A FOURIER SERIES FORMULA FOR ENERGY OF MEASURES
WITH APPLICATIONS TO RIESZ PRODUCTS
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ABSTRACT. In this paper we derive a formula relating the energy and the
Fourier transform of a finite measure on the d-dimensional torus which is sim-
ilar to the well-known formula for measures on R%.

We apply the formula to obtain estimates on the Hausdorff dimension of
Riesz product measures. These give improvements on the earlier, classical
results which were based on completely different techniques.

1. INTRODUCTION

Potential theoretic techniques have been quite useful in geometric measure theory
to study the behaviour of measures on R¢. There is a well known and important
relationship between the t-energy of a measure and its Fourier transform:

// |:1:— /wd

In this note we derive a similar formula relating the energy and discrete Fourier
transform of a measure on the d-dimensional torus:

L(w) ~BO+ > AR

2€Z3, 240

2 dx.

The energy of a measure is closely connected with geometric properties of the
measure. In particular, if I;(u) < oo, then the Hausdorff dimension of any set of
positive u measure is at least t. We use this fact, together with our formula relating
the energy and discrete Fourier transform of a measure on the torus, to study the
dimensions of Riesz product measures.

Riesz products are typically singular to Lebesgue measure, so it is of interest
to determine their Hausdorff dimension. We prove, for example, that if {n;} is a
lacunary sequence of integers satisfying ng1/ng > 3, then the Hausdorff dimension
of the Riesz product p = [[(1 + Rea;ei™i®) is at least

1 —lim sup a;|® /(2logny,
maup | 3l 2logn)
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This improves upon the earlier work of Peyriere [9] and Brown, Moran and Pearce
[1] who had shown, using other techniques, that the Hausdorff dimension of a more

restricted class of Riesz products was at least 1 — lim sup (Ef;ll laj| /log nk).

Similar results can be obtained for the dimensions of multivariable Riesz products
in T¢ and R?. These are again sharper and apply to a larger class of measures than
the earlier results of Peyriere.

2. ENERGY AND THE FOURIER TRANSFORM

By a measure we mean a finite, positive Borel measure on a metric space. The
t-energy of the measure p, I;(u), is defined as

_ dp(z)dp(y)
It(“)z/ / dist(z,y)!

Our interest is in the metric spaces R? with the usual Euclidean metric dist(z,y) =
|z — y|, and the d-dimensional torus, T¢, which we view as either [-1/2,1/2]? or
[, 7]? with the usual identification (depending upon which is more convenient).
The torus has a group structure and when we write x — y for z,y € T¢ it should be
understood that the binary operation is the group operation. The metric we con-
sider on T? is the usual notion of distance on the torus and we denote this metric
by dr(z,y) to distinguish it from the metric on R?.

The Hausdorff dimension of a measure y is defined as

dimpg p = inf{dimy E : E is a Borel set with u(E) > 0}.

For properties of the Hausdorff dimension of a measure see [3], ch. 10.
We will say that ¢ is the energy dimension of y if

t = sup{s: I;(u) < oo}.

If I;(u) < oo, then dimg p > t (c.f. [2], 4.3). Thus the Hausdorff dimension of
a measure is always at least the energy dimension. The two dimensions are not
always equal, but for many measures they are. For example, if y is the Hausdorff
measure on the classical middle-third Cantor set, then dimpg p = log2/log3 = so.
Since u(B(z,r)) < cr® for all z, it can be shown that I;(u) < oo for all ¢ < sg, and
hence the energy and Hausdorff dimensions coincide.

There is a very useful relationship between the energy and Fourier transform of
a measure on R? which can be derived from Parseval’s theorem and the well-known
fact that if f(z) = |z|”* for z € R?, then f(2) = Ctd |z|t_d for some constant ¢ q,
namely,

(2.1) L(y) = coq / 12"~ () da.

A good explanation of the derivation of this formula and some examples of appli-
cations are given in [8], ch. 12.

