) C E, then suppg(S) C E*. If u € I5(E), then Nu € Iy(E*) in V(G).
By Proposition 4.3, uS = Ty,S = 0, so 0 = (1,uS) = (u,S). Then F is spectral for A(Q)
by (11). O

We remark that, by [16] if a closed set FF C G x G is a set of operator synthesis with
respect to any finite Borel measures p and v on G then F is spectral for V(G). For special
sets E*, where E C G, our theorem gives an even stronger result that it is enough to require
that E* is synthetic just with respect to the Haar measure. It is an interesting open question
if synthesis of E* in the Varopoulos algebra and hence operator synthesis with respect to
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the Haar measure implies operator synthesis with respect to any pair (u,v) of finite Borel
measures.

Some examples of sets of spectral sets for V(G), namely E*, where FE is a spectral set
for A(G), were already given in Section 3. Another class of sets are sets of finite width,
ie. E={(z,y) € GxG:pilr) <y),i=1,...,n}, where ; : G — Z, b; : G = Z
are continuous functions to a compact ordered metric space Z. That sets of finite width are
spectral for V(G) was proved in [16] using the notion of operator synthesis and its connection
with synthesis in the algebra V(G). We note that sets of finite width are of operator synthesis
with respect to any pair (u,v) of finite Borel measures is shown in [19] as well as in [16].
Thus we have two classes of examples that which show that there is an important relationship
between spectral sets for V(G) and sets of operator synthesis.

Let X be a closed subsemigroup containing the identity. Define a pre-order on G by z < y
if zy~! € X. Let Alg(X) be an operator algebra associated to this pre-order (see [1]). By [1],
Alg(X) consists of all operators on L?(G) whose support is in ¥*. We denote by Alg,,;, (%)
the ultra-weak closure of sets of pseudo-integral operators whose support is in >*. We recall
that a pseudo-integral operator supported in a closed set E arises from a measure whose
support is in E. By [1], a closed set ¥* is synthetic if and only if Alg, ;. (2) = Alg(X), which
is the same as having that Alg(X) is reflexive.

The following was shown by Froelich for separable Abelian groups in [8]. Our proof is
similar to his.

Theorem 4.7 Let G be a separable compact group and X1, X9 be closed subsemigroups with
the identity which are spectral for A(G). Then Alg(3;)®@Alg(Xy) = Alg(3; x Xs) if and only
if X1 X Xy is spectral for A(GXG). Here @ denotes the ultra-weak closure of the linear span
of all elementary tensors.

Proof: Let T € Alg(X,), S € Alg(X;). Then T ® S € Alg(X;xX,). Since ¥; and ¥, are
spectral for A(G), X3 and X} are synthetic by Theorem by Theorem 4.6. Hence there are
nets {7y}, {Ss} of pseudo-integral operators supported in ¥} and X3, respectively, such that
T, — T and Sg — S ultra-weakly. By [8, 2.2.2], T, ® Sp is a pseudo-integral operator on
L%(GxG) supported in (X;x¥5)*, and since T, ® id — T ® id ultra-weakly we have first
that T ® Sp € Alg,,;,(3X1x3y) for any [ and by the same argument we obtain T ® S €
Alg,...(X1xXs). From the tensor product formula we have Alg, . (£, xX;) = Alg(X; xXs;)
which implies that (X;x3),)* is a set of operator synthesis. Hence, by Theorem 4.6, ¥; X%,
must be a set of spectral synthesis.

To see the converse, suppose that ¥;xY, is a set of spectral synthesis. Then, by
Theorem 4.6, (31x%)* = {((t1,12), (51,82)) : t1s]" € Xy, 198, " € Ly} is synthetic, and
hence Alg,,;,(X1xXs) = Alg(X;xX,). Let T, be a pseudo-integral operator on L?(GxQG)
whose support is in (3;xXs)*, where p is an associated measure. Since p is supported
in (3;x3)*, it is w*-limit of a net of measures where each of them is a linear combina-
tion of tensor products of measures whose supports are in ¥ and X3, respectively. This
implies T, € Alg,;,(X1)®Alg,..(E2) = Alg(X;)®Alg(¥2) and hence Alg, ;. (X1x%,) =
Alg(X1)®Alg(X2). Thus Alg(X;xX,) = Alg(X;)@Alg(X,). O

Since any closed subgroup of a compact group is synthetic, we have Alg(H;)®Alg(H,) =
Alg(H;x Hj), where H; and H, are closed subgroups of G.
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5 The Case of a Non-Compact Group

The goal of this section is to begin, for non-compact groups, the study of the natural analogue
of Theorem 2.2. We will now suppose the GG is a non-compact locally compact separable
group. We let V*(G) = L*®(G) @ L*(G), just as for a compact group. If G is discrete,
then V®(G) = £°(G) ¥ £°°(G) is the algebra of Schur multipliers on B(¢%(G)). Hence we
may call elements of V°(G) measurable Schur multipliers on B(L?(Q)).

