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Abstract

Recently, Babson and Steingrimsson introduced generalised per-
mutation patterns that allow the requirement that two adjacent let-
ters in a pattern must be adjacent in the permutation. We investigate
simultaneous avoidance of two or more 3-patterns without internal
dashes, that is, where the pattern corresponds to a contiguous sub-
word in a permutation.

1 Introduction and Background

We write permutations as words m = ajas - - -a,, whose letters are distinct
and usually consist of the integers 1,2,... ,n.

An occurrence of a pattern p in a permutation 7 is “classically” defined
as a subsequence in 7 (of the same length as the length of p) whose letters
are in the same relative order as those in p. Formally speaking, for r < n,
we say that a permutation ¢ in the symmetric group S, has an occurrence
of the pattern p € S, if there exist 1 < i; < i3 < -++ < 4, < n such that
p = 0(i1)o(is)...0(iy) in reduced form. The reduced form of a permutation

o on a set {ji,J2,..-,jr}, where j; < jo < --+ < j., is a permutation oy
obtained by renaming the letters of the permutation ¢ so that j; is renamed
i for all i € {1,...,r}. For example, the reduced form of the permutation

3651 is 2431.

In [1] Babson and Steingrimsson introduced generalised permutation pat-
terns that allow the requirement that two adjacent letters in a pattern must
be adjacent in the permutation. In order to avoid confusion we write a ”clas-
sical” pattern, say 231, as 2-3-1, and if we write, say 2-31, then we mean that



if this pattern occurs in the permutation, then the letters in the permuta-
tion that correspond to 3 and 1 are adjacent. For example, the permutation
m = 516423 has only one occurrence of the pattern 2-31, namely the subword
564, whereas the pattern 2-3-1 occurs, in addition, in the subwords 562 and
563.

The motivation for introducing these patterns in [1] was the study of
Mahonian statistics. A number of interesting results on generalised patterns
were obtained in [5]. Relations to several well studied combinatorial struc-
tures, such as set partitions, Dyck paths, Motzkin paths and involutions,
were shown there.

In this paper we consider 3-patterns without internal dashes, that is,
generalised patterns of the form zyz. For example the permutation 7 =
12345 has 3 occurrences of the pattern 123 but 10 occurrences of the classical
pattern 1-2-3.

As in the paper by Simion and Schmidt [10], dealing with the classical
patterns, one can consider the case when permutations have to avoid two
or more generalised patterns simultaneously. A number of such cases were
considered in [5]. However, except for the simultaneous avoidance of the
patterns 123 and 132, and three more pairs that are essentially equivalent to
this, there are no other results for patterns without internal dashes. In this
paper we give either an explicit formula or a recursive formula for almost all
cases of simultaneous avoidance of more than two patterns. We also mention
what is known about double restrictions.

As far as we know, the only results about avoiding a single pattern of
length 3 are due to Tshifhumulo [11], who has found the exponential gener-
ating function for the number of permutations in S, avoiding 123---k.

2 Preliminaries

Since we only treat patterns of length 3, and permutations of length 1 or 2
avoid all such patterns, we always assume that our permutations have length
n > 3.

Obviously, no permutation avoids all patterns of length three. And it is
easily checked that there is exactly one permutation avoiding all but 123 or
all but 321, respectively.

There are, of course, (2) sets consisting of k different 3-patterns, so we
have 15 sets of two 3-patterns, 20 with three 3-patterns and 15 with four.



So we have 50 different sets having more than one restriction. But we can
simplify our work by partitioning the sets into equivalence classes in the way
shown below and it will be enough to consider only 18 sets of restrictions.

The reverse R(m) of a permutation 7 = ajas...a, is the permutation
Apln—1 ...a;. The complement C(m) is the permutation bib,...b, where
bi =n—+1—a;. Also, Ro C is the composition of R and C. For example,
R(13254) = 45231, C(13254) = 53412 and R o C(13254) = 21435. We
call these bijections of S,, to itself trivial, and it is easy to see that for any
pattern p the number A,(n) of permutations avoiding the pattern p is the
same as for the patterns R(p), C(p) and R o C(p). For example, the number
of permutations that avoid the pattern 132 is the same as the number of
permutations that avoid the pattern 231. This property holds for sets of
patterns as well. If we apply one of the trivial bijections to all patterns of a
set G, then we get a set G' for which A (n) is equal to Ag(n). For example,
the number of permutations avoiding {123,132} equals the number of those
avoiding {321, 312} because the second set is obtained from the first one by
complementing each pattern.