It is natural to ask if there is a similar formula relating the energy and the
(discrete) Fourier transform of a measure on the d-dimensional torus. When d = 1
one can obtain a relationship by using Parseval’s theorem and the fact ([11], p.70)
that
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oo
Z n*~tcosnz = ¢ |z|7° + O(1) for 0 < s < 1.

n=1

By finding a suitable kernel on T¢ we will obtain a formula for d > 1, as well.
Notation. When we write f ~ g we will mean there are positive constants a, b
such that ag < f < bg.

Lemma 2.1. Let 0 < t < d. There is a function F; defined on T¢ and a C>-
function ¢ defined on R which have the following properties:

(1) F; is positive, integrable, continuous except at the origin and has Fourier
coefficients satisfying ﬁt(z) ~ |z|t_d for z € Z¢, z # 0;

(2) ¢ is positive, bounded on R? and bounded away from zero on T?; and

(3) Fi(x) — ¢(x) |z|~" is positive and bounded on T%.

Proof. We will take T? = [~1/2,1/2]%. Let ¢ be any non-negative, C>(R%) test
function supported on B(0,1/4) (the ball centred at the origin, with radius 1/4)
satisfying ¢ (0) > 0. Set () = ¢(x) + ¢(—z) and let ¢, be the inverse Fourier
transform of ). Then ¢? is non-negative and strictly positive on a neighbourhood
of 0. The function ¢ = qﬁf * qﬁf is a strictly positive, C*° function which decays
rapidly and whose Fourier transform, a> = (1 *)?, is a non-negative function which
is supported on B(0,1/2) and satisfies 8(0) > 0. The boundedness and rapid decay
of ¢ ensure that f,(z) = ¢(z) |z|~" is a summable function on R? and thus we can
form the periodic function

F(z)= ) filz+a)= ) ¢z+a)|lz+a|".

a€cZ4 a€Z2
We consider F; as a function on the torus; it is clearly positive, integrable and its
Fourier coefficients coincide with the Fourier transform of f; on the integer lattice.

As ft = a* |-~ we have

Fy(z) = J?t(z) = / &dy = /B %dy for z € 7.¢,

Rd |z —y|? ©0.1/2) |z —y|*

with the latter equality arising because ES is supported on B(0,1/2). If in addition
z# 0, then |z — y| ~ |2| when y € B(0,1/2). As a is bounded away from zero in a
neighbourhood of the origin it follows that Fy(z) ~ |2|"™%.

The function Fy(z) — ¢(z) || " is bounded because of the rapid decay of ¢; F;
is continuous except at 0 for similar reasons. i

Theorem 2.2. Let 0 < t < d. There are constants a,b > 0, depending on t,d such
that if pu is any finite, positive Borel measure on T?, then
(2.2)

al RO+ Y RITEE)P ) <L) <b [ RO+ D T ae)?
2€ZIN\0 2z€ZIN\ 0
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Proof. Choose the functions ¢ and F;(x) found in the lemma and set g;(z) = F;(x)—
¢(x) ||~ . Since ¢ is bounded away from zero on the torus, I;(u) is comparable to

/ (Fy — g0) (& — y)du(e)du(y).

Let 1 be a non-negative, continuous function supported on [—1/6,1/6]¢, satis-
fying [ =1 and z/[; > 0, and suppose {t,}c>0 is an approximate identity where
1. is the function supported on [—&/6,¢/6]? given by z — e~%)(z/¢).