We say that G is amenable if there is a state (mean) m on L*°(G) which is invariant for
left translations by G. See [14] for information on amenable groups.

We can define the left regular representation \, the group von Neumann algebra VN(G),
and the Fourier algebra A(G), just as we did for compact groups in Section 1. This is all
done in [7]. Then A(QG) is a commutative semi-simple regular Banach algebra with spectrum
G. It is a subset of the space Cy(G) of continuous functions vanishing at infinity.

Proposition 5.1 The map N : A(G) — V*(G) given by
Nu(s,t) = u(st 1)
is a contraction. It is an isometry if G is amenable.

Proof: By [7], if u € A(G), we may write u = (\(-) f|g) for some f, g € L*(G) with ||u|ls =
I /1l5 lgllo- If {e,} is an ortho-normal basis for L*(G), let

on = (A(Jenlg) and . (fIA()en).

Then each ¢,, ¢ € Co(G) C L®(G) with 3207, |pal* = [lgll;1 and 3202, [4a]” = [ f]l51
(weak* converging sums). Since Nu =Y > | ¢, @, we have ||Nullve < ||fll5 [lgll, = lu]la-

If G is amenable, it has a bounded approximate identity composed of norm 1 elements
(see [13] or [14]), so for u in A(G), ||ul|a = sup{|luv||a : v € bi(A(G))}. For w = Nu,
repeat the computation (3) to see that ||ul|a < |[Nu||ve. Note that for amenable groups, an
analogue of Proposition 2.1 holds. O

Define an action of G on V*°(G) by r-w(s,t) = w(sr,tr) for r in G, w in V*(G) and
marginally almost all (s,¢) in GXG. The action is one of isometries on V*(G). How-
ever, for a general w in V*(G), r — r-w is continuous only if V*°(G) is given the weak*
topology. Recall that V*(GQ) = (L}(G) ®" L'(@))*. Let V2 (G) = {w in VX(Q) : r-w =
w for all 7 in G}. We note that it can be shown that V2 (G) is isometrically isomorphic to
the completely bounded multipliers (i.e. the Herz-Schur multipliers) of A(G). See [18].

Let G be amenable for the remainder of the section. It will be notationally convenient to
regard the mean m as a finitely additive measure on G, absolutely continuous with respect

to the left Haar measure m.

Proposition 5.2 The map P : V*(G) — V%

mv

Pw:/Gr-wdm(r)

(i.e. {x, Pw) = [ (z,r-w)dm(r) for z in L'(G) " L'(G)) is a contractive projection and a
Ve (G)-module map.

mnv

(G) given by
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The proof is very similar to that of Proposition 2.3. Let Vo(G) = Co(G) ®" Co(G).
Proposition 5.3 Vy(G) C ker P.

Proof: Tt suffices to show that ¢ ® ¢ € ker P for any ¢, 9 in Co(G) having compact supports.
Then for f, g in L'(G), the function r — (f ® g,7-(¢ @ ¥)) = [, f(s)e(sr)ds [, g(t)(tr)dt
is in Co(G). Hence (f ® g, P @ ) = [(f ® g,7(¢ ® ¥))dm(r) = 0. It follows that
(z, Pp ®¢) =0 for all z in L'(G) ®" L'(G), and hence Py ® ¢ = 0. O

Collecting the previous two results we obtain the following.
Corollary 5.4 NA(G) N Vy(G) = {0}.

Hence we will not be able to recover information about spectral synthesis for Vo(G) via
that for A(G) in the direct way that we are able to for compact groups.

It is unclear at the present if NA(G) lies within Cy(G) @ Cy(G), where ®°" denotes
the extended Haagerup tensor product of [4]. Tt is shown in [16] that Co(G) ®°" Co(G) does
not consist entirely of functions which are continuous on GxG. Hence GXG does not even
continuously imbed in the spectrum of Cy(G) ®°" Cy(G). Any questions regarding spectral
synthesis for Cy(G) ®°" Cy(G) should prove to be challenging.
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