So up to equivalence modulo the trivial bijections we need to investigate
18 sets of restrictions that are represented in the table below.

We define the double factorial n!! by 0!! = 1, and, for n > 0,
n!!:{ n-(n—2)---3-1, ifnisodd,

n-(n—2)---4-2, if n is even.

Recall that the n-th Catalan number is defined by

c - 1 <2n)
n+1\n

Instead of writing Ag(n) for a set G of patterns, we will write A(n) since
it will be unambiguous what set of patterns is under consideration.




Class ‘ Restrictions Formula

1 123, 321, 132, 312
123, 321, 231, 213 2

123, 312, 132, 213
2 321, 213, 231, 312 2
123, 231, 231, 132
321, 132, 312, 231

w

132, 231, 213, 312 2

4 123, 321, 132, 231 2,ifn=3
123, 321, 312, 213 0,ifn >3

132, 213, 312, 321
5 231, 312, 213, 123 n—1
213, 132, 231, 321
312, 231, 132, 123

6 123, 321, 132, 213 2Cy, it n =2k + 1
123, 321, 231, 312 Cp+ Cy_1, if n=2k

7 123, 132, 213
231, 312, 321 (p/2))

123, 132, 231
8 123, 213, 312 n
132, 231, 321
213, 312, 321

132, 213, 231
9 132, 213, 312 14202
132, 231, 312
213, 231, 312

123, 132, 312 Recursive Formula:
10 123, 213, 231 A(0) =1; A1) = 1;

132, 312, 321 A@):§:<n_z_1)A0w—%—i)+«n+1)mmi%

213, 231, 321




‘ Class ‘ Restrictions Formula

123, 321, 132
11 123, 321, 231 (n— 1)+ (n—2)!
123, 321, 312
123, 321, 213
12 123, 231, 312 7
132, 213, 321
123, 231

13 321, 132 ?
321, 213
123, 312
14 213, 231 ?
312, 132
15 132, 213 ?
231, 312
16 123, 321 2FE,, where E, is the n-th Euler number
123, 132
17 321, 231 the number of involutions in S,
321, 312 (Claesson, [5])

123, 213
18 132, 231 on-t
312, 213

We now give proofs and comments for the results represented in the table.

3 Proofs, remarks, comments

From now on, when talking about class i, we mean the first set of patterns
in the equivalence class i according to the table above. Thus, for instance, 8
will be taken to refer to the set of patterns {123,132,231}.

Let us consider class 1. There are only two patterns, namely 231 and
213, that are allowed to occur. Suppose a permutation ™ = ayas .. .a, avoids
the patterns from 1. If aiasas forms a 231-pattern then asazas has to form
a 213-pattern since as > as. It is easy to see that azasas has to form the
pattern 231 and so on. Moreover, if we consider the letters in even positions
from left to right then we get an increasing sequence any element of which is
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greater then any element in an odd position; letters in odd positions form a
decreasing sequence when read from left to right. From this we see that there
is a unique such permutation in which the letters {1,2,... ,|(n+1)/2]} are
in the odd positions in decreasing order, and all other letters are in the even
positions in increasing order.

By the same argument there is only one permutation that avoids 1 and
begins with a 213-pattern. Thus, in this case A(n) = 2.

For class 2 there are only two permutations that avoid it, namely m; =
n(n—1)(n—2)...1 and m = (n — 1)n(n — 2)(n — 3)...1. This is because
n has to be either in the leftmost position or in the second position from the
left, for otherwise we have either an occurrence of the pattern 123 or of the
pattern 213 that involves n. To the right of n we have to have decreasing
order because otherwise we have an occurrence of a 312- or a 213-pattern.
Moreover, if n is in the second position from the left then in the leftmost
position we must have the letter (n — 1) because otherwise (n — 1) must be
in the third place and the first three letters form a 132-pattern.