As ¢, x F} is a continuous function on the torus, Parseval’s theorem gives

[ [ @.xF) @ = pau@in) = Y 9.0 F ) )

z€Z4

and this converges to Y ;4 F, (2) [i(2)|* as e — 0 since @(z) — 1 pointwise from
below. By Fatou’s lemma

//Ft(w —y)du(z)du(y) < lilsgigf//@bs * Fy(z —y)du(z)du(y),
and thus I;(u) is bounded above by some multiple of
> AR + E0) [30)f,
ZE€EZIN0

verifying the right hand inequality.
To establish the left hand inequality we should first observe that there is a
constant C, depending on ¢, such that for all £ > 0,

Y, *dr(-,0)74(2) < Cdr(z,0)~" for all 2z € T

One way to prove this is to decompose dr(-,0) t as dy +d> where ds equals dr(-,0) ¢
restricted to the complement of a small neighbourhood of 0. As dy is bounded,
¥, * dg is bounded. Clearly, ¢, * d;(z) = 0 if z is not sufficiently close to 0, and it
is an exercise to check that it is bounded by C'|z|™* = Cdr(z,0)* otherwise.

Since also 1, * g¢ < ||g¢||, , it follows that ¢, * F; < Cdr(z,0)"* +||g¢||,, - Thus
another application of Parseval’s theorem gives

L) 2 g(ummf / / wFt(w—y)du(x)du(y)—||gt||oo|ﬁ<0)|2)

= 2 X RGP - ol BOP ).

z€Z4
and therefore I;(u) is bounded below by
t—d |~/ N2 2
A Y TEG)E - BE(O)]
ZEZIN0
for suitable positive constants A, B. To complete the proof just note that we triv-

ially have I, (1) > Ci |E(0)[*. B

It is known that there are singular measures p on the circle with {fi(n)} € I? for
p > 2. We can give a lower bound on the Hausdorff dimension of such measures.

Corollary 2.3. If fi € I?(Z?) for some p > 2, then dimpy p > 2d/p.
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Proof. This is an easy consequence of Holder’s inequality and the fact that ), cza g |2]

is finite when (t — d)g < —d. I

Example 2.1. Recall that the energy dimension of the Cantor measure p on the
standard middle-third Cantor set is log2/log3. Thus for all t < log2/log3,

O + Y InlH [A(n)[* ~ L(y) < oo
n#0

3. RIEszZ PrRoDUCTS

A sequence {v,} C Z9is called dissociate if for any positive integer N,

N
ng% =0 for g, = 0,+£1, £2 implies g = 0 for all k.
k=1
A lacunary sequence of positive integers {n} with ngy1/ng > 3 is an example of
a dissociate sequence in Z.

Given a dissociate sequence {v,} and sequence of complex numbers {aj} sat-
isfying sup,, |ax] < 1, we define trigonometric polynomials Py(z) = H?Zl(l +
Rea;e"i®) for x € T?. By a Riesz product measure

o0
fifa;) = H(l + Reaje’i™)
j=1
we mean thg weak™* limit of the measures Pj(z)dz on T¢, which here we identify

with [—m, 7]%.
3.1. Hausdorff dimension. Estimates of the Hausdorff dimension of Riesz prod-
ucts on T were first obtained by Peyriere in [9] using probabilistic ideas. He proved
that if ngy1/ng € Z and ngyq1/ng, > 3, then the Hausdorff dimension of the Riesz
product measure fig, } = H;;(l + Rea;e'™i7) satisfies

(3.1)

1 —liminf
k—o0

> dimg Pfa;} 2 1 — lim sup

k—o0

<f10ngdl"‘{aj}>

log g1

(flOngd,U/{aJ}>

log ny,

([9], Thm. 2.8). From this formula and (the proof of) [9], Lemma 2.3 one can
obtain an upper bound on the Hausdorff dimension of K{a;} in terms of the size
of the coefficients {a;} and the integers {n;}. When the coefficients are small in
modulus the Hausdorff dimension of p {a;} 18 approximately bounded above by

k
- 1 2
(3.2) 1- llkniggf 1 ]E_l la;|” / logng

In [1], Brown et al extended Peyriere’s integral formula (3.1), replacing the di-
visibility condition by a less restrictive technical condition, and showed that the
Hausdorff dimension of these Riesz products was bounded below by

k
(3.3) 1 —limsup Z la;| /logny

k—o0 j=1

(t—d)q
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In our next theorem we use our formula (2.2) relating energy and the Fourier
transform to improve this lower bound; the new lower bound (3.5) should be com-
pared with Peyriere’s upper bound (3.2).