There are obviously only two permutations that avoid class 3. They are
m=12...nand m =n(n—1)...1

For class 4, only the patterns 213 and 312 are allowed. Obviously, for
n = 3 we have A(n) = 2. Suppose n > 3. If a permutation 7 = aja,...a,
avoids 4, then it has to be that as < a3, because aiaoas forms either a 213-
or a 312-pattern. But this means that asaszas cannot form a 213- or a 312-
pattern, whence A(n) = 0.

For class 5, n has to be either in the rightmost position or in the second

position from the right, for otherwise we have an occurrence of a 312- or a
321-pattern. Moreover we must have increasing order to the left of n because
otherwise we have an occurrence of a 213- or a 312-pattern. Thus there is
only one permutation with n in the rightmost position.
If n is in the second position from the right then (n—1) cannot be in the right-
most position, because in this case we have an occurrence of a 132-pattern
that involves n and (n — 1). So in this case (n — 1) has to be in the third
position from the right, and we can put any letter ¢ other than n — 1 and n
in the rightmost position. This means that A(n) =1+ (n—2) =n— 1.



Class 6 will be considered in Theorem 2 below.

Theorem 1. For class 7 we have A(n) = (Ln7/l2J)'

Proof. Let us construct a permutation that avoids class 7 by inserting the
numbers 1,2,... ,n into n slots and observing the following:

The number 1 can be placed either in the rightmost slot or in the second
slot from the right, since otherwise, independently of what we have to the
right of 1 in the permutation, we get either a 123- or a 132-pattern, which is
prohibited. If 1 has already been placed then 2 must be placed in such way
that:

1. The two slots immediately to the right of 2 are not both empty, for
otherwise we will get an occurrence of either a 123- or a 132-pattern
involving 2;

2. If 1 is not in the rightmost slot then 2 cannot be immediately to the
left of 1, because in this case we will get an occurrence of a 213-pattern
involving the letters 1 and 2.

In general it is easy to see that if ¢ letters have been placed then for some
j such that 0 < j < ¢ the rightmost j slots are non-empty and the 2 - (i — j)
slots immediately to the left of these j slots are alternatingly empty and
non-empty. By an argument analogous to the above we can only place the
letter (i + 1) into either

0) the rightmost empty slot or

1) the second empty slot to the left of the leftmost non-empty slot.

If we place 1 next to the rightmost slot we assume that we use option 1).

Let us call the leftmost two slots critical slots. When we fill one of the
critical slots, there is only one way to place the remaining letters, using option
0), since in this case, option 1) can not be applied any more.

So any permutation with the right properties can be written as a se-
quence of 0s and 1s according to which option we use in placing the ith letter
(1=1,2,...) and we stop writing a (0,1)-sequence whenever we reach one of
the critical slots.

Let us call the (0,1)-sequences thus constructed legal sequences.



Example 1. Let n = 6. The (0,1)-sequence 01101 is a legal sequence that
corresponds to the permutation 5736241. But 1111 is not a legal sequence,
because after 3 steps, namely 111, we are already in a critical slot and must
stop writing the (0,1)-sequence.

Since obviously there is a bijection between legal sequences and permu-
tations in class 7, our problem is to count all possible legal sequences. We
prove by induction on n that the number of such sequences is equal to (|_n72 j)'

It is easy to check this for n = 3. 4
Assuming that for all ¢ < n we have A(7) = (Li;z J)’ we prove the statement
for A(n). We consider separately the cases when n is even and odd.

Suppose n s even. The number of legal sequences that begin with 0 is
obviously equal to

Aln—1) = (unn—_l)l/ZJ) - ((nn—_2>1/2>'

Now we prove that the number of legal sequences beginning with 1 is
equal to the number of legal sequences beginning with 0. We shall show
that a bijection between these legal sequences is given by the correspondence
0X <+ 1X, where 0X is any legal (0,1)-sequence of length £, § < £ <n —1,
that starts with 0. From this it follows that

_ _ n—1 n—1 _
A(n) =2A(n—-1) = ((n—Z)/Q) + ((n—Z)/Q) -
-1 ~1
= ((nnf2)/2) + (71/2) = (n72) = (Ln72j)-

So the problem is to prove that 0X < 1X is a bijection.