Theorem 3.1. Suppose {n;} is a dissociate set of increasing, positive integers and
assume there is some ¢ < 1 su.ch that Ef;ll n; < cny for all k. Let pg, .y be the
Riesz product H;’il(l + Rea;je™i®). Then the energy dimension of pg, .y equals
1 — o where

2log|a| + 4= log (1+a,l° /2)
(3.4) oo = max | limsup

k—oo log ng,

In particular,

k
(3.5) dimpg py,,3 > 1 —limsup % Z |aj|2/lognk
k—oo j=1

Before proving this there are several observations we would like to make.

First, note that the technical assumption of our theorem, the condition that
Zf;ll nj < cny, for some ¢ < 1, is automatically satisfied when ng4q/ng > 3.

In the special case that a; = a > 0 for all j, n; = ¢’ for some integer ¢ > 3 and
Wy = H‘J’il (1+aRe e"qu) there is an exact (theoretical) formula for the Hausdorff
dimension given in [4]:

[log(1 + Re ae'?®)dp,

B log q '

There are approximations for this in terms of a and g (see [5]), however our theorem
appears to give some improved estimates.

dimgp, = 1

Corollary 3.2. If u, = H;’;l(l + Re aeiqu) then dimpg p, > 1 — |a2| /(2logq).
More generally, if logny/k — loggq < oo and g, .y = H(;il (1+Reaje’? ), then

. k 2
lim supy, 35—y la|

2logq

dlmH /,L{aj} Z 1-—

In [9] Peyriere gave examples of Riesz products satisfying nyy1/ng — oo which
had Hausdorff dimension one. In fact, another consequence of our theorem is that
all such Riesz products have dimension one.

Corollary 3.3. (a) If k/logni — 0 then dimp py,,y = 1.
(b) If ngy1/ny — oo then dimpy pg,,y = 1.

Proof. (a) Since Zle la;|> < k the hypothesis implies Ele la;|” /log g1 — 0.
(b) Given £ > 0 choose m such that logm > 1/e and pick k(m) so that for all
k > k(m), ngg1/ng > m. If k = k(m) + j, then ny > mIny(y) and therefore if j
(equivalently, k) is sufficiently large, then
k < k('m) +i
logng — jlogm

2e.
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Proof of Theorem. To calculate the energy dimension of g,y (we will write p in
what follows) we need to observe that if

k—1
n el ={tn, + ZEjnj 1gj = 0,+1},

j=1
then

_ lak |a;

()] = 2 H 2
;70

(where the empty product is one). Furthermore, if n € Ty, then |n| ~ ng. Thus

PN [T == |a;|”
> Il RO~ = T (15 )

nel'y j=1

and therefore

k—1
- Iakl2 |as*
(3.6) L_olp ~1+§ P I+ 5|

7j=1

Clearly, I; _4(u) = oo if infinitely many of the summands are at least one, and
this occurs if

2 k—1
—alognk—i—logl k| —i—Zlog <1+|a1| ) >0
j=1

for infinitely many k. It is a routine verification to see that if & < aq then this is
indeed the case.

Conversely, I _,(p) < oo if there is some A < 1 such that for all but finitely
many k,

k—1 :

n—a|ak|2 H 1+ |aj|2 < Ak

kg 2 |-
Jj=1

or, equivalently,

log |ax|” /2+ZJ 1log( + |a;]? /2) +I<:|10gA|

logny,

o>

It is known that if {n;} is a dissociate sequence of positive integers then

[{ni} 1,24 < 0k)

([10]) hence there must be some C > 0 such that ng > 2 for all k. Thus it suffices
to show that for all but finitely many £,

2 —
log lax/* /2 + X252t og (1+ 1a,° /2)  rog 4]
log ng, C'log?2

a2
for some A < 1. We can certainly achieve this if a > «g since we can choose A so
close to 1 that |log A| /C'log?2 is as small as necessary.
Since log(1 + z) < z for > 0 inequality (3.5) follows directly. I
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Remark 3.1. Similar statements can obviously be made for Riesz products H]OL (1+
Rea;e™i®) in T? where {v;} C Z% is dissociate and satisfies Zf;ll 17| < elvil
for some ¢ < 1.