We use induction on even n. If n = 2 then we only have the critical slots
and thus there are only two legal sequences possible, namely 0 and 1. In this
case X = () and we have that 0.X <> 1X is a bijection.

Suppose for all even m less than n the correspondence 0X «< 1X is a

bijection. We consider the case m = n. Recall that n is even.
By n-permutation we mean a permutation of elements 1,2,... ,n.



A (0,1)-sequence py = 00X’ is a legal sequence that corresponds to some
n-permutation avoiding 7 if and only if pj, = X’ is a legal sequence that
corresponds to some (n — 2)-permutation. To see this we observe that after
the first two steps, pg fills in the two rightmost slots. We can strike them
and forget about the first two steps of pg; by this, we are left with the (0,1)-
sequence X' that can be investigated (if it is a legal sequence) with respect
to (n — 2)-permutations.

By the same reasoning, a (0,1)-sequence p; = 10X’ is a legal sequence
that corresponds to some n-permutation avoiding 7 if and only if p} = X' is
a legal sequence that corresponds to some (n — 2)-permutation.

From these arguments we conclude, that if X = 0X' then the correspon-
dence 0X < 1X is a bijection.

For any natural number k, we write (k) instead of writing £ consecutive
letters 1. In particular (0) = 0.

Suppose X = (k)0X' and k£ > 1. Reasoning as before, py = 0(k)0X' is a
legal sequence with respect to n-permutations if and only if pf, = 0(k—1)X" is
a legal sequence with respect to (n—2)-permutations. Also, p; = 1(k)0X"isa
legal sequence with respect to n-permutations if and only if pj = 1(k — 1) X’
is a legal sequence with respect to (n — 2)-permutations. By induction,
for (n — 2)-permutations, the correspondence 0Y <« 1Y between legal se-
quences 0Y and 1Y is a bijection, thus the correspondence 0.X <+ 1X, when
X = (k)0X', is a bijection for n-permutations as well.

The last thing we need to observe is that since n is even, py = 0(k) is a
legal sequence if and only if p; = 1(k) is a legal sequence.
This proves that the correspondence 0X <+ 1X is a bijection.

Suppose n 1s odd. If a legal sequence begins with 0, then we obviously
have that there are A(n—1) = ((7::)1 /2) such legal sequences. So to prove the
statement we need to prove that the number of legal sequences that begin

with 1 is equal to ((nﬁ)l /2) because if it is so then we have

Aln) = (<nn—_1)1/2) " ((nn+_1)1/2) - ((n —n1>/2> - <Ln72J>'

If a legal sequence begins with 1 then either



i) the number of 1s always exceeds the number of 0s, or

ii) at some point the number of 1s is equal to the number of Os.

Let us consider case i). Here we deal with Catalan numbers, which,
among many other things, count the Dyck paths. A Dyck path of length 2n
is a lattice path from (0, 0) to (2n,0) with steps (1,1) and (1, —1) that never
goes below the z-axis. Let us explain why in case i) we have m ((n’g;’/z)

legal sequences with the right properties.

We can see that the number of ones is fixed in this case and equal to
(n —1)/2. We can complete our (0,1)-sequence with Os if necessary (in
order to complete a Dyck path that corresponds to the (0,1)-sequence under
consideration). Moreover, we can forget about the leftmost letter 1 because
we know that it is followed by another letter 1, so we have (n — 3)/2 ones.
We thus substitute & = (n — 3)/2 in the formula for the Catalan numbers,
Cy = k—il (Zkk), which completes the consideration of i).

In case ii) we apply induction. Let us consider the first time, say step
i, when the number of 0s is equal to the number of 1s. Obviously it can
occur at any even step (and not at any odd one). Moreover, because it is the
first such time, if we consider initial subsequences of length less then 7, we
always have that in such subsequences the number of 1s exceeds the number
of 0s. So in case ii), if we apply the induction hypothesis to the A(n — i),
the number of legal sequences is equal to

"i Z/L? <(z’ 2.—_2)2/2) A== Hi Z/L? ((i Z.—_2)2/2) ((n —ni_—il)/2>'

L i=2 L i=2
1 1S even 1 1S even

So to complete the case when n is odd we need only check the following
equality:

((nn+_1>1/2) B

% ((7: i—_2>2/2) ((n —nz'_—il)/z) i ﬁ <<nn—_3§)/2)‘

i 1S even
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The last term can be moved inside the sum. Since n is odd, we have
n = 2m + 1 and the equation above can be rewritten as

( 2m ) _zm:1<2(i—1)) <2(m—i)+1)
m+1) i\ i1 m—i )

We give a combinatorial proof of this identity. We observe that the left
hand side of it counts the number of all lattice paths from (0, 0) to (2m, —2)
with steps (1,1) and (1,—1).

The ¢-th term in the right hand side counts the number of such paths
whose first step below the z-axis is just after step 2(i — 1). Now the first
2(i — 1) steps of any such path determine a Dyck path of length 2(i — 1). So
there are (*"") /i possibilities for a such path to pass the point (2(i — 1), 0)
and come to the point (2i — 1, —1) with the (1, —1) step. We multiply this
number with (2(":;_")1.“) which counts the number of all lattice paths from
(2i —1,-1) to (2m, —2) with steps (1,1) and (1, —1). Thus, the right hand
side counts the same paths as the left hand side.

This completes the case when n is odd and thereby the proof. O

Example 2. For n = 4 there are indeed (;l) = 6 permutations avoiding class
7. In the table below we show these permutations and legal sequences that
correspond to them.

Permutation | Corresponding legal sequence
4321 0000
3421 001
4231 01
4312 100
3412 101
2413 11

Theorem 2. For class 6 we have

[ 20y, ifn=2k+1,
A(”)_{ Cy +Cy_1, ifn =2k,

where Cy, 1s the k-th Catalan number.
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Proof. We consider n empty slots. If we fill the slots successively with the
letters 1,2, ... ,n then we always have one or two possibilities, namely, either

0) we place the current number in the rightmost empty slot, or
1) we place it in the second empty slot left of the leftmost non-empty slot.

Observe that we can use option 0), except in the first step, only if there
is a non-empty slot to the left of the rightmost empty slot. This is a crucial
difference between classes 6 and 7.

As in the proof of Theorem 1 we can consider the critical slots as well as
(0,1)-sequences that appear in the obvious way (we have always one or two
possibilities until we reach a critical slot and uniquely place all remaining
numbers). After that we can associate the (0,1)-sequences with Dyck paths
and apply the formula for the number of Dyck paths.

The number of legal sequences that correspond to the permutations avoid-
ing class 6, whose rightmost letter is 1, is equal to

1 (2-[(n—1)/2j)
L(n=1)/2] +1\ [(n=1)/2]

The number of legal sequences that correspond to the permutations avoid-
ing class 6, with the second letter from the right equals 1, is equal to

1 <2 - |n/ QJ)
[n/2] +1\ |n/2] )
From these facts we have that

1 (b 2 Lin= 1)
A(n) = WQJH( 1n/2] >+L(n_1)/zj+1< L(n—1)/2] )

Substituting n by 2k 4+ 1 and 2k, respectively, completes the proof. [

For class 8, 1 must be either in the rightmost position or in the second
position from the right. It is easy to see that the letters to the left of 1 must
be in decreasing order. So there are n ways to choose the rightmost element
of a permutation and all other elements can be placed uniquely, so there are
n permutations avoiding 8.
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For class 9, if 1 is in the rightmost position then we must place all other
letters in decreasing order, so in this case we have the permutation 7 =
n(n —1)...21 that avoids class 9.