3.2. Random Riesz products. One can similarly define a random Riesz product
as the weak™ limit of the sequence of measures

k
H (14 Reaje?i (@+wi)dy

Jj=1

where w = {w;} is a sequence of independent and identically distributed, random
variables on T? .

The results of Peyriere and Brown et al were extended by Fan in [4] to random
Riesz products. He showed, for example, that if ng41/ng > 3, lim(k/logng) = &
exists and ay = a € R, then the Hausdorff dimension of the random Riesz product
faw =721 (1 +aRe e (@i equals

1- 5(1 —V1-a? +1log ((1+ V1 —a2)/2))

In contrast, we can show that the energy dimension is generally smaller.

Proposition 3.4, If ngy1/ng > 3, limg_,oo(k/logng) = £ # 0 and a, = a € R,
then almost surely the Hausdorff dimension of u, , exceeds the energy dimension.

Proof. As |fi, ., (n)| = |fi;(n)|, formula (3.6) gives that

a2 (o] (l2 k—1
Il—a(/"/a,w)Nl-}_EkZlnlza (1+7) :

Thus the (1 — a)-energy is infinite if, for infinitely many k&,

< (k — 1)log(1 + a?/2)
- log g,

— Elog(1 +a?/2)
Since a simple calculus argument shows

log(1+a2/2) >1—/1— a2 +log ((1 +/1- a2)/2) if a# 0
the result is immediate. I

3.3. Riesz products on R. Any measure p on T¢ (which we now identify with
[-1/2,1/2]?) can be extended periodically to u, on R? (the extension p, being a
measure which is infinite except in the trivial case when p = 0). Let ¢ be any
strictly positive, C>(R?) function, whose Fourier transform is a positive function
supported in B(0,1/2) satisfying $(0) > 0. Assume also that ¢ decays sufficiently
rapidly to ensure that ¢pu, is a finite measure.

Following Peyriere, we will say that v is a Riesz product measure on R? if v = ¢p,
where p is a Riesz product on T? and ¢ is as above.

Proposition 3.5. Suppose u is a measure on T? and ¢pu, is a finite measure on
R? where p, is the periodic extension of p to R? and ¢ is as described above. Then
I(p) is comparable to I(dp,).
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Proof. Formally, the periodic extension p, of p is the convolution of the compactly
supported measure p defined on [—1/2,1/2]¢ C R?, with the distribution P =
> acza 0a Where d, is the point mass measure at a € R?. Hormander’s theorem

([6], 7-2.1) gives P = P, thus f, is the distribution o P = 3>, ;4 i(-)d4.
Let v = ¢y, where ¢ is as above. Since v is a finite measure on R? the classical
formula can be applied:

L) = c/ | p(a) ? da.
Now v(z) = 1, * b(z) = > aczd fi(a)$(z — a), and as suppp C B(0, 1/2) there can
be at most one non-zero term in the sum for any given z. Thus we can decompose
the integral above as

~ 2
i = Y@l [ ) e

a€Zd

~ [BOP+ Y @) el

a€ZIN0

since a is bounded away from zero in a neighbourhood of the origin. But this is
comparable to I;(u) according to our formula (2.2). 1

Corollary 3.6. If v = ¢pu, is a Riesz product measure on R? corresponding to the
Riesz product p on T¢, then the energy dimensions of v and u are equal.

Remark 3.2. The Hausdorff dimensions of v and p are also equal since ¢pu, and
1, have the same null sets.
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