Assume that 1 is not in the rightmost position. The letters to the left
of 1 must be in decreasing order. On the other hand it is easy to see that
the letters to the right of 1 must be in increasing order (the set of such
elements is non-empty). But 2 can not be to the left of 1 since in this
case we obviously have an occurrence of a 213-pattern in the permutation
that involves the letters 1 and 2. So 2 is immediately right of 1. Thus, to
determine a permutation in class 9 is equivalent to partitioning the letters
{3,4,...,n} into two blocks. There are 2"~2 ways of doing it. One of the
blocks is all elements of a permutation to the right of 12, and the other one
is all elements to the left of 12. So there are 1 + 2"~2 permutations avoiding
class 9.

Let us consider class 10. We explain how to get a recurrence relation for
A(n) in this case.

It is easy to see that 1 is either in the rightmost position or in the second
position from the right. In the first case there are A(n—1) permutations that
avoid 10. In the second case we can place the letter 2 either in the position
immediately left of 1 or in the second position left of 1.

In the first of these cases we choose from the remaining (n — 2) letters a
candidate for the rightmost position. One can do this in (n — 2) ways. Then
we multiply this by A(n — 3) since three of rightmost positions do not affect
to placement of all other letters in a permutation.

So we need to consider the case when 2 is in the second position left of 1.
In general, we need to consider the case when the letters 1,2,...,7 have
been already placed in such way that 2¢ rightmost positions are alternatingly
empty and non-empty, the rightmost position is empty, and these i letters are
in decreasing order from the left to the right. If we place (i + 1) immediately
left of the leftmost non-empty position then we choose i elements from the
remaining (n—i—1) elements in order to fill in 4 of rightmost empty positions.
We observe that we must fill in the chosen elements in increasing order from
the left to the right, otherwise we get an occurrence of a 312-pattern that is
prohibited. Then we multiply this by A(n — 2i — 1) because in this case the
(2 + 1) rightmost letters do not affect to replacement of all other letters in
a permutation. So we need to consider the case when (i + 1) is in the second
position left of ¢ and so on.
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So we have

n—i—1
A(n) = An—2i—1 1 d 2).
W= ("} A2+ (1 mod 2
The last term appears because if n is odd we have to consider the per-

mutation
_n+1n—1n+3n—3

T=79 79 T3 T3

which avoids 10 and which is not counted in the sum.
As initial conditions one can take A(0) =1, A(1) = 1.

...2(n—1)1n,

Theorem 3. For class 11 we have A(n) = (n — D! + (n — 2)!L.

Proof. Since the patterns 123 and 321 can not occur in the permutations
avoiding class 11, such permutations are alternating or reverse alternating,
that is, of the form a; > a9 < a3 > --- or a; < as > az < ---, with one more
restriction. One can easily see that 1 is either in the rightmost position or
next to this position, for otherwise we have an occurrence of a 123- or 132-
pattern. If we go from the right to the left starting from 1 and jumping over
one element then we get an increasing sequence of letters because otherwise
we have an occurrence of the pattern 132.

Let P;(n) be the number of permutations having 1 in the rightmost po-
sition and let Py(n) be the number of permutations having 1 in the next to
the rightmost position. Then obviously

A(n) = Pi(n) + Pa(n).
It is easy to see that

Pi(n) = Py(n—1),
Py(n)=(n—1)Py(n—2)

whence P;(n) = (n —2)!! and Py(n) = (n — 1)!L O

Class 16 is a classically studied object. Permutations that avoid 16 are
the alternating and the reverse alternating permutations. It is well known
that the exponential generating function for the number of such permutations
is (tan z+sec z)%. The initial values for A(n) are 1,2, 4, 10, 32,122, 544, 2770, . . .
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For the result on class 17 we refer the reader to Porism 10 in [5].

Finally, for class 18 we can observe that to the left of 1 in such a per-
mutation we must have a decreasing subword and to the right of 1 we must
have an increasing subword, since otherwise we have either a 132- or a 231-
pattern. Thus we can choose the elements to the right of 1 from the set
{2,3,...,n} in 2"~ ! ways and then arrange uniquely the right hand side and
the left hand side (elements of a permutation to the left of 1). So there are
27! permutations that avoid class 18.